JPH04232739A - Laminate and printed circuit board using the same - Google Patents

Laminate and printed circuit board using the same

Info

Publication number
JPH04232739A
JPH04232739A JP2415387A JP41538790A JPH04232739A JP H04232739 A JPH04232739 A JP H04232739A JP 2415387 A JP2415387 A JP 2415387A JP 41538790 A JP41538790 A JP 41538790A JP H04232739 A JPH04232739 A JP H04232739A
Authority
JP
Japan
Prior art keywords
laminate
pps
layer
sheet
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2415387A
Other languages
Japanese (ja)
Inventor
Shinichiro Miyaji
新一郎 宮治
Kenji Kida
喜田 健次
Yukichi Deguchi
出口 雄吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2415387A priority Critical patent/JPH04232739A/en
Publication of JPH04232739A publication Critical patent/JPH04232739A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

PURPOSE:To provide a heat-resistant base material well-balanced in various characteristics such as heat resistance, the dimensional stability against heat and humidity, fire retardancy, the stability against high frequency or flexibility and especially optimum in the adaptation to a printed circuit board. CONSTITUTION:A laminate is formed by fixing a non-stretched sheet (B-layer) based on poly-p-phenylene sulfide and a biaxially oriented poly-p-phenylene sulfide (C-layer) to at least the single surface of a fiber sheet (A-layer) in this order without using an adhesive and the residual crystallization energy Ht of the B-layer is 20% or more of the crystallization energy Hq of the resin constituting the B-layer and the C-layer substantially has no heat generating peak due to crystallization within the temp. range of 20-180 deg.C. A printed circuit board is obtained by providing an electric circuit to at least the single surface of the laminate.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、積層体およびそれを用
いた回路基板に関し、更に詳しくは、繊維シート、ポリ
−p−フェニレンスルフィドを主成分とする未延伸シー
トおよび二軸配向ポリ−p−フェニレンスルフィドフイ
ルムからなる積層体および該積層体をベース基材とした
回路基板に関する。 【0002】 【従来の技術】電気、電子工業分野において、機器の小
型化、高機能化の観点から、耐熱性、寸法安定性(熱お
よび湿度)、難燃性、柔軟性、高周波に対する安定性な
どの諸特性が高レベルでバランスした基材や該基材をベ
ースにした回路基板(高周波基板、シールド基板、多層
回路基板など)の要求が増加している。回路基板のベー
ス基材としては上記の諸特性に加え、スル−ホール加工
、打ち抜き加工、曲げ加工などの加工性も重視されるた
め、柔軟性、スル−ホール加工性も重要なポイントにな
る。 【0003】この分野で最も注目を浴びている基材とし
て、ポリ−p−フェニレンスルフィドの未延伸シート及
び二軸配向フイルムがある。二軸配向ポリ−p−フェニ
レンスルフィドフイルム(以下PPSフイルムと略称す
ることがある。)を用いた積層フイルムや積層体として
は、(1)ポリエステルフイルムとの積層フイルム(特
開昭62−292431号公報)、(2)芳香族ポリア
ミドの繊維シートと接着剤を介して積層したもの(特開
昭60−63158号公報)、(3)300℃の温度で
