JPH04235919A - Anticancer drug - Google Patents

Anticancer drug

Info

Publication number
JPH04235919A
JPH04235919A JP3003528A JP352891A JPH04235919A JP H04235919 A JPH04235919 A JP H04235919A JP 3003528 A JP3003528 A JP 3003528A JP 352891 A JP352891 A JP 352891A JP H04235919 A JPH04235919 A JP H04235919A
Authority
JP
Japan
Prior art keywords
ribozyme
nucleotide
ras
activated
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3003528A
Other languages
Japanese (ja)
Inventor
Eiko Otsuka
栄子 大塚
Makoto Koizumi
誠 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sankyo Co Ltd
Original Assignee
Sankyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sankyo Co Ltd filed Critical Sankyo Co Ltd
Priority to JP3003528A priority Critical patent/JPH04235919A/en
Publication of JPH04235919A publication Critical patent/JPH04235919A/en
Pending legal-status Critical Current

Links

Landscapes

  • Saccharide Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

PURPOSE:To provide the subject anticancer drug containing, as the active component, a ribozyme having a specific breaking activity to mRNA transcribed by oncogene. CONSTITUTION:A hammer head type ribozyme having a nucleotide sequence of formula I or II (A is adenine nucleotide; U is uracil nucleotide; C is cytosine nucleotide; G is guanine nucleotide; 3' and 5' show 3' and 5' terminal respectively) is contained as the active component. The above-mentioned ribozyme can break only activated ras-gene mRNA molecule and can not break normal m-RNA molecule.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、癌遺伝子より転写され
るmRNAに対して特異的な切断活性を有するリボザイ
ムを有効成分とする抗腫瘍剤に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an antitumor agent containing as an active ingredient a ribozyme that has specific cleaving activity against mRNA transcribed from cancer genes.

【0002】0002

【従来の技術】RNAは、遺伝情報伝達物質としての役
割を担っているばかりでなく、それ自身が触媒的に作用
してRNAの切断や連結を行なう機能を有する(以下、
このような機能を有するRNAを「リボザイム」という
。)ことが知られている。そして、リボザイムは、切断
部位近傍の塩基配列や反応の性質からさらに、■ハンマ
−ヘッド型RNA、■ヘアピン型RNA、■クロ−バ−
リ−フ状RNA、■その他の自己切断反応RNAの4種
類に分類できる(蛋白質  核酸  酵素、vol.3
5、 No.13、 2191−2200、 (199
0))。
[Prior Art] RNA not only plays a role as a genetic information transmitter, but also has the function of catalytically acting to cleave and link RNA (hereinafter referred to as
RNA having such a function is called a "ribozyme." )It is known. Based on the base sequence near the cleavage site and the nature of the reaction, ribozymes can be further classified into: (1) hammerhead RNA, (2) hairpin RNA, and (2) cloverhead RNA.
It can be classified into four types: leaf-like RNA, and other self-cleavage reaction RNA (Protein, Nucleic Acids, Enzymes, vol. 3).
5. No. 13, 2191-2200, (199
0)).

【0003】本発明者らは、ハンマ−ヘッド型リボザイ
ムが、標的RNAを配列特異的に切断するエンドヌクレ
ア−ゼとして利用できることを見出し、この内容につい
てはすでに報告しており、以下に詳細を記載する(Nu
cleic Acid Res., vol.17, 
7059−7071,(1989) )。c−Ha−r
as遺伝子は、分子量21,000の蛋白質(p21 
)をコ−ドしている。ヒトの癌から検出された活性化r
as 遺伝子は、塩基の点突然変異によりp21 のア
ミノ酸にいくつかの変異が生じている。リボザイムがこ
のうちの1塩基の違いを認識できるか否かを調べた。リ
ボザイムは、p21 の12番目のGly(GGU)が
Val(GUU)に変異した活性化ras 遺伝子mR
NAを切断し、正常mRNAは切断しないように設計し
た。そして、試験管内の実験においては、このリボザイ
ムが、活性化ras 遺伝子mRNA分子のみを切断し
、正常mRNA分子は切断しないことを確認したのであ
る。
[0003] The present inventors have discovered that a hammerhead ribozyme can be used as an endonuclease that cleaves target RNA in a sequence-specific manner, and this content has already been reported and will be described in detail below. (Nu
cleic acid Res. , vol. 17,
7059-7071, (1989)). c-Har-r
The as gene is a protein with a molecular weight of 21,000 (p21
) is coded. Activated r detected from human cancer
The as gene has several mutations in the p21 amino acids due to point mutations in the bases. We investigated whether ribozymes could recognize differences in one of these bases. Ribozyme is an activated ras gene mR in which Gly (GGU) at position 12 of p21 is mutated to Val (GUU).
It was designed to cleave NA but not normal mRNA. In vitro experiments confirmed that this ribozyme only cleaves activated ras gene mRNA molecules, but not normal mRNA molecules.

【0004】0004

【発明が解決しようとする課題】本発明者らは、リボザ
イムの有する触媒活性が1塩基の差異をも認識する機能
を利用して、腫瘍遺伝子より転写されるmRNAを特異
的に切断するリボザイムが有効な抗腫瘍効果を示すこと
を見出し、本発明を完成した。
[Problems to be Solved by the Invention] The present inventors have developed a ribozyme that specifically cleaves mRNA transcribed from tumor genes by utilizing the ability of ribozyme's catalytic activity to recognize even a single base difference. The present invention was completed based on the discovery that it exhibits an effective antitumor effect.

【0005】[0005]

【課題を解決するための手段】本発明は、一般式[Means for Solving the Problems] The present invention provides the general formula

【00
06】
00
06]

【化3】[Chemical formula 3]

【0007】または[0007] or

【0008】[0008]

【化4】[C4]

【0009】「式中、Aはアデニンヌクレオチド、Uは
ウラシルヌクレオチド、Cはシトシンヌクレオチド、G
はグアニンヌクレオチドを表わし、3’および5’はそ
れぞれ3’末端および5’末端を表わす。」で表わされ
る化合物を有効成分とする抗腫瘍剤に関する。
"In the formula, A is an adenine nucleotide, U is a uracil nucleotide, C is a cytosine nucleotide, G
represents a guanine nucleotide, and 3' and 5' represent the 3' and 5' ends, respectively. The present invention relates to an antitumor agent containing a compound represented by the following as an active ingredient.

【0010】本発明において、「腫瘍」とは、活性化し
た癌遺伝子によってもたらされる疾患を意味するが、と
くに好適には、活性化c−Ha−ras遺伝子によって
もたらされる疾患を意味するものとする。
[0010] In the present invention, the term "tumor" refers to a disease caused by an activated oncogene, and particularly preferably refers to a disease caused by an activated c-Ha-ras gene. .

【0011】本発明の化合物(I )および(II)は
、公知の方法(Nucleic Acid Res.,
 vol.17, 7059−7071)で製造するこ
とができる。
Compounds (I) and (II) of the present invention can be prepared by a known method (Nucleic Acid Res.,
vol. 17, 7059-7071).

【0012】本発明において、リボザイムの抗腫瘍効果
の確認は、以下の方法により行なうことができる。
[0012] In the present invention, the antitumor effect of ribozyme can be confirmed by the following method.

【0013】すなわち、NIH−3T3 細胞を、目的
とするリボザイムを発現するプラスミドにより形質転換
した細胞を調製し、さらにこの細胞に活性化c−Ha−
ras遺伝子を形質導入して、リボザイムを発現しない
プラスミドにより形質転換した細胞とのフォ−カス形成
率を比較する方法である。
Specifically, NIH-3T3 cells are transformed with a plasmid expressing the ribozyme of interest, and then activated c-Ha-
This method involves transducing the ras gene and comparing the focus formation rate with cells transformed with a plasmid that does not express ribozyme.

【0014】本発明により得られるリボザイムは、様々
な態様で投与することにより極めて有効な抗腫瘍効果を
示す。
[0014] The ribozyme obtained according to the present invention exhibits extremely effective antitumor effects when administered in various ways.

【0015】本発明のリボザイムを投与するための方法
は、経口投与または非経口投与(例えば、静注、筋注、
皮下注または腹腔内注)であり、投与される組成物には
、治療上有効量の生成物が、薬理上許容される希釈剤、
担体および/又はアジュバントとともに通常含有される
[0015] The method for administering the ribozyme of the present invention includes oral administration or parenteral administration (eg, intravenous injection, intramuscular injection,
(subcutaneous or intraperitoneal injection) and the administered composition includes a therapeutically effective amount of the product in a pharmaceutically acceptable diluent,
It is usually included together with a carrier and/or an adjuvant.

【0016】ヒト血清アルブミンのような標準的希釈剤
が本発明の医薬的組成物として考えられ、生理的食塩水
のような標準的担体が同様に考えられうる。
Standard diluents such as human serum albumin are contemplated for the pharmaceutical compositions of the present invention, as are standard carriers such as physiological saline.

【0017】投与形態としては、皮下注射、静脈内注射
、筋肉注射、座剤などの非経口投与法、または、錠剤、
カプセル剤、散剤、顆粒剤などによる経口投与法が挙げ
られる。
[0017] As for the administration form, subcutaneous injection, intravenous injection, intramuscular injection, parenteral administration methods such as suppositories, tablets, etc.
Oral administration methods include capsules, powders, granules, and the like.

【0018】なお、リボザイム分子をリポソ−ムに封入
して、経口または非経口により投与することも可能であ
る。
[0018] It is also possible to encapsulate the ribozyme molecule in a liposome and administer it orally or parenterally.

【0019】投与量は、投与経路または投与回数などに
よって異なるが、例えば、成人に対しては、通常は、一
日1 〜1,000 μg/kg体重を一日に1回また
は数回に分けて投与するのが好ましい。
The dosage varies depending on the route of administration and the number of administrations, but for adults, it is usually 1 to 1,000 μg/kg body weight per day or divided into several doses per day. It is preferable to administer the drug.

【0020】以下、参考例、実施例を挙げて本発明をよ
り具体的に説明するが、これらは本発明の範囲を制限す
るものではない。
The present invention will be explained in more detail below with reference to reference examples and examples, but these are not intended to limit the scope of the present invention.

【0021】なお、以下の、参考例、実施例においては
、アデニンヌクレオチドをA、グアニンヌクレオチドを
G、シトシンヌクレオチドをC、ウラシルヌクレオチド
をUと記載する。
In the following Reference Examples and Examples, adenine nucleotides are indicated as A, guanine nucleotides as G, cytosine nucleotides as C, and uracil nucleotides as U.

【0022】[参考例]オリゴデオキシリボヌクレオチ
ドは、アプライド−バイオシステムズ社製380A  
DNAシンセサイザ−を用いホスホロアミダイト法で合
成した。オリゴリボヌクレオチドは、5’水酸基の保護
基にジメトキシトリチル基、2’−水酸基の保護基にテ
トラヒドロピラニル基を用いたホスホロアミダイト法(
Nucleic Acid Res., vol.17
 7059−7071, (1989) )で合成した
[Reference Example] The oligodeoxyribonucleotide is 380A manufactured by Applied Biosystems.
It was synthesized by the phosphoramidite method using a DNA synthesizer. Oligoribonucleotides can be prepared using the phosphoramidite method (using a dimethoxytrityl group as the protecting group for the 5'-hydroxyl group and a tetrahydropyranyl group as the protecting group for the 2'-hydroxyl group).
Nucleic Acid Res. , vol. 17
7059-7071, (1989)).

【0023】pRSV−rv12 、pRSV−r16
1 の構築は、文献(Cancer Res., vo
l.80, 200−203,(1989))に記載さ
れた方法に従った。
[0023] pRSV-rv12, pRSV-r16
The construction of 1 is described in the literature (Cancer Res., vo
l. 80, 200-203, (1989)).

【0024】参考例1  リボザイムCUACACCC
UGAUGAAGGGUGAUACCCUGAAACA
GCGCpの調製オリゴリボヌクレオチド(UACCC
UGAAACAGCGCG, 5 nmol )にポリ
ヌクレオチドキナ−ゼ(10単位、寶酒造(株)製)、
0.67 mM ATP 、50 mM Tris−H
Cl (pH 7.6)、10 mM MgCl2 、
 10 mM メルカプトエタノ−ルを加え、37  
℃で1時間加温した。フェノ−ルクロロホルムにより処
理し、セファデックスG−25(ファルマシア社製:φ
1.8 x 37 cm 、溶媒は 0.1 M  ト
リエチルアンモニウムバイカ−ボネ−ト(以下「TEA
B」という。)で脱塩して、ATP 、ADP を除い
た。
Reference Example 1 Ribozyme CUACACCC
UGAUGAAGGGGUGAUACCCUGAAACA
Preparation of GCGCp oligoribonucleotide (UACCC
UGAAACAGCGCG, 5 nmol), polynucleotide kinase (10 units, manufactured by Takara Shuzo Co., Ltd.),
0.67mM ATP, 50mM Tris-H
Cl (pH 7.6), 10 mM MgCl2,
Add 10 mM mercaptoethanol and
It was heated at ℃ for 1 hour. Treated with phenol chloroform, Sephadex G-25 (manufactured by Pharmacia: φ
1.8 x 37 cm, the solvent was 0.1 M triethylammonium bicarbonate (hereinafter referred to as "TEA").
B”. ) to remove ATP and ADP.

【0025】得られた 5’−リン酸化オリゴリボヌク
レオチド(pUACCCUGAAACAGCGCG)を
滅菌水(20  μl )に溶解し、0.1 M Na
IO4(2.5 μl )を加え、暗所で0 ℃、70
 分放置し、0.1 M エチレングリコ−ル(25 
 μl )を加え、0 ℃、30分反応させた。これに
2 M リジン−HCl(pH 8.2、 50  μ
l )を加え、45℃、 2 時間加温し、セファデッ
クスG−25( φ1.8 x 37 cm 、溶媒は
 0.1 M  TEAB)で脱塩した。これを陰イオ
ン交換HPLC(TSK gel DEAE−2SW、
φ0.46 x 25 cm:東ソ−(株)製)で精製
することによって5’,3’−ジリン酸を有するオリゴ
リボヌクレオチド(pUACCCUGAAACAGCG
Cp )を得た。
The obtained 5'-phosphorylated oligoribonucleotide (pUACCCUGAAACAGCGCG) was dissolved in sterile water (20 μl), and 0.1 M Na
Add IO4 (2.5 μl) and incubate at 0 °C in the dark for 70 min.
Leave for 0.1 M ethylene glycol (25
μl) was added and reacted at 0°C for 30 minutes. To this was added 2 M lysine-HCl (pH 8.2, 50 μl
1) was added, heated at 45°C for 2 hours, and desalted with Sephadex G-25 (φ1.8 x 37 cm, solvent: 0.1 M TEAB). This was subjected to anion exchange HPLC (TSK gel DEAE-2SW,
φ0.46 x 25 cm: manufactured by Tosoh Corporation) to obtain an oligoribonucleotide having 5',3'-diphosphoric acid (pUACCCUGAAACAGCG).
Cp) was obtained.

【0026】別途調整したオリゴリボヌクレオチド(C
UACACCCUGAUGAAGGGUGA, 2.5
 nmol )および上記のオリゴリボヌクレオチド(
pUACCCUGAAACAGCGCp, 2.5 n
mol)を 50mM HEPES−NaOH (pH
 7.5),20 mM MgCl2, 3.3 mM
 DTT, 0.001% BSA, 10%(v/v
)DMSO, 1.38 単位/μl   RNA リ
ガ−ゼ(寶酒造(株)製)、100 μM ATP の
溶液50  μl 中、6℃で13.5時間加温した。 フェノ−ルクロロホルム処理をし、陰イオン交換HPL
Cで目的の鎖長のリボザイムCUACACCCUGAU
GAAGGGUGAUACCCUGAAACAGCGC
pを得た。
[0026] Separately prepared oligoribonucleotide (C
UACACCCUGAUGAAGGGUGA, 2.5
nmol) and the above oligoribonucleotides (
pUACCCUGAAACAGCGCp, 2.5 n
mol) to 50mM HEPES-NaOH (pH
7.5), 20mM MgCl2, 3.3mM
DTT, 0.001% BSA, 10% (v/v
) DMSO, 1.38 units/μl RNA ligase (manufactured by Takara Shuzo Co., Ltd.), and 50 μl of a solution of 100 μM ATP was heated at 6° C. for 13.5 hours. Phenol chloroform treatment and anion exchange HPL
Ribozyme CUACACCCUGAU of desired chain length in C
GAAGGGUGAUACCCUGAAACAGCGC
I got p.

【0027】参考例2  活性化c−Ha−ras  
DNAテンプレ−トの調製 12番目のアミノ酸をコ−ドするコドンに点突然変異を
起こした(Gly12(GGU)→Val12(GUU
))活性化c−Ha−rasDNAを調製した。
Reference Example 2 Activated c-Ha-ras
Preparation of DNA template A point mutation was made in the codon encoding the 12th amino acid (Gly12 (GGU) → Val12 (GUU
)) Activated c-Ha-ras DNA was prepared.

【0028】7本の合成オリゴデオキシリボヌクレオチ
ド(1 nmol)をそれぞれT4ポリヌクレオチドキ
ナ−ゼ(1 μl,10単位)、1 mM ATP(1
5 μl)、緩衝液(4  μl,250 mM Tr
is−HCl (pH 7.6), 50 mM Mg
Cl2,50 mM  メルカプトエタノ−ル)を加え
、37℃で1 時間加温した。
Seven synthetic oligodeoxyribonucleotides (1 nmol) were each mixed with T4 polynucleotide kinase (1 μl, 10 units) and 1 mM ATP (1 nmol).
5 μl), buffer (4 μl, 250 mM Tr
is-HCl (pH 7.6), 50 mM Mg
Cl2, 50 mM mercaptoethanol) was added, and the mixture was heated at 37°C for 1 hour.

【0029】これらを合わせ、緩衝液(40  μl、
 330 mM Tris−HCl (pH 7.6)
, 33 mM MgCl2)、2.5 mM ATP
 (48  μl )を加えて75℃で5 分間加熱し
室温まで徐冷した。0.2 M 2−メルカプトエタノ
−ル(10  μl )、T4 DNA  リガ−ゼ(
2 μl,700単位、寶酒造(株)製)を加え、15
℃で15時間反応させた。エタノ−ル沈殿後、10%ポ
リアクリルアミドゲル電気泳動で分取し、約3 μg 
の活性化c−Ha−rasDNAテンプレ−トを得た(
図1)。
[0029] Combine these and add buffer (40 μl,
330 mM Tris-HCl (pH 7.6)
, 33mM MgCl2), 2.5mM ATP
(48 μl) was added, heated at 75°C for 5 minutes, and slowly cooled to room temperature. 0.2 M 2-mercaptoethanol (10 μl), T4 DNA ligase (
Add 2 μl, 700 units, manufactured by Takara Shuzo Co., Ltd., and add 15
The reaction was carried out at ℃ for 15 hours. After ethanol precipitation, approximately 3 μg was fractionated by 10% polyacrylamide gel electrophoresis.
An activated c-Ha-ras DNA template was obtained (
Figure 1).

【0030】なお、正常c−Ha−rasDNAテンプ
レ−トも同様の方法で調製した。
[0030] A normal c-Ha-ras DNA template was also prepared in the same manner.

【0031】参考例3  T7  ポリメラ−ゼによる
活性化c−Ha−ras  mRNAの調製 転写反応は、公知の方法(実験医学、第8巻、(13)
、1685−1689頁、(1990))により、次の
条件で行なった。得られた活性化c−Ha−rasDN
A テンプレ−ト(30 pmol )、緩衝液(40
 mM Tris−HCl (pH 8.1), 20
 mM MgCl2, 5 mMDTT, 1 mMス
ペルミジン, 0.01%(v/v) Triton 
X−100, 0.05 μg/μl 牛血清アルブミ
ン、4mM 4NTPs(ATP,GTP,CTP, 
およびUTP:以下「4NTPs」 という。)、8%
(W/V) ポリエチレングリコ−ル)に溶解し、T7
 RNA  ポリメラ−ゼ(840 単位、ファルマシ
ア社製)を加え、37℃で2 時間加温することにより
転写反応を行なった(図1)。フェノ−ルクロロホルム
処理をして、セファデックスG−50(φ1.8 x 
37cm, 溶媒は0.1 M  TEAB)で脱塩し
、未反応の 4NTPsを除いた後、8 M 尿素を含
む10% ポリアクリルアミドゲル電気泳動で精製した
Reference Example 3 Preparation of activated c-Ha-ras mRNA using T7 polymerase The transcription reaction was performed using a known method (Jikken Igaku, Vol. 8, (13)
, pp. 1685-1689, (1990)) under the following conditions. The obtained activated c-Ha-rasDN
A template (30 pmol), buffer solution (40 pmol)
mM Tris-HCl (pH 8.1), 20
mM MgCl2, 5 mM DTT, 1 mM spermidine, 0.01% (v/v) Triton
X-100, 0.05 μg/μl Bovine serum albumin, 4mM 4NTPs (ATP, GTP, CTP,
and UTP: hereinafter referred to as "4NTPs". ), 8%
(W/V) dissolved in polyethylene glycol), T7
A transcription reaction was performed by adding RNA polymerase (840 units, manufactured by Pharmacia) and heating at 37°C for 2 hours (Fig. 1). After treatment with phenol chloroform, Sephadex G-50 (φ1.8 x
After desalting with 0.1 M TEAB (solvent: 0.1 M TEAB) to remove unreacted 4NTPs, it was purified by electrophoresis on a 10% polyacrylamide gel containing 8 M urea.

【0032】なお、正常c−Ha−ras  mRNA
も同様の方法で調製した。
[0032] Normal c-Ha-ras mRNA
was also prepared in a similar manner.

【0033】参考例4  活性化c−Ha−ras  
mRNAの5’末端標識 活性化c−Ha−rasRNA(20 pmol )を
0.1 M Tris−HCl(pH 8.0 )に溶
解し、大腸菌由来アルカリ性フォスファタ−ゼ(0.0
2単位、寶酒造(株)製)を加え、37℃1 時間加温
した後、フェノ−ルクロロホルム処理を2回行ない、[
γ−32P]ATP (5 μCi)、50 mM T
ris−HCl(pH 7.6)、10 mM MgC
l2 、10 mM 2−メルカプトエタノ−ル、T4
− ポリヌクレオチド・キナ−ゼ(1 単位、 寶酒造
(株)製で5’末端をリン酸化し、NENSORB 2
0(デュポン社製)脱塩、除蛋白を行なった。
Reference Example 4 Activated c-Ha-ras
5'-end labeled activated c-Ha-rasRNA (20 pmol) of mRNA was dissolved in 0.1 M Tris-HCl (pH 8.0), and E. coli alkaline phosphatase (0.0
2 units of Takara Shuzo Co., Ltd.) were added, heated at 37°C for 1 hour, and then treated with phenol chloroform twice.
γ-32P]ATP (5 μCi), 50 mM T
ris-HCl (pH 7.6), 10 mM MgC
l2, 10mM 2-mercaptoethanol, T4
- Polynucleotide kinase (1 unit, manufactured by Takara Shuzo Co., Ltd., phosphorylates the 5' end, and NENSORB 2
0 (manufactured by DuPont) and was subjected to desalting and protein removal.

【0034】なお、正常c−Ha−ras  mRNA
も同様の方法で標識した。
[0034] Note that normal c-Ha-ras mRNA
were also labeled in the same manner.

【0035】参考例5  in vitro  での切
断反応参考例4で得られた活性化c−Ha−ras  
mRNA(5 pmol)に、参考例1で得られたリボ
ザイム(7.5 pmol)を加え、40 mM Tr
is−HCl(pH 7.5)、20 mM NaCl
、25 mM MgCl2 になる溶液を加え、37℃
で 加温し、50 mM EDTA  を加え反応を停
止した。55℃、33分急冷したものを 8 M  尿
素を含む 10%  ポリアクリルアミドゲル電気泳動
で分析した。切断率はゲルを切り出し、液体シンチレ−
ションカウンタ−で測定することにより求めた。
Reference Example 5 In vitro cleavage reaction Activated c-Ha-ras obtained in Reference Example 4
The ribozyme (7.5 pmol) obtained in Reference Example 1 was added to mRNA (5 pmol), and 40 mM Tr
is-HCl (pH 7.5), 20 mM NaCl
, add a solution of 25 mM MgCl2 and heat to 37 °C.
The reaction was stopped by adding 50 mM EDTA. The mixture was rapidly cooled at 55° C. for 33 minutes and analyzed by electrophoresis on a 10% polyacrylamide gel containing 8 M urea. Cutting rate is determined by cutting out the gel and cutting out the liquid scintillator.
It was determined by measuring with a tion counter.

【0036】対照として、正常c−Ha−ras  m
RNAについても同様の実験を行なった。
As a control, normal c-Ha-ras m
Similar experiments were conducted with RNA.

【0037】この結果、参考例1で得られたリボザイム
は、正常c−Ha−rasm  RNAは切断せず、活
性化c−Ha−ras  mRNAのみを切断すること
が確認された。
As a result, it was confirmed that the ribozyme obtained in Reference Example 1 did not cleave normal c-Ha-rasm RNA, but only cleaved activated c-Ha-ras mRNA.

【0038】[0038]

【実施例】実施例1  プラスミドpKCSの構築pR
SVneo (5 μl, 1.4 pmol )をH
ind III(12 単位) で37℃、 一夜加温
して消化し、エタノ−ル沈殿により消化物を得た。これ
に滅菌水(10  μl )、緩衝液(4 μl, 3
30 mM Tris−HCl(pH 7.6), 3
3 mM MgCl2, 2.5 mM ATP )、
0.2M 2−メルカプトエタノ−ル(1  μl)、
40 mer ClaI−SalI リンカ−(5 μ
l, 7 pmol:図2) 、T4リガ−ゼ(10単
位) を加え、16℃、2時間加温した。エタノ−ル沈
殿後、pKCSを得た。これを大腸菌HB101 にト
ランスフェクトし、文献公知の方法(Anal. Bi
ocem., vol.113 34−42, (19
89))に従い、250 ml  の培地から約450
 μgのpKCSを単離した(図3)。
[Example] Example 1 Construction of plasmid pKCS pR
SVneo (5 μl, 1.4 pmol) was added to H
The mixture was digested with indIII (12 units) at 37° C. overnight, and the digested product was obtained by precipitation with ethanol. To this, sterile water (10 μl) and buffer solution (4 μl, 3
30 mM Tris-HCl (pH 7.6), 3
3mM MgCl2, 2.5mM ATP),
0.2M 2-mercaptoethanol (1 μl),
40 mer ClaI-SalI linker (5μ
1,7 pmol (Fig. 2) and T4 ligase (10 units) were added, and the mixture was heated at 16°C for 2 hours. After ethanol precipitation, pKCS was obtained. This was transfected into Escherichia coli HB101, and a method known in the literature (Anal.
ocem. , vol. 113 34-42, (19
89)) from 250 ml of medium.
μg of pKCS was isolated (Figure 3).

【0039】実施例2  プラスミドpRZ1の調製p
KCS(7.5  μl, 2.5 pmol)をCl
a I (15単位)で37℃で2 時間加温し消化後
、Sal I (30 単位)で37℃で一夜加温して
消化した。0.1 M Tris−HCl  (pH 
8.0,48  μl )に溶解し、大腸菌由来アルカ
リ性フォスファタ−ゼ(0.7 単位)を加え、37℃
で2時間加温した。フェノ−ルクロロフォルム処理後、
エタノ−ル沈殿により消化物を得た。別途調製した、リ
ボザイム(CUACACCCUGAUGAAGGGUG
AUACCCUGAAACAGCGCp)遺伝子を含む
2本鎖オリゴリボヌクレオチドも同様にCla I 、
Sal I で消化した(図4)。このpKCSCla
 I − Sal I 消化物に上記のリボザイム遺伝
子を加え、T4  DNAリガ−ゼで連結し、pRZ1
を得た。これを大腸菌HB101 にトランスフェクト
し、文献公知の方法(Anal. Biocem., 
vol.113 34−42, (1989))に従い
、250 ml  の培地から約470 μg のpR
Z1を単離した(図3)。
Example 2 Preparation of plasmid pRZ1 p
KCS (7.5 μl, 2.5 pmol) was dissolved in Cl
After digestion with a I (15 units) at 37°C for 2 hours, the mixture was digested with Sal I (30 units) at 37°C overnight. 0.1 M Tris-HCl (pH
8.0.48 μl), added E. coli alkaline phosphatase (0.7 units), and incubated at 37°C.
The mixture was heated for 2 hours. After treatment with phenol chloroform,
A digestate was obtained by ethanol precipitation. Separately prepared ribozyme (CUACACCCUGAUGAAGGGUG
Similarly, the double-stranded oligoribonucleotide containing the AUACCCUGAAACAGCGCp) gene is Cla I,
Digested with Sal I (Figure 4). This pKCSCla
The above ribozyme gene was added to the I-Sal I digest and ligated with T4 DNA ligase to create pRZ1.
I got it. This was transfected into Escherichia coli HB101, and a method known in the literature (Anal. Biocem.,
vol. 113 34-42, (1989)), approximately 470 μg of pR was obtained from 250 ml of medium.
Z1 was isolated (Figure 3).

【0040】実施例3  プラスミドpRZ2の調製上
記と同様の方法により、リボザイム(UGCCUACA
CCCUGAUGAGUCGUGAUACGACGAA
ACAGCGCCAp )遺伝子を組み込んだプラスミ
ドpRZ2を調製した。
Example 3 Preparation of plasmid pRZ2 Ribozyme (UGCCUACA
CCCUGAUGAGUCGUGAUACGACGAA
A plasmid pRZ2 incorporating the ACAGCGCCAp) gene was prepared.

【0041】実施例4  プラスミドpRZ3の調製上
記と同様の方法により、リボザイム(CUACACCC
UGAUGAGGGGGCUUUUCCCCCGAAA
CAGCGCp)を組み込んだプラスミドpRZ3を調
製した。
Example 4 Preparation of plasmid pRZ3 Ribozyme (CUACACCC
UGAUGAGGGGGGCUUUUCCCCCGAAA
A plasmid pRZ3 incorporating CAGCGCp) was prepared.

【0042】実施例5  pRZ1、pRZ2またはp
RZ3でトランスフォ−ムさせたNIH3T3細胞の調
製pRZ1(1 μg )、NIH3T3細胞DNA(
30  μg )に2 M CaCl2 (62.5 
 μl )を加え、滅菌水で全量 500μl とした
。これをHBS 溶液(11.92 g HEPES,
 16.36 g NaCl, 0.23 g NaH
2PO4 (pH 7.1) /1000 ml)50
0 μl 中に滴下し、30分放置し、リン酸カルシウ
ム沈殿を形成させた。 NIH3T3細胞を(8 x 105 細胞)培養した
シャ−レにこれを加え、37℃で5 時間培養した(リ
ン酸カルシウム法)。そして、10% ウシ血清を含む
DMEM培地(ダルベッコ変法イ−グル最少培地)を除
き、17% グリセリン(2 ml)を加え1 分45
秒放置後、DMEM培地(10 ml )を加えた。D
MEM培地(10% ウシ血清を含む。)に交換し、3
7℃で15時間培養した。トリプシン処理をし、細胞を
シャ−レよりはがし3枚のシャ−レに広げ、DMEM培
地(5%ウシ血清を含む。)で培養した。4 日後、G
ENETICIN(300 mg/500 ml,ギブ
コ社製)を加えたDMEM培地(5%  ウシ血清を含
む。)に交換して7日間培養し、pRZ1/NIH3T
3 細胞を得た。
Example 5 pRZ1, pRZ2 or p
Preparation of NIH3T3 cells transformed with RZ3 pRZ1 (1 μg), NIH3T3 cell DNA (
30 μg) to 2 M CaCl2 (62.5
μl) was added, and the total volume was made up to 500 μl with sterile water. This was mixed with HBS solution (11.92 g HEPES,
16.36 g NaCl, 0.23 g NaH
2PO4 (pH 7.1) /1000ml)50
0 μl and left for 30 minutes to form a calcium phosphate precipitate. This was added to a petri dish in which NIH3T3 cells (8 x 105 cells) had been cultured, and cultured at 37°C for 5 hours (calcium phosphate method). Then, the DMEM medium containing 10% bovine serum (Dulbecco's modified Eagle's minimal medium) was removed, and 17% glycerin (2 ml) was added for 1 minute.
After standing for a second, DMEM medium (10 ml) was added. D
Replace with MEM medium (containing 10% bovine serum) and
The cells were cultured at 7°C for 15 hours. After trypsin treatment, the cells were peeled from the petri dish, spread on three petri dishes, and cultured in DMEM medium (containing 5% bovine serum). 4 days later, G.
The medium was replaced with DMEM medium (containing 5% bovine serum) supplemented with ENETICIN (300 mg/500 ml, manufactured by Gibco) and cultured for 7 days.
3 cells were obtained.

【0043】pKCS、 pRZ2、 pRZ3でトラ
ンスフォ−ムさせたpKCS/NIH3T3 細胞、p
RZ2/NIH3T3細胞、pRZ3/NIH3T3 
細胞も同様にして得た。
[0043] pKCS/NIH3T3 cells transformed with pKCS, pRZ2, and pRZ3, p
RZ2/NIH3T3 cells, pRZ3/NIH3T3
Cells were also obtained in the same manner.

【0044】実施例6  活性化c−Ha−ras遺伝
子(pRSV−rv12 )によるトランスフォ−メ−
ションpRSV−rv12(20 ng)、NIH3T
3細胞DNA (30 μg )を用いて上記と同様の
リン酸カルシウム法で、pKCS/NIH3T3 細胞
、pRZ2/NIH3T3 細胞、pRZ3/NIH3
T3 細胞をトランスフォ−ムした。その後、DMEM
培地(5%  ウシ血清を含む。)で約2週間培養した
Example 6 Transformation by activated c-Ha-ras gene (pRSV-rv12)
pRSV-rv12 (20 ng), NIH3T
pKCS/NIH3T3 cells, pRZ2/NIH3T3 cells, pRZ3/NIH3 cells were isolated using the same calcium phosphate method as above using 3 cell DNA (30 μg).
T3 cells were transformed. Then DMEM
The cells were cultured in a medium (containing 5% bovine serum) for about 2 weeks.

【0045】なお、pRSV−rv12 は、正常c−
Ha−rasの12番目のアミノ酸をコ−ドするコドン
に点突然変異を起こした(Gly 12(GGU) →
Val 12(GUU) )活性化c−Ha−rasD
NAを組み込んだものである。
[0045] pRSV-rv12 is normal c-
A point mutation was caused in the codon encoding the 12th amino acid of Ha-ras (Gly 12 (GGU) →
Val 12 (GUU)) activated c-Ha-rasD
It incorporates NA.

【0046】対照として、正常c−Ha−rasの12
番目のアミノ酸をコ−ドするコドンに変化がないが、6
1番目のアミノ酸をコ−ドするコドンに点突然変異を起
こした(Gln61→Leu 61)活性化c−Ha−
ras  DNAを組み込んだpRSV−rl61 を
用いて、上記の各細胞をトランスフォ−ムし、培養をし
た。
As a control, normal c-Ha-ras 12
There is no change in the codon encoding the 6th amino acid, but
Activated c-Ha- with a point mutation in the codon encoding the first amino acid (Gln61→Leu61)
Each of the above cells was transformed using pRSV-rl61 incorporating ras DNA and cultured.

【0047】培養後、細胞をギムザ染色し、生じたフォ
−カスの数を数えた。
After culturing, the cells were stained with Giemsa, and the number of foci produced was counted.

【0048】結果を図5に示す。The results are shown in FIG.

【0049】(A)のグラフがpRSV−rv12 に
よりpKCS/NIH3T3 細胞、pRZ1/NIH
3T3 細胞、pRZ2/NIH3T3 細胞、pRZ
3/NIH3T3 細胞をそれぞれトランスフェクトし
たときのフォ−カスの数である。
The graph in (A) shows that pKCS/NIH3T3 cells, pRZ1/NIH
3T3 cells, pRZ2/NIH3T3 cells, pRZ
This is the number of foci when transfecting 3/NIH3T3 cells.

【0050】(B)のグラフがpRSV−rl61 に
よりpKCS/NIH3T3 細胞、pRZ1/NIH
3T3 細胞、pRZ2/NIH3T3 細胞、pRZ
3/NIH3T3 細胞をそれぞれトランスフェクトし
たときのフォ−カスの数である。
The graph in (B) shows that pKCS/NIH3T3 cells, pRZ1/NIH
3T3 cells, pRZ2/NIH3T3 cells, pRZ
This is the number of foci when transfecting 3/NIH3T3 cells.

【0051】pRZ1/NIH3T3 細胞、pRZ2
/NIH3T3 細胞、においては、pRSV−rv1
2 によるトランスフェクションにおいて、約50% 
のフォ−カス形成阻害が見られたが、pRZ3/NIH
3T3 細胞では阻害が見られなかった。
pRZ1/NIH3T3 cells, pRZ2
/NIH3T3 cells, pRSV-rv1
In transfection with 2, approximately 50%
Although inhibition of focus formation was observed in pRZ3/NIH
No inhibition was seen in 3T3 cells.

【0052】pRSV−rl61 でトランスフェクト
した場合、pKCS/NIH3T3 細胞と比較して、
フォ−カス形成阻害を示さなかったところから、該プラ
スミドにより転写される活性化c−Ha−rasm  
RNAには、リボザイムが何の効果も示さないことが確
認された。したがって、本発明のリボザイムは、正常c
−Ha−rasの12番目のアミノ酸をコ−ドするコド
ンに点突然変異を起こした(Gly 12(GGU) 
→Val 12(GUU) )活性化c−Ha−ras
  mRNAを特異的に切断することが結論付けられた
When transfected with pRSV-rl61, compared to pKCS/NIH3T3 cells,
The activated c-Ha-rasm transcribed by the plasmid showed no inhibition of focus formation.
It was confirmed that ribozyme had no effect on RNA. Therefore, the ribozymes of the present invention are suitable for normal c.
-A point mutation was caused in the codon encoding the 12th amino acid of Ha-ras (Gly 12 (GGU)
→Val 12 (GUU) ) activated c-Ha-ras
It was concluded that it specifically cleaves mRNA.

【0053】[0053]

【発明の効果】本発明の、癌遺伝子より転写されるmR
NAに対して特異的な切断活性を有するリボザイムは、
有効な抗腫瘍効果を示すものであり、このものを有効成
分とする抗腫瘍剤としての使用を期待しうるものである
Effect of the invention: mR transcribed from oncogenes of the present invention
Ribozymes with specific cleaving activity for NA are
It exhibits an effective antitumor effect, and can be expected to be used as an antitumor agent containing it as an active ingredient.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は、活性化c−Ha−rasDNAテンプレ−トお
よびそれより転写された活性化c−Ha−ras  m
RNAを示し、図2は、Cla I −Sal  I 
リンカ−のヌクレオチド配列を示し、図3は、プラスミ
ドpRZ1の構築方法を示し、図4は、リボザイム遺伝
子を含むオリゴリボヌクレオチドを示し、図5は、リボ
ザイム遺伝子を運搬するプラスミドによりトランスフェ
クトされた細胞における癌遺伝子によるフォ−カス形成
の阻害率を示す。
Figure 1 shows activated c-Ha-ras DNA template and activated c-Ha-ras m transcribed from it.
Figure 2 shows Cla I-Sal I
The nucleotide sequence of the linker is shown, FIG. 3 shows the method of construction of plasmid pRZ1, FIG. 4 shows the oligoribonucleotide containing the ribozyme gene, and FIG. 5 shows the cells transfected with the plasmid carrying the ribozyme gene. Figure 2 shows the inhibition rate of focus formation by oncogenes.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】一般式 【化1】 「式中、Aはアデニンヌクレオチド、Uはウラシルヌク
レオチド、Cはシトシンヌクレオチド、Gはグアニンヌ
クレオチドを表わし、3’および5’はそれぞれ3’末
端および5’末端を表わす。」で表わされる化合物を有
効成分とする抗腫瘍剤。
Claim 1: General formula: [Formula 1] In the formula, A represents an adenine nucleotide, U represents a uracil nucleotide, C represents a cytosine nucleotide, and G represents a guanine nucleotide, and 3' and 5' represent the 3' end and 5', respectively. An antitumor agent whose active ingredient is a compound represented by the following formula:
【請求項2】一般式 【化2】 「式中、Aはアデニンヌクレオチド、Uはウラシルヌク
レオチド、Cはシトシンヌクレオチド、Gはグアニンヌ
クレオチドを表わし、3’および5’はそれぞれ3’末
端および5’末端を表わす。」で表わされる化合物を有
効成分とする抗腫瘍剤。
[Claim 2] General formula: [Formula 2] In the formula, A represents an adenine nucleotide, U represents a uracil nucleotide, C represents a cytosine nucleotide, and G represents a guanine nucleotide, and 3' and 5' represent the 3' end and 5', respectively. An antitumor agent whose active ingredient is a compound represented by the following formula:
JP3003528A 1991-01-17 1991-01-17 Anticancer drug Pending JPH04235919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3003528A JPH04235919A (en) 1991-01-17 1991-01-17 Anticancer drug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3003528A JPH04235919A (en) 1991-01-17 1991-01-17 Anticancer drug

Publications (1)

Publication Number Publication Date
JPH04235919A true JPH04235919A (en) 1992-08-25

Family

ID=11559887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3003528A Pending JPH04235919A (en) 1991-01-17 1991-01-17 Anticancer drug

Country Status (1)

Country Link
JP (1) JPH04235919A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6090546A (en) * 1994-11-11 2000-07-18 Medinnova Sf Method for the detection of Ras oncogenes, in particular the K-ras oncogene

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6090546A (en) * 1994-11-11 2000-07-18 Medinnova Sf Method for the detection of Ras oncogenes, in particular the K-ras oncogene

Similar Documents

Publication Publication Date Title
US11279928B2 (en) Compositions comprising nucleic acids and methods of using the same
JP3015463B2 (en) Targeted cleavage of RNA using eukaryotic ribonuclease P and external guide sequences
JP7068821B2 (en) Guide RNA with chemical modification
US5168053A (en) Cleavage of targeted RNA by RNAase P
US6271369B1 (en) Chimeric molecules targeted to viral RNAs
Heidenreich et al. Hammerhead ribozyme-mediated cleavage of the long terminal repeat RNA of human immunodeficiency virus type 1.
US6369038B1 (en) Closed antisense and sense oligonucleotides and their applications
US5624824A (en) Targeted cleavage of RNA using eukaryotic ribonuclease P and external guide sequence
US9902953B2 (en) Oligonucleotides comprising alternating segments and uses thereof
JP3330595B2 (en) Virus (HIV) proliferation control
US6380169B1 (en) Metal complex containing oligonucleoside cleavage compounds and therapies
US20070161587A1 (en) Cobalamin mediated delivery of nucleic acids, analogs and derivatives thereof
US5849900A (en) Inhibition of viruses by antisense oligomers capable of binding to polypurine rich tract of single-stranded RNA or RNA-DNA hybrids
AU661490B2 (en) Single-stranded circular oligonucleotides
CA2436519A1 (en) Selection of catalytic nucleic acids targeted to infectious agents
CA2205075C (en) Reagent and method for inhibition of n-ras expression
US11939575B2 (en) Modified tracrRNAs gRNAs, and uses thereof
JP2023179428A (en) Stabilized nucleic acid encoding messenger ribonucleic acid (mRNA)
WO2019147743A1 (en) Structure-guided chemical modification of guide rna and its applications
Nagel et al. Oligonucleotide pharmacotherapy: an antigene strategy
WO2003025139A2 (en) Cobalamin mediated delivery of nucleic acids, analogs and derivatives thereof
US20040072783A1 (en) Nucleozymes with endonuclease activity
JPH04235919A (en) Anticancer drug
Pradeepkumar et al. RNA-Cleaving DNA Enzymes and Their Potential Therapeutic Applications as Antibacterial and Antiviral Agents
EP1073731A2 (en) Nucleic acid enzyme for rna cleavage