JPH04236060A - Hot-air heater - Google Patents

Hot-air heater

Info

Publication number
JPH04236060A
JPH04236060A JP1482491A JP1482491A JPH04236060A JP H04236060 A JPH04236060 A JP H04236060A JP 1482491 A JP1482491 A JP 1482491A JP 1482491 A JP1482491 A JP 1482491A JP H04236060 A JPH04236060 A JP H04236060A
Authority
JP
Japan
Prior art keywords
heater
ceramic heater
ceramic
auxiliary
characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1482491A
Other languages
Japanese (ja)
Inventor
Yukio Honda
本 多 幸 夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP1482491A priority Critical patent/JPH04236060A/en
Publication of JPH04236060A publication Critical patent/JPH04236060A/en
Pending legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)
  • Direct Air Heating By Heater Or Combustion Gas (AREA)

Abstract

PURPOSE:To enable acting quickly in preventing an accident such as a fire, in the use of a ceramic heater-element of negative characteristics, by connecting an auxiliary heater-element of positive characteristic to the ceramic heater- element of negative characteristics in series and by providing close to the auxiliary heater-element a switching device which is sensitive to heat and functions to cut off power supply to the kinds of heater-elements. CONSTITUTION:When a blower 5 has stopped working during operation or when the air volume of the blower has dropped because of some trouble in the passageway 3 for air, the electric current flowing in a ceramic heater- element 1 increases because a ceramic of negative characteristic is in use for the heater-element. This increase of the current makes an auxiliary heater- element 6 of positive characteristic heat up so rapidly as to show an increase in power consumption in a larger ratio than the ceramic heater-element 1; the heating of the auxiliary heater-element 6 accelerates the heating of a thermostat 7 and, as a result, a switching device acts to cut off power to the ceramic heater-element 1 of negative characteristic. Thus the heating of the ceramic heater-element 1 of negative characteristic can be acted against quickly to prevent it from developing into accident such as a fire.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は負特性セラミックヒータ
素子を用いた温風機に関し、さらに詳しくは過熱状態に
なることを防止する安全機構に関する。 【0002】 【従来の技術】最近温風機すなわち通風式電気ファンヒ
ータの熱源としてセラミックヒータ素子が多く使用され
ており、とりわけ正特性サーミスタ素子(以下PTC素
子という)が多く使用されている。その理由としては、
PTC素子自体が自己温度制御作用を有しているためで
ある。即ち、素子温度が低い場合(通常初期)には電気
抵抗値が低く電流が多く流れるが、素子温度が約190
°C付近になると安定し、PTC素子の抵抗値が急激に
高くなって自己発熱を自動的に制御するため、過熱によ
る危険性が無く安全なためである。 【0003】図5〜図11は従来の技術を示す図面であ
って、図5はハニカム状セラミックヒータの外観斜視図
、図6はフイン付きセラミックヒータの外観斜視図、図
7はハーモニカ状セラミックヒータの外観斜視図、図8
は図5に示すセラミックヒータの部分拡大縦断面図、図
9は通風式電気ファンヒータの概略構成図、図10はセ
ラミックヒータの通風量−消費電力特性図、図11は通
風式電気ファンヒータの使用状況を示す側面図である。 従来のセラミックヒータの形状としては、図5、図6及
び図7に代表されるものである。 【0004】図5に示すセラミックヒータ10は、円板
状PTC素子11の両表面間 を貫通する多数の通風口
12を有しており、全体としてハニカム状に形成されて
いる。また円板状PTC素子11の両表面にはそれぞれ
電極板13,14、が設けられている。通風口12の表
面は、図8に示すように、白金系触媒で被覆されている
。図6に示すセラミックヒータ20は、複数個の板状P
TC素子21が並列に接合され、それら両表面を熱交換
用フイン兼電導板23,24ではさみ、さらにこれを上
下から電極板25,26ではさんでいる。又フイン兼電
導板23,24によって通風空間22が形成されている
。図7に示すセラミックヒータ30は、ハーモニカ状に
形成されたPTC素子31を、電極板33,34ではさ
んでいる。 通風口32は電極板33,34に穿設されている。 【0005】PTC素子10は、図10に示すように、
通風口12を通過する通風量の増大に従って消費電力は
増加するが、素子温度は通風量の増減に関係なく自己温
度制御機能により一定温度190°C付近で安定する。 又使用中に送風機停止及び送風量が低下した場合にも、
素子温度が190°C付近になり抵抗値が増加、電力が
低下し安全を保つ。 【0006】 【発明が解決しようとする課題】しかしながら、従来の
通風式電気ファンヒータにおいては、PTC素子を用い
ているので安定温度が低く、暖房効果を上げるためには
通風口12を通過する通風量を増大させて消費電力を増
加させる必要がある。即ち通風温度を大きくしなければ
ならないことになる。図11に示すように、スポット暖
房用としての個人用通風式電気ファンヒータFHにおい
ては、吹き出し風量及び消費電力が小さいので、使用場
所によっては室内の隅々まで熱気が伝わらないことが多
い。このため通風量を増加させると室内の対流効果は向
上するが、温風が低温化し、使用者にこれが当たると不
快感を与えることになる。対流が図11に矢印で示すよ
うに室内全体にわたるので、吹き出された空気が再び戻
って通風口を通過循環する回数が少なくなる。 【0007】前記したように高温風で、かつ通風量大、
又は風速大を要する暖房効果を上げるには、PTC素子
を大きくして空気の接触面を広げ送風機のパワーアップ
を図れば良いことになる。しかしなから部品が大きくな
るので器具全体が大型となりコンパクト化、コスト低減
が図れないことになる。 【0008】この欠点を解消するためPTC特性と逆の
NTC特性ヒータの使用が考えられるが、抵抗安定温度
が800°C近くと高いため通風使用が必要で、万一使
用中に送風機が停止または送風量が低下した場合には、
ヒータ温度が急速に上昇し電流、電力が増加し器具の過
熱を招き火災の原因となる要因を含んでいる。 【0009】本発明は上記の事情を考慮してなされたも
ので、送風量が低下した場合にも、安全性を保ち、かつ
コンパクトな通風式電気ファンヒータを提供することを
目的としている。 【0010】 【課題を解決するための手段】本発明は、複数個の通風
口を有するセラミックヒータと、セラミックヒータが内
設される風洞と、風洞内のセラミックヒータに送風し温
風を機外へ送出する送風機とを具備する温風機において
、セラミックヒータが負特性セラミックヒータ素子から
なり、さらにセラミックヒータに直列に接続される正特
性を有する補助ヒータと、補助ヒータの近傍に取り付け
られその発熱に感応して作動し、セラミックヒータ及び
補助ヒータへの通電を停止するスイッチ素子とを備えた
温風機である。 【0011】 【作用】運転中に送風機が停止したり、送風経路にトラ
ブルが起こり送風量が減少した場合には、セラミックヒ
ータが負特性セラミックヒータ素子であるので電流が増
加する。一方電流が増加すると補助ヒータの発熱量が急
激に上昇する。この発熱によってスイッチ素子が作動し
、負特性セラミックヒータ素子への通電が停止される。 これによって、負特性セラミックヒータ素子の過熱が防
止され、火災などの発生を抑止できる。 【0012】 【実施例】以下この発明の実施例を図面にて詳述するが
、この発明は以下の実施例に限定されるものではない。 図1において、1は負特性(以下NTC特性という)セ
ラミックヒータ素子からなる円板形状のセラミックヒー
タで、複数個の通風口2を有している。このセラミック
ヒータ1の構造は図6に示したものと同じであってよい
。セラミックヒータ1は、温風機の通風路を形成する風
洞3内に、その風洞3の通風方向に一致する方向に通風
口2を向けて固定されている。通風口2の表面は白金系
触媒4によって被覆されており、脱臭をおこなうように
なっている。 【0013】5はモータ5aとファン5bとからなる送
風機で、吸い込まれた室内空気をセラミックヒータ1に
送風し、かつ機外へ送出するだけの風量を発生する。6
は補助ヒータで、風洞3の外側に設けられており、その
上方に近接してスイッチ手段であるサーモススタット7
が取り付けられている。サーモスタット7の取付位置は
、補助ヒータ6以外の熱の影響を受けない部分にするの
が好ましい。 【0014】セラミックヒータ1と補助ヒータ6とサー
モスタット7とは、図2に示すように、直列に接続され
ている。送風機5が「強」で運転している場合、電源電
圧100vを印加するとセラミックヒータ1の抵抗値が
8.9Ω 、補助ヒータ6の抵抗値が0.1Ωで、回路
全体としての合成抵抗値が9Ωになる。回路に流れる電
流は11.11Aで、消費電力は計算上1111wとな
る。送風機5が正常に運転している場合には、この電力
を維持して安全運転を続ける。この場合補助ヒータ6に
は1.11(=B)vが印加されることになり、12.
3Wの出力でサーモスタット7を過熱し続ける。この時
セラミックヒータ1には98.9(=A)Vが印加され
ており、1137.4Wの出力である。 【0015】
ここでセラミックヒータ1及び補助ヒータ6との直列回
路Sに55〜100Vの電圧を印加し、送風を停止した
場合の電力値の変化を調べた結果を下記の表1及び図4
に示す。 【0016】 【表1】 【0017】直列回路Sに100Vが印加され送風状態
にある場合は、表1及び図4において停止時間0秒であ
り抵抗値9Ωで消費電力1110Wとなる。同様に55
Vを印加した場合は、消費電力247.5Wとなり抵抗
値は12.2Ωで、変化が大きいNTC特性を示してい
る。 【0018】表1及び図4から明らかなように、送風の
停止されている時間が長くなるほど消費電力は増加する
。 例えば100Vを印加して、送風停止から5秒経過する
と、直列回路Sの抵抗値は8.7Ωに変化し、消費電力
は1150Wとなり、また25秒後の場合には、6.5
Ωとなり消費電力は1530Wに増加する。この場合補
助ヒータ6の抵抗値は0.1Ωでほとんど変化しないの
で、セラミックヒータ1の抵抗値が変化している。 【0019】このようにセラミックヒータ1への送風停
止時の電力変化速度は高電力、高電圧になれば速くなり
、低電力、停電圧になれば遅くなることが明確である。 すなわちセラミックヒータ1に印加される電圧AVは、
送風機7の運転時に比べ、停止時には低下し、補助ヒー
タ6に印加される電圧BVは上昇し、したがって補助ヒ
ータ6の消費電力増加比はセラミックヒータ1のそれよ
り大きくなる。このことは補助のヒータ6の発熱でサー
モスタット7を過熱する速度が速くなることになる。単
にサーモスタット7のみでの感熱の場合は、電力増加速
度に対応できず機器が結果的に焼損することになる。こ
のようにして、何らかの原因で送風が停止し補助ヒータ
6が急激に発熱しはじめると、サーモスタット7が設定
された温度で開成し、セラミックヒータ1及び補助ヒー
タ6への通電を停止する。 【0020】なお、スイッチ手段は、サーモスタットの
熱応動片(バイタル)にマイカ板などで絶縁をほどこし
、これにニクロム線からなる補助ヒータを巻き付ける構
成であってもよい。 【発明の効果】この発明によれば、送風が停止した際に
スイッチ手段が作動して火災などの危険を迅速に防止す
ることができる温風機が得られる。
Description: TECHNICAL FIELD The present invention relates to a hot air fan using a negative characteristic ceramic heater element, and more particularly to a safety mechanism for preventing overheating. [0002] Recently, ceramic heater elements have been widely used as a heat source for warm air machines, that is, ventilation type electric fan heaters, and in particular, positive temperature coefficient thermistor elements (hereinafter referred to as PTC elements) have been widely used. The reason is that
This is because the PTC element itself has a self-temperature control function. That is, when the element temperature is low (usually at the initial stage), the electrical resistance value is low and a large amount of current flows, but when the element temperature is about 190
This is because the temperature becomes stable around °C, and the resistance value of the PTC element increases rapidly to automatically control self-heating, so there is no risk of overheating and it is safe. 5 to 11 are drawings showing conventional techniques, in which FIG. 5 is an external perspective view of a honeycomb-shaped ceramic heater, FIG. 6 is an external perspective view of a finned ceramic heater, and FIG. 7 is a harmonica-shaped ceramic heater. External perspective view, Figure 8
is a partial enlarged vertical sectional view of the ceramic heater shown in FIG. 5, FIG. 9 is a schematic configuration diagram of a ventilation type electric fan heater, FIG. 10 is an air flow-power consumption characteristic diagram of the ceramic heater, and FIG. 11 is a diagram of the ventilation type electric fan heater FIG. 3 is a side view showing usage status. The shapes of conventional ceramic heaters are typified by those shown in FIGS. 5, 6, and 7. A ceramic heater 10 shown in FIG. 5 has a large number of ventilation holes 12 penetrating between both surfaces of a disc-shaped PTC element 11, and is formed into a honeycomb shape as a whole. Further, electrode plates 13 and 14 are provided on both surfaces of the disc-shaped PTC element 11, respectively. The surface of the ventilation port 12 is coated with a platinum-based catalyst, as shown in FIG. The ceramic heater 20 shown in FIG.
The TC elements 21 are connected in parallel, and both surfaces thereof are sandwiched between heat exchange fins and conductive plates 23 and 24, which are further sandwiched between electrode plates 25 and 26 from above and below. Further, a ventilation space 22 is formed by the fins and conductive plates 23 and 24. A ceramic heater 30 shown in FIG. 7 has a harmonica-shaped PTC element 31 sandwiched between electrode plates 33 and 34. The ventilation holes 32 are bored in the electrode plates 33 and 34. [0005] The PTC element 10, as shown in FIG.
Although power consumption increases as the amount of air passing through the ventilation port 12 increases, the element temperature is stabilized at a constant temperature of around 190° C. due to the self-temperature control function regardless of the increase or decrease in the amount of air. Also, if the blower stops or the airflow rate decreases during use,
When the element temperature reaches around 190°C, the resistance value increases and the power decreases to maintain safety. [0006] However, in the conventional ventilation type electric fan heater, since a PTC element is used, the stable temperature is low, and in order to increase the heating effect, it is necessary to increase the ventilation passing through the ventilation opening 12. It is necessary to increase the amount and power consumption. In other words, the ventilation temperature must be increased. As shown in FIG. 11, in the personal ventilation type electric fan heater FH for spot heating, the blowout air volume and power consumption are small, so depending on the place of use, hot air often does not reach every corner of the room. For this reason, increasing the amount of ventilation improves the indoor convection effect, but the temperature of the hot air decreases, and when this hits the user, it causes discomfort. Since convection flows throughout the room as indicated by the arrows in FIG. 11, the number of times the blown air returns and circulates through the ventilation openings is reduced. [0007] As mentioned above, high-temperature air and large ventilation volume,
Alternatively, in order to increase the heating effect which requires high wind speed, the PTC element may be made larger to widen the air contact surface and increase the power of the blower. However, since the parts become large, the entire device becomes large, making it impossible to achieve compactness and cost reduction. [0008] In order to eliminate this drawback, it is possible to use a heater with NTC characteristics, which is the opposite of PTC characteristics, but since the resistance stability temperature is as high as nearly 800°C, it is necessary to use ventilation, and in the unlikely event that the blower stops or If the air flow rate decreases,
The heater temperature rises rapidly, and the current and power increase, leading to overheating of the appliance and causing a fire. The present invention has been made in consideration of the above circumstances, and it is an object of the present invention to provide a ventilating electric fan heater that maintains safety even when the amount of air blown is reduced and is compact. Means for Solving the Problems The present invention provides a ceramic heater having a plurality of ventilation holes, a wind tunnel in which the ceramic heater is installed, and a hot air blowing to the ceramic heater in the wind tunnel to the outside of the machine. In the hot-air fan, the ceramic heater is composed of a ceramic heater element with a negative characteristic, and an auxiliary heater with a positive characteristic connected in series with the ceramic heater, and an auxiliary heater with a positive characteristic connected in series with the ceramic heater, and an auxiliary heater installed near the auxiliary heater to absorb the heat generated by the ceramic heater. This warm air fan is equipped with a switch element that operates in response to the current and stops power supply to the ceramic heater and the auxiliary heater. [Operation] If the blower stops during operation or if a problem occurs in the blowing path and the blowing amount decreases, the current increases because the ceramic heater is a negative characteristic ceramic heater element. On the other hand, when the current increases, the amount of heat generated by the auxiliary heater increases rapidly. This heat generation activates the switch element and stops energizing the negative characteristic ceramic heater element. This prevents the negative characteristic ceramic heater element from overheating and prevents the occurrence of fires and the like. [0012] Examples of the present invention will be described in detail below with reference to the drawings, but the present invention is not limited to the following examples. In FIG. 1, reference numeral 1 denotes a disk-shaped ceramic heater made of a negative characteristic (hereinafter referred to as NTC characteristic) ceramic heater element, and has a plurality of ventilation holes 2. The structure of this ceramic heater 1 may be the same as that shown in FIG. The ceramic heater 1 is fixed in a wind tunnel 3 that forms a ventilation path for a hot air fan, with the ventilation opening 2 facing in a direction that corresponds to the ventilation direction of the wind tunnel 3. The surface of the ventilation port 2 is coated with a platinum-based catalyst 4 for deodorization. Reference numeral 5 denotes a blower consisting of a motor 5a and a fan 5b, which generates a sufficient amount of air to blow sucked indoor air to the ceramic heater 1 and to send it outside the machine. 6
is an auxiliary heater, which is installed outside the wind tunnel 3, and a thermostat 7, which is a switching means, is installed near the top of the auxiliary heater.
is installed. It is preferable that the thermostat 7 be installed at a location that is not affected by heat other than the auxiliary heater 6. The ceramic heater 1, auxiliary heater 6, and thermostat 7 are connected in series, as shown in FIG. When the blower 5 is operating at "strong" and a power supply voltage of 100V is applied, the resistance value of the ceramic heater 1 is 8.9Ω, the resistance value of the auxiliary heater 6 is 0.1Ω, and the combined resistance value of the entire circuit is It becomes 9Ω. The current flowing through the circuit is 11.11A, and the calculated power consumption is 1111W. When the blower 5 is operating normally, this power is maintained to continue safe operation. In this case, 1.11 (=B)v will be applied to the auxiliary heater 6, and 12.
Continue heating thermostat 7 with 3W output. At this time, 98.9 (=A) V is applied to the ceramic heater 1, and the output is 1137.4 W. [0015]
Here, we applied a voltage of 55 to 100 V to the series circuit S with the ceramic heater 1 and the auxiliary heater 6, and examined the change in power value when the air blowing was stopped. The results are shown in Table 1 and Figure 4 below.
Shown below. [0016] [Table 1] [0017] When 100V is applied to the series circuit S and the air is being blown, the stop time is 0 seconds in Table 1 and FIG. 4, the resistance value is 9Ω, and the power consumption is 1110W. Similarly 55
When V is applied, the power consumption is 247.5 W, the resistance value is 12.2 Ω, and the NTC characteristic shows a large change. As is clear from Table 1 and FIG. 4, the longer the time the air blowing is stopped, the more power consumption increases. For example, when 100V is applied and 5 seconds have passed since the ventilation stops, the resistance value of the series circuit S changes to 8.7Ω, and the power consumption becomes 1150W.
Ω, and the power consumption increases to 1530W. In this case, the resistance value of the auxiliary heater 6 is 0.1Ω and hardly changes, so the resistance value of the ceramic heater 1 changes. As described above, it is clear that the rate of change in power when the air blowing to the ceramic heater 1 is stopped becomes faster as the power becomes higher and the voltage becomes higher, and becomes slower as the power becomes lower and the voltage stops. That is, the voltage AV applied to the ceramic heater 1 is
Compared to when the blower 7 is in operation, the voltage BV decreases when the blower 7 is stopped, and the voltage BV applied to the auxiliary heater 6 increases. Therefore, the power consumption increase ratio of the auxiliary heater 6 becomes larger than that of the ceramic heater 1. This means that the speed at which the thermostat 7 is overheated by the heat generated by the auxiliary heater 6 becomes faster. If only the thermostat 7 is sensitive to heat, it will not be able to cope with the rate of increase in power, and the device will eventually burn out. In this way, when the air blowing stops for some reason and the auxiliary heater 6 starts to rapidly generate heat, the thermostat 7 is opened at the set temperature and the power supply to the ceramic heater 1 and the auxiliary heater 6 is stopped. The switch means may be constructed by insulating the heat-responsive piece (vital) of the thermostat with a mica plate or the like, and wrapping an auxiliary heater made of nichrome wire around this. According to the present invention, there is provided a hot air fan that can quickly prevent dangers such as fire by activating the switch means when the air blowing stops.

【図面の簡単な説明】 【図1】この発明の実施例の概略構成説明図。 【図2】実施例の電気回路図。 【図3】実施例の送風停止テスト時における電気回路図
。 【図4】送風停止テストの消費電力増加結果を示すグラ
フ。 【図5】従来のセラミックヒータの斜視図。 【図6】従来の他のセラミックヒータの斜視図。 【図7】従来のさらに他のセラミックヒータの斜視図。           【図8】図5のセラミックヒータの部分縦断面図。 【図9】従来の温風機の概略構成説明図。 【図10】セラミックヒータの通風量−消費電力特性図
。 【図11】従来の温風機の運転状況を説明する使用説明
図。 【符号の説明】                1  セラミックヒー
タ2  通風口 3  風洞 5  送風機 6  補助ヒータ 7  サーモスタット
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram of a schematic configuration of an embodiment of the present invention. FIG. 2 is an electrical circuit diagram of the embodiment. FIG. 3 is an electrical circuit diagram during a ventilation stop test of the embodiment. FIG. 4 is a graph showing the increase in power consumption of the ventilation stop test. FIG. 5 is a perspective view of a conventional ceramic heater. FIG. 6 is a perspective view of another conventional ceramic heater. FIG. 7 is a perspective view of yet another conventional ceramic heater. 8 is a partial vertical sectional view of the ceramic heater of FIG. 5. FIG. FIG. 9 is a schematic configuration explanatory diagram of a conventional hot air fan. FIG. 10 is an airflow rate-power consumption characteristic diagram of a ceramic heater. FIG. 11 is an explanatory diagram illustrating the operating status of a conventional warm air fan. [Explanation of symbols] 1 Ceramic heater 2 Ventilation port 3 Wind tunnel 5 Air blower 6 Auxiliary heater 7 Thermostat

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  複数個の通風口を有するセラミックヒ
ータと、セラミックヒータが内設される風洞と、風洞内
のセラミックヒータに送風し温風を機外へ送出する送風
機とを具備する温風機において、セラミックヒータが負
特性セラミックヒータ素子からなり、さらにセラミック
ヒータに直列に接続される正特性を有する補助ヒータと
、補助ヒータの近傍に取り付けられその発熱に感応して
作動し、セラミックヒータ及び補助ヒータへの通電を停
止するスイッチ素子とを備えた温風機。
Claim 1: A hot air machine comprising a ceramic heater having a plurality of ventilation holes, a wind tunnel in which the ceramic heater is installed, and a blower that blows air to the ceramic heater in the wind tunnel and sends hot air to the outside of the machine. , the ceramic heater is composed of a ceramic heater element with a negative characteristic, and further includes an auxiliary heater with a positive characteristic connected in series with the ceramic heater, and an auxiliary heater that is installed near the auxiliary heater and operates in response to the heat generated by the ceramic heater, and the ceramic heater and the auxiliary heater A hot air fan equipped with a switch element that stops energizing.
JP1482491A 1991-01-14 1991-01-14 Hot-air heater Pending JPH04236060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1482491A JPH04236060A (en) 1991-01-14 1991-01-14 Hot-air heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1482491A JPH04236060A (en) 1991-01-14 1991-01-14 Hot-air heater

Publications (1)

Publication Number Publication Date
JPH04236060A true JPH04236060A (en) 1992-08-25

Family

ID=11871794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1482491A Pending JPH04236060A (en) 1991-01-14 1991-01-14 Hot-air heater

Country Status (1)

Country Link
JP (1) JPH04236060A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022069489A (en) * 2018-10-11 2022-05-11 日本碍子株式会社 Heater element and method for using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022069489A (en) * 2018-10-11 2022-05-11 日本碍子株式会社 Heater element and method for using the same

Similar Documents

Publication Publication Date Title
US4110600A (en) Thermostatically controlled plural heat output portable electric space heater
US4912300A (en) Control device for heating appliance having two operating regimes
US20050265702A1 (en) Compact portable electric heater with high thermal output
JPH04236060A (en) Hot-air heater
JP3120194B2 (en) Hot air blower
JPH0116997Y2 (en)
JPH0729597Y2 (en) Safety device for ceramic heater
US20030128971A1 (en) Portable electric heater
JPH0754763Y2 (en) Ventilation electric warmer
JP3120193B2 (en) Hot air blower
JPS5810904Y2 (en) heating device
JPH04208355A (en) Warm-air generator
CA1209631A (en) Combined radiant and fan heater
JPH0718154Y2 (en) Ceramic heater
JP2759840B2 (en) Electric heater
KR100382424B1 (en) Register of blower motor for heat exchanger
JPS6320884Y2 (en)
JPH03123520A (en) Heating device
JP2537952B2 (en) Electric radiator
JPS62119363A (en) Warm air generator
JPH0438193Y2 (en)
JPS58136395A (en) Semiconductive heater of garment dryer
JP2563599B2 (en) Heating toilet seat
JPH04136460U (en) electric hot air machine
JPH0641083Y2 (en) Electric Yagura Kotatsu