不融で、かつ150℃の温度下での熱膨張係数が50×
10−61/℃以下の繊維シートとの積層体(特開平1
−95585号公報)などが知られている。また、(4
)ポリ−p−フェニレンスルフィドの未延伸シート(以
下PPSシートと略称することがある。)とPPSフイ
ルムとの積層体も知られている(特願昭63−1955
91号)。 【0004】 【発明が解決しようとする課題】しかし、上記のPPS
シート、フイルムおよび積層体は、それぞれ下記のよう
な問題点を有している。 【0005】PPSシート単体としては、PPSフイル
ムと比べると耐熱温度が低く(ガラス転移点を越えると
熱変形しやすい。)、加熱工程が増加する程結晶化が進
みもろくなる。プリント基板のベースとして用いる場合
は、結晶サイズ等をコントロールして、耐熱性ともろさ
をある程度満足させているが、急激に熱が加わると熱変
形しやすいという問題を有している。 【0006】一方、PPSフイルム単体としては、熱収
縮による寸法変化を起こすため、例えば回路基板の製造
工程で熱が加わると回路のズレが生じやすい。また積層
回路基板のスル−ホール加工時に裂けやすかったり、P
PSフイルムは腰が弱いため後の加工工程でスル−ホー
ル部に力が加わりやすく、スル−ホール部が破損しやす
いなどの問題点があった。 【0007】このようなPPSシート、フイルム単体に
おける問題点を解決するために、前述の如く種々の積層
フイルムや積層体が提案されているが、それぞれ問題点
を残している。前述の(1)項のポリエステルフイルム
との積層フイルムは、スル−ホール加工時の裂けやすさ
は改善されるが、熱寸法安定性、耐熱性の改善にはなら
ない。(2)項の芳香族ポリアミドの繊維シートと接着
剤を介して積層した積層体は、熱寸法安定性、機械特性
は改善されるが、接着剤の耐熱性が該基材に悪影響を与
え(つまり接着剤の耐熱性が基材全体としての耐熱性の
律則となり)、PPSフイルムの優れた特性が活かしき
れない。また、PPSフイルムと繊維シートを熱融着で
積層した(3)項の積層体は、接着力に乏しく、折り曲
げ、打ち抜き等の加工時に力が加わると、剥離しやすい
。また、繊維シートの内部までポリマが入り込んでいな
いので、例えば回路基板などの用途でスル−ホール加工
が必要な場合、加工しにくいなどの問題点があった。 さらに、前述の(4)項の積層体は、PPSシートとP
PSフイルムのみからなる積層フイルムであるため、積
層体全体としての熱寸法安定性、耐熱性に欠ける。 【0008】本発明は、上記の問題点を解消し、耐熱性
、寸法安定性(熱および湿度)、難燃性、高周波に対す
る安定性、柔軟性などの諸特性がバランスし、特に回路
基板(多層回路基板も含む。)に用いて最適な耐熱基材
を提供することを目的とする。 【0009】 【課題を解決するための手段】すなわち、本発明は繊維
シート(A層)の少なくとも片方の面に、ポリ−p−フ
ェニレンスルフィドを主成分とする未延伸シート(B層
)、二軸配向ポリ−p−フェニレンスルフィドフイルム
(C層)が、この順序で接着剤を介することなく固着さ
れている積層体であって、B層の残留結晶化エネルギー
ΔHtが該B層を構成する樹脂の結晶化エネルギーΔH
qの20%以上であり、かつC層は20℃〜180℃の
範囲に実質的に結晶化による発熱ピークを有しないこと
を特徴とする積層体、および該積層体の少なくとも片方
の面に電気回路を設けてなることを特徴とする回路基板
を提供する。 【0010】本発明における繊維シートとは、繊維の集
合体によって構成された薄葉体であって、クロス、布、
フエルト、不織布、紙などの総称で、厚さ10〜500
μm(好ましくは10〜300μm)のものである。該
繊維シートは、易接着、着色などの加工及び2種以上の
素材を混合したり積層してあってもよい。繊維シートの
中でもクロスが好ましく、特にガラス繊維のクロスが該
繊維シートの内部までポリ−p−フェニレンスルフィド
ポリマが入り込みやすく(含浸しやすく)、耐熱性、寸
法安定性および加工性の点で好ましい。 【0011】上記繊維シートは、400℃の温度まで融
点を有しないものが好ましく、この融点を有しない繊維
シートとは、400℃の温度に対して不融である繊維シ
ートを言う。ここで不融とは400℃の温度にさらされ
たときに、溶融したり、軟化したりしない状態をいう。 本発明に用いる繊維シートが上記の特性を有しないと、
本発明の積層体が300℃付近の温度まで加熱されたと
き、熱変形したり、熱寸法変化率が大きくなる。 【0012】本発明において、ポリ−p−フェニレンス
ルフィド(以下PPSと略称することがある。)とは、
繰り返し単位の70モル%以上(好ましくは85モル%
以上が下記構造式(化1)で示される構成単位からなる
重合体をいう。かかる成分が70モル%未満ではポリマ
の結晶性、熱転移温度等が低くPPSを主成分とする樹
脂組成物からなるフイルムの特徴である耐熱性、寸法安
定性、機械的特性等を損なう。 【0013】 【化1】 【0014】上記PPSにおいて、繰り返し単位の30
モル%未満、好ましくは15モル%未満であれば共重合
可能なスルフィド結合が含有する単位が含まれていても
差し支えない。また該重合体の共重合の仕方は、ランダ
ム、ブロック型を問わない。 【0015】本発明において、ポリ−p−フェニレンス
ルフィドを主成分とする樹脂組成物(以下PPS系組成
物と略称することがある。)とは、ポリ−p−フェニレ
ンスルフィドを60重量%以上含む組成物をいう。PP
Sの含有量が60重量%未満では、該組成物からなる未
延伸シートの機械特性や耐熱性等を損なう。また、該組
成物中の残りの40重量%未満はPPS以外のポリマ、
無機または有機のフィラー、滑剤、着色剤などの添加物
を含むことができる。さらに、PPS系組成物の溶融粘
度は、温度300℃、剪断速度200sec −1のも
とで、700〜20000ポイズの範囲がシートの成形
性の点で好ましい。 【0016】本発明にいう未延伸(無配向)ポリフェニ
レンスルフィドシート(PPSシート)とは、上記のP
PS系組成物を、溶融成形してなる厚さ700μm以下
のフイルム、シート、板の総称であり、実質的に未延伸
(無配向)のものをいう。 【0017】本発明における二軸配向ポリ−p−フェニ
レンスルフィドフイルム(PPSフイルム)は、ポリ−
p−フェニレンスルフィドを90重量%以上含む樹脂組
成物を、溶融成形してシート状とし、二軸延伸、熱処理
してなるフイルムである。PPSの含有量が90重量%
未満では、組成物としての結晶性、熱転移度等が低くな
り、該組成物からなるフイルムの特長である耐熱性、寸
法安定性、機械的特性等を損なう。該組成物中の残りの
10重量%未満はPPS以外のポリマ、無機または有機
のフィラー、滑剤、着色剤、紫外線吸収剤などの添加物
を含むことができる。該樹脂組成物の溶融粘度は、温度
300℃、剪断速度200  1/sec のもとで、
500〜12000ポイズ(より好ましくは700〜1
0000ポイズ)の範囲がフイルムの成形性の点で好ま
しい。該樹脂組成物の溶融粘度は、最終的に得られるP
PSフイルムの溶融粘度に等しい。該フイルムの厚さは
、10〜300μmの範囲が好ましい。 【0018】本発明の積層体は、前述の繊維シート、P
PSシートおよびPPSフイルムが、この順序で接着剤
を介することなく積層されたものである。接着剤が介在
すると、接着剤が悪影響し、積層体の耐熱性、電気特性
等が低下してしまう。ここで接着剤とは、積層体の各層
を接合するために用いられる繊維シート、PPSシート
、PPSフイルム以外の厚さ1μm以上の層をいう。 【0019】また、本発明の積層体において、繊維シー
トとPPSシートの接着界面は両者が面で接合していて
も、PPSシートが繊維シートの内部まで入り込んでい
ても(含浸)よいが、スル−ホール加工が行なわれる場
合はPPSシートが繊維シートの内部に入り込んでいる
方がスル−ホールの加工性の上で好ましい。 【0020】本発明における積層体のB層の残留結晶化
エネルギーΔHtとは、該積層体(積層後)のPPSシ
ート層の結晶化エネルギーであり、積層体全体から、あ
るいはミクロトーム等で顕微鏡で観察しながらPPSシ
ートを取り出して、示差走査熱量計(DSC)にて、昇
温時に表われる結晶化(Tcc)の発熱ピーク面積から
求めることができる。 【0021】B層を構成する樹脂の結晶化エネルギーΔ
Hqとは、積層体のPPSシートを示差走査熱量計(D
SC)にて融点以上の温度まで上げ、一旦溶融させたも
のを液体窒素等の冷媒中で急冷したサンプルを、再びD
SCにて昇温した際現われる結晶化の発熱ピーク面積か
ら求めることができる。このΔHqの、積層体形成後の
残留比率、つまりΔHt/ΔHq×100が20%以上
であることが、本発明の目的である積層体の柔軟性、密
着性を向上する上で重要である。 【0022】本発明におけるPPSフイルム層(C層)
は、ミクロトーム等で顕微鏡観察しながら取り除いた表
層のPPSフイルムをDSCにて、20℃から180℃
に昇温する間に結晶化する発熱ピークを有さないことが
、積層時、加工時の作業性、形態保持性、機械特性、耐
熱性、熱寸法安定性の点で必要である。 【0023】本発明の積層体の厚み構成は、繊維シート
の厚さを〔A〕、PPSシートの厚さを〔B〕、PPS
フイルムの厚さを〔C〕とした場合、下記(1)、(2
)式を満足する構成が、本発明の目的を達成する上で好
ましい。 0.3≦A/B≦3.0    (1)0.2≦B/C
≦5.0    (2)【0024】上記(1)式にお
いて、A/Bが0.3未満では繊維シートの内部までP
PSシートが入りにくく、逆にA/Bが3.0を越える
と積層体の耐熱性が低下(加熱時の形態保持性が低下し
やすくなる。)しやすく、それを防ぐためにC層のPP
Sフイルムを厚くすると熱収縮率が大きくなる。また、
上記(2)式において、B/Cが0.2未満であると、
PPSシートとPPSフイルム間の接着性が低下し、熱
収縮率が大きくなる傾向にあり、逆にB/Cが5.0を
越えると、積層加工が難しくなり積層体の平面性が悪化
しやすい。 【0025】本発明の積層体は、上記3層構成のものを
1ユニットとして、2ユニット以上積層されたもの、お
よび、上記3層構成の積層体の繊維シート側に、さらに
PPSフイルムを、またはPPSシートおよびPPSフ
イルムをこの順序で積層したものを含む。また本発明の
積層体は、熱や紫外線等で酸化架橋してあってもよい。 【0026】本発明の積層体は、特に回路基板(多層回
路基板も含む)のベース基材として最適である。本発明
の回路基板は、上記の積層体の少なくとも片方の面に電
気回路が形成されたものである。電気回路とは、導電体
をパターン化した電気の通路で、導電体としては銅、ア
ルミニウムなどの金属または、銅、銀、カーボンなどを
含有する導電性塗料などが通常用いられる。また電気回
路に電気、電子部品が実装されていてもよい。また、該
回路基板が2層以上積層されてあってもよい。 【0027】本発明の積層体は、PPSシート層と繊維
シートおよびPPSフイルム層との接着性、密着性、お
よび積層体全体としての柔軟性を向上するために、B層
の残留結晶化エネルギーΔHtがB層の樹脂を構成する
結晶化エネルギーΔHqの20%以上であることを必須
の条件としているが、該積層体を用いて作製した本発明
の回路基板にあっては、ΔHtは必ずしもΔHqの20
%以上でなくてもよい。つまり、前記回路基板や積層回
路基板のように、加熱工程をいくつか経てきて最終製品
となった場合の、積層体のB層のΔHtは、必ずしも2
0%以上とは限らない場合がある。しかしこの場合にお
いても、積層体作製の段階において、PPSシートが有
する優れた密着性および接着剤を用いることなく十分な
強度で接着できる特性が十分に活用されたことになり、
かつ回路基板や積層回路基板などの最終製品においても
優れた柔軟性が得られる。 【0028】(製造方法)次に本発明の積層体および回
路基板の製造方法について述べる。まず、本発明に用い
るPPSは、硫化アルカリとパラジハロベンゼンとを極
性溶媒中で高温高圧下に反応させて得られる。特に、硫
化ナトリウムとパラジクロルベンゼンを、N−メチルピ
ロリドン等のアミド高沸点極性溶媒中で反応させるのが
好ましい。この場合、重合度を調整するために、力性ア
ルカリ、カルボン酸アルカリ金属塩等のいわゆる重合助
剤を添加して、230〜280℃で反応させるのが最も
好ましい。重合系内の圧力および重合時間は使用する助
剤の種類や量および所望する重合度等によって適宜決定
する。得られた粉状または粒状のポリマを、水または/
および溶媒で洗浄して、副製塩、重合助剤、未反応モノ
マー等を分離する。 【0029】このポリマを本発明のPPSシートに成形
するには、エクストルーダーに代表される溶融押出機に
該ポリマを供給し、該ポリマの融点以上(好ましくは3
00〜350℃の範囲)の温度に加熱し充分混練した後
、スリット状のダイから連続的に押出し、該フイルムの
ガラス転移点以下の温度まで急速冷却することにより、
結晶化(Tcc)のピーク温度が125℃以上の実質的
に無配向のシートが得られる。押出し温度が低かったり
、混練状態が不充分であったり、冷却速度が遅れたりす
ると結晶化が起こり好ましくない。示差走査熱量計(D
SC)で不活性ガス雰囲気中、20℃/分の速度で20
〜180℃まで昇温した時に発生する結晶化のピーク温
度(Tcc)が125℃以上(好ましくは130℃〜1
60℃の範囲)のシートが、積層体として熱が加わった
時に結晶化しにくい点、加工性の点で好ましい。また押
出し温度が高すぎると熱分解によりシート上に発砲が生
じるなどの弊害がある。 【0030】またPPSフイルムは、上記のPPSシー
トを周知の方法で二軸延伸、熱処理する。延伸は長手方
向、幅方向とも90〜110℃の温度で3.0〜4.5
倍の範囲で行ない、熱処理は180℃〜融点の範囲で、
定長または15%以下の制限収縮下に1〜60秒間行な
うのが耐熱性、機械特性、熱寸法安定性の点で好ましい
。更に該フイルムを一方向もしくは二方向にリラックス
してもよい。 【0031】本発明の積層体に使用する二軸配向ポリ−
p−フェニレンスルフィドフイルム(PPSフイルム)
は、示差走査熱量計(DSC)で不活性ガス雰囲気中、
20℃/分の速度で20℃から180℃まで昇温した時
に発生する結晶化による発熱ピークを有しないものであ
る。熱処理していないもの、熱処理が甘いもの、つまり
上記の結晶化ピークを有するものを用いた場合、耐熱性
、機械特性、熱寸法安定性に乏しく、本発明の目的が達
成できない。 【0032】なお、本発明に用いるPPSフイルムおよ
びPPSシートの表面に、コロナ放熱処理、プラズマ処
理、プライマー処理等の表面処理が1μm未満の厚さで
行なわれていてもよい。 【0033】次に繊維シート(例えばガラスクロス)と
上記のPPSシート、PPSフイルムをこの順序で熱融
着する。加熱ロールプレス法、熱板プレス法などの方法
で、上記の3層を重ね合わせて熱圧着し、ただちに冷却
するか、PPSシートと繊維シート又はPPSフイルム
を、まず熱圧着したのちPPSフイルム又は繊維シート
をPPSシート側に重ね合わせて熱圧着し、冷却して積
層する。熱圧着の条件は、温度180〜270℃、圧力
1〜20kg/cm 2の範囲が接着性と積層体の平面
性及び加工性の点で好ましい。また、PPSをエクスト
ルーダに代表される押出機に供給し、溶融させ、スリッ
ト状のダイから押し出し、下方の繊維シート又はPPS
フイルム上に積層しながら一体化し、更にPPSフイル
ム又は繊維シートを上記2層積層体のPPSシート側に
前述の熱圧着の条件で積層し冷却する。もちろん、繊維
シートとPPSフイルムの間に上記のPPSシートを押
し出し積層することもできる。また、上記熱圧着の方法
で、80〜130℃で一段積層したのち、上記熱圧着条
件で積層し冷却する方法もある。またインパルスや起音
波などの方法も用いることができる。 【0034】上記いずれの方法においても、熱融着後の
冷却がPPSシートの結晶化を押さえる上で必要である
。また、前述の3層積層体の繊維シート側にもう一層の
PPSフイルムを積層したり、PPSシート、PPSフ
イルムをこの順序で積層する場合にも上記の方法を用い
ることができる。 【0035】次に本発明の積層体をベースにした回路基
板の製造方法を述べる。上記の積層体の片面又は両面に
アルミニウム、銅などの金属箔を熱融着、又は接着剤を
介して積層するか、上記の金属層を真空蒸着法、メッキ
法、スパッタリング法などの方法で設け、塩化第2鉄水
溶液などで所望の回路パターンをエッチング加工で形成
させる。また、銀、銅、カーボンなどを含有した導電性
の塗料を用いてシルク印刷法などの方法で回路パターン
を形成し、必要に応じて該塗料を熱または紫外線などで
硬化せしめる。更に必要に応じて、上記の回路基板を積
層して多層回路基板にしたり、スル−ホール加工したり
、電気、電子部品を実装したりする。 【0036】 【発明の効果】本発明は、以上の構成としたことにより
、耐熱性、寸法安定性(熱、湿度)、柔軟性、難燃性、
高周波特性等が高次元でバランスしたものとなった。更
に積層体の層間の接着力も強く、繊維シートの内部まで
PPSが入り込んでいるのでスル−ホールの加工性も向
上した。したがって、本発明の積層体は、回路基板、積
層回路基板に最適である。 【0037】(用途)本発明の積層体は、回路基板、積
層回路基板以外にも、トランス、モータなどの耐熱絶縁
材、高温高圧部分などに用いられるケーブルの被覆材、
耐熱粘着テープ、プリプレグ基材、耐熱ラベル基材、ス
ピーカコーン、シールド基材等に最適である。 【0038】また、本発明の積層体の少なくとも片面に
別の素材(金属、シートなど)が積層されてあったり、
別の樹脂やコート剤がコーティングされたり、モールド
されてあってもよい。 【0039】(特性の評価方法)次に本発明の記述に用
いた、特性の評価方法および評価基準を述べる。 (1)耐熱性 280℃の温度にセットしたハンダ浴中に、2cm角の
試料を10秒間浮べ、次の基準で評価した。 ○  :  全く変化なし △  :  一部に軟化、変形、剥れ、シワ等が見られ
る。 ×  :  全面が波打ち又は曲がりなどの変形又は剥
離があり、各層の寸法変化が大きく異なる。 【0040】(2)熱収縮率 試料を100mm角に切り出し、顕微鏡で更に各辺の長
さを正確に読みとる(αmm)。次に250℃の温度に
加熱した炉(遠赤外線方式)で5分間エージングした後
、上記の各辺の長さを正確に測定する(βmm)。次式
で熱収縮率(%)を求め、大きい側の熱収縮率で表わし
た。 熱収縮率(%)=((α−β)/α)×100【004
1】(3)密着性 積層体を180度に5回折り曲げ、その折り曲げ部分を
観察し、次の基準で評価した。 ○  :  折り曲げ部分の剥れ、その部分の剥離強さ
の低下が全くない。 △  :  折り曲げ部分が部分的に剥れ、剥離強さが
少し低下している。 ×  :  折り曲げ部分が剥れる。 【0042】(4)回路のズレ 回路基板を200℃の温度にセットした炉(遠赤外線方
式)に5秒間通過させ、該炉を通過させていないものと
の回路のズレを見た。 【0043】(5)スル−ホール性 スル−ホール加工したサンプルのスル−ホール部を顕微
鏡で観察し、導電性塗料の密着状態を調べた。 【0044】(6)誘電特性(誘電損失)周波数を変え
て、誘電損失の変化を調べた。(JIS−C−6481
に準じて測定した。) 【0045】(7)柔軟性 積層体を10mm幅に切り出し、屈曲試験機で50回屈
曲させた後の積層体の変化を次の基準で測定した。 ○  :  全く変化なし。 △  :  一部にクラックが発生する。 ×  :  破断又は大部分にクラックが発生する。 【0046】(8)残留結晶化エネルギー(ΔHt)積
層体の積層した厚さ方向に垂直にサンプリング、あるい
は、表層を取り除いた後のPPSシートを、PERKI
N−ELMER社製  DSC−2型示差走査熱量計に
て不活性ガス雰囲気中、下記条件で20〜180℃まで
昇温した時に現われる結晶化(Tcc)の発熱ピーク面
積を、計算法(半値幅×高さ、底辺×高さ/2)あるい
は重量法で求め、基準物質であるインジウムのピーク面
積から求めた値、定数Kを算出し、下式により積層体の
結晶化エネルギーΔHt(単位:cal/g )を算出
する。 測定条件:サンプル重量Ws    ;5mg  (積
層体)レンジR            ;5mcal
/ sec・m チャートスピードVc;40mm/s
ec 昇温速度            ;20℃/m
in   ΔHt=(K×R×ピーク面積(cm2 )
)/(Ws×Vc(cm/sec ))【0047】(
9)結晶化エネルギー(ΔHq)積層体のPPSシート
の部分をサンプリングし、不活性ガス雰囲気中DSCに
て、20〜340℃まで昇温して溶融させる。その後、
液体窒素等の冷媒で急冷し無配向のサンプルを得た後、
再びDSCを使用してΔHtを測定した時の条件で結晶
化エネルギーΔHqを求める。 【0048】(10)結晶化温度(Tcc)試料フイル
ムをPERKIN−ELMER社製(DSC−2型)の
示差走査熱量計にて、下記条件で20〜180℃まで昇
温した時に現われる結晶化(Tcc)のピークを読みと
った値で表わした。 測定条件:サンプル重量Ws    ;5mgレンジR
            ;5mcal/ sec・m
 チャートスピードVc;40mm/sec 昇温速度
            ;20℃/min 【004
9】 【実施例】次に本発明を実施例を挙げて詳細に説明する
。 実施例1 (1)本発明に用いるPPS未延伸シートの調整。 オートクレーブに、硫化ナトリウム32.6kg(25
0モル、結晶水40重量%を含む)、水酸化ナトリウム
100g、安息香酸ナトリウム36.1kg(250モ
ル)、およびN−メチル−2ピロリドン(以下NMPと
略称することがある)79.2kgを仕込み205℃で
脱水したのち、1,4ジクロルベンゼン37.5kg(
255モル)、およびNMP20.0kgを加え、26
5℃で4時間反応させた。反応生成物を水洗、乾燥して
、p−フェニレンスルフィドユニット100モル%から
なり、溶融粘度3100ポイズのポリ−p−フェニレン
スルフィド21.1kg(収率78%)を得た。 【0050】この組成物に、平均粒径0.7μmのシリ
カ微粒粉末0.1重量%、ステアリン酸カルシウム0.
05重量%を添加し、40mm径のエクストルーダによ
って310℃で溶融し、金属繊維を用いた95%カット
孔径10μmのフィルタで濾過したのち長さ400mm
、間隔0.5mmの直線状のリップを有するTダイから
押し出し、表面を25℃に保った金属ドラム上にキャス
トし、結晶化温度140℃、厚さ25μmの未延伸シー
トを得た。更に該シートの両面に5000J/m2 の
コロナ放電処理を行なった(PPSシート−1とする)
。 【0051】(2)PPSフイルムの調整東レ(株)社
製“トレリナ”タイプ3000の25μm厚みの二軸配
向ポリ−p−フェニレンスルフィドフイルムを用い、更
に該フイルムの片面に5000J/m2 のコロナ放電
処理を行なった。このフイルムは、前記本発明でいう温
度範囲内に、結晶化による発熱ピークを有していなかっ
た(PPSフイルム−1とする)。 【0052】(3)繊維シートの調整 ガラスクロス(EPC030(株)有沢製作所製)の3
4μmを用いた(繊維シート−1とする)。 【0053】(4)積層体の形成 上記のPPSフイルム−1、PPSシート−1及び繊維
シート−1をこの順序に重ね合わせて、加熱ロールプレ
ス法で熱圧着した後、後続の冷却ロール(表面温度25
℃)で急冷却した。積層条件は、温度250℃、圧力8
kg/cm2 であり、ライン速度は1.0m/分であ
る。得られた積層体の厚さは76μmであった(積層体
−1)。 【0054】実施例2 実施例1の同様の方法でPPSフイルム−1、PPSシ
ート−1、繊維シート−1、PPSフイルム−1をこの
順序に積層した。積層条件は、温度260℃、圧力10
kg/cm2 であり、ライン速度は1.0m/分とし
た。該積層体の厚さは100μmであった(積層体−2
)。 【0055】実施例3 実施例1の方法でPPSフイルム−1、PPSシート−
1、繊維シート−1、PPSシート−1、PPSフイル
ム−1をこの順序に重ね合わせ、熱融着した後急冷した
。該積層体の厚さは125μmであった(積層体−3)
。 【0056】実施例4 実施例3の積層構成で、温度250℃、圧力12kg/
cm2 の熱板プレス法で熱融着したのち、該熱板を急
冷(60℃)した(積層体−4)。 【0057】実施例5 実施例1で用いたPPSポリマを30mm径のエクスト
ルーダによって310℃で溶融し、長さ240mm、間
隔0.5mmの直線リップを有するTダイから押し出し
た。 一方、Tダイ直下に表面温度を90℃に保った金属製の
プレスロールを設け、実施例1で用いた繊維シート−1
を1m/分の速度でプレスしながら上記押出しポリマを
積層厚みが50μmになるよう積層した。更に繊維シー
ト−1の両側に上記の積層体のPPSシート側が繊維シ
ートと接するよう重ね合わせて、実施例の条件で熱融着
し、急冷した(積層体−5)。 【0058】比較例1 実施例1のPPSシートの製造条件として溶融温度を2
90℃、Tダイから押し出した後のキャストフイルムを
徐冷する以外は実施例1と同様にして、結晶化温度12
0℃、厚さ25μmのPPSシートを得た(PPSシー
ト−2)。しかる後、実施例3の条件及び方法で、PP
Sシート−1の代わりに上記PPSシート−2を用いて
熱融着した(積層体−6)。 【0059】比較例2 実施例3の構成で、温度260℃、圧力10kg/cm
2 の加熱ロールプレス法で積層した後、冷却なしに自
然冷却した熱融着後の積層体の温度は180℃であった
(積層体−7)。 【0060】比較例3 実施例1の方法で100μm厚さのPPSシートを得た
。更に該シートを250℃の温度で3分間熱処理した(
PPSシート−3とする)。 【0061】比較例4 東レ(株)社製“トレリナ”タイプ3000の100μ
m厚さの二軸配向PPSフイルムを準備した(PPSフ
イルム−2とする)。 【0062】比較例5 繊維シート−1の両面にPPSフイルム−1を重ね合わ
せ、温度270℃、圧力10kg/cm2 の熱板プレ
スで熱融着した。該積層体の厚さは85μmであった(
積層体−8)。 【0063】比較例6 比較例5の積層構成で下記のエポキシ系の接着剤を介し
て積層した。“ケミットエポキシ”TE5920(東レ
(株)製)接着剤を塗布した。塗布の方法はグラビアロ
ール法で10μm(ドライ条件)の厚さに調整した。溶
剤の乾燥条件は100℃の温度で3分間であった。また
、積層は加熱ロールプレス方式で温度120℃、圧力2
kg/cm2 であり、更に接着剤を150℃の温度で
2時間熱硬化せしめた(積層体−9)。 【0064】(実施例、比較例の評価)実施例1〜5、
比較例1〜6の積層体およびシート、フイルムの評価結
果を表1、表2に示す。実施例1〜5の本発明の積層体
は、耐熱性、熱寸法安定性、密着性、高周波特性および
柔軟性などの諸特性が高次元でバランスしていることが
判る。 【0065】一方、比較例1、2の積層体は、本発明で
言う残留結晶化エネルギー率が本発明の範囲外であり、
柔軟性、密着性に乏しい。また比較例3のPPSシート
は、耐熱性に劣り、比較例4のPPSフイルムは、熱収
縮率が大きいことがわかる。更に比較例5の積層体は、
繊維シートとPPSフイルムとの密着性が弱く、熱が加
わるとPPSフイルムの熱収応力で剥れる場合がある。 また比較例6の積層体は、用いている接着剤が耐熱性、
高周波特性などを低下させ、更に加熱時に接着剤が軟化
し、表層部のPPSフイルムが収縮してしまう。 【0066】実施例6 実施例1〜5の積層体のPPSフイルム面に銀を含有し
た導電性塗料を用い、シルク印刷法で回路をパターン化
し、150℃の温度で10分間硬化せしめ、回路基板を
作成した。塗料の厚さは10μmであった。得られた回
路基板においては、240℃ハンダに浮かべても、軟化
したり、変形せず回路のズレも生じなかった。また直径
0.5mmのスル−ホール加工を行なったが、基板の割
れもなく導電性塗料の密着性も良好であった。 【0067】比較例7 比較例2〜6の積層体およびシート、フイルムで実施例
6と同様にして回路基板を作成した。結果、比較例2の
積層体を用いたものは、耐熱性、熱寸法安定性に富むが
打ち抜き加工等で簡単にPPSシート層が割れる。比較
例3のPPSシートを用いたものは、耐熱性(高温時に
変形する。)に乏しく、比較例4のPPSフイルムを用
いたものは熱寸法変化率が大きく、回路のズレが発生し
た。さらに比較例5の積層体を用いたものは、穴明け加
工などで繊維シートとPPSフイルムの界面が剥れやす
く、またスル−ホール加工がしにくかった(繊維シート
内へのPPSの含浸が全くない)。比較例6の積層体を
用いたものは、接着剤が耐熱性、高周波特性を低下させ
る。また、加熱時に接着剤が軟化し、外側のPPSフイ
ルム層のみが熱収縮し、回路のズレが発生した。更にス
ル−ホールの加工性も良くなかった。 【0068】 【表1】 【0069】 【表2】
Description [0001] [Industrial Application Field] The present invention relates to a laminate and a circuit board using the same, and more specifically to a laminate and a laminate containing poly-p-phenylene sulfide as a main component. The present invention relates to a laminate comprising an unstretched sheet and a biaxially oriented poly-p-phenylene sulfide film, and a circuit board using the laminate as a base material. [0002] In the electrical and electronic industry fields, from the viewpoint of downsizing and increasing the functionality of equipment, heat resistance, dimensional stability (heat and humidity), flame retardance, flexibility, and stability against high frequencies are required. There is an increasing demand for base materials that have a high level of well-balanced properties such as: In addition to the above-mentioned properties, as a base material for a circuit board, workability such as through-hole processing, punching, and bending is important, so flexibility and through-hole workability are also important points. The substrates that have attracted the most attention in this field include unstretched sheets and biaxially oriented films of poly-p-phenylene sulfide. Laminated films and laminates using biaxially oriented poly-p-phenylene sulfide film (hereinafter sometimes abbreviated as PPS film) include (1) a laminated film with polyester film (Japanese Unexamined Patent Publication No. 62-292431); (2) laminated with an aromatic polyamide fiber sheet via an adhesive (Japanese Unexamined Patent Publication No. 60-63158), (3) infusible at a temperature of 300°C and at a temperature of 150°C The coefficient of thermal expansion at
A laminate with a fiber sheet having a temperature of 10-61/℃ or less (Unexamined Japanese Patent Publication No.
-95585) and the like are known. Also, (4
) A laminate of an unstretched sheet of poly-p-phenylene sulfide (hereinafter sometimes abbreviated as PPS sheet) and PPS film is also known (Japanese Patent Application No. 1987-1955).
No. 91). [0004] However, the above PPS
Sheets, films, and laminates each have the following problems. [0005] As a single PPS sheet, the heat resistance temperature is lower than that of a PPS film (it is easily thermally deformed when it exceeds the glass transition point), and the more heating steps are performed, the more crystallization progresses and the sheet becomes brittle. When used as a base for a printed circuit board, the crystal size etc. are controlled to satisfy heat resistance and brittleness to a certain extent, but it has the problem that it is easily thermally deformed when heat is suddenly applied. On the other hand, since the PPS film itself undergoes dimensional changes due to thermal contraction, circuits are likely to shift when heat is applied, for example, in the manufacturing process of circuit boards. In addition, when processing through-holes in laminated circuit boards, they tend to tear easily, and
Since the PS film is weak, force is easily applied to the through-hole portions in subsequent processing steps, causing problems such as the through-hole portions being easily damaged. [0007] In order to solve the problems of PPS sheets and films alone, various laminated films and laminates have been proposed as described above, but each of them still has its own problems. Although the film laminated with the polyester film described in item (1) above is improved in tearability during through-hole processing, it does not improve thermal dimensional stability or heat resistance. A laminate laminated with an aromatic polyamide fiber sheet and an adhesive as described in item (2) has improved thermal dimensional stability and mechanical properties, but the heat resistance of the adhesive has an adverse effect on the base material ( In other words, the heat resistance of the adhesive determines the heat resistance of the base material as a whole), and the excellent properties of PPS film cannot be fully utilized. Furthermore, the laminate described in item (3), in which a PPS film and a fiber sheet are laminated by heat fusion, has poor adhesive strength and is likely to peel off when force is applied during processing such as bending or punching. Furthermore, since the polymer does not penetrate into the interior of the fiber sheet, there are problems in that it is difficult to process when through-hole processing is required for applications such as circuit boards. Furthermore, the laminate of item (4) above is composed of a PPS sheet and a PPS sheet.
Since it is a laminated film made only of PS films, the laminate as a whole lacks thermal dimensional stability and heat resistance. The present invention solves the above-mentioned problems, has a balance of various properties such as heat resistance, dimensional stability (heat and humidity), flame retardance, stability against high frequencies, and flexibility, and is particularly suitable for circuit boards ( The purpose is to provide an optimal heat-resistant base material for use in multilayer circuit boards (including multilayer circuit boards). Means for Solving the Problems [0009] That is, the present invention provides an unstretched sheet (layer B) containing poly-p-phenylene sulfide as a main component on at least one side of a fiber sheet (layer A); A laminate in which an axially oriented poly-p-phenylene sulfide film (C layer) is fixed in this order without using an adhesive, and the residual crystallization energy ΔHt of the B layer is the resin constituting the B layer. The crystallization energy ΔH of
20% or more of q, and the C layer has substantially no exothermic peak due to crystallization in the range of 20°C to 180°C; To provide a circuit board characterized by being provided with a circuit. [0010] The fiber sheet in the present invention is a thin sheet composed of an aggregate of fibers, such as cloth, fabric,
A general term for felt, non-woven fabric, paper, etc. with a thickness of 10 to 500
μm (preferably 10 to 300 μm). The fiber sheet may be processed to facilitate adhesion or colored, and may be a mixture or lamination of two or more materials. Among the fiber sheets, cloth is preferable, and glass fiber cloth is particularly preferable because the poly-p-phenylene sulfide polymer easily penetrates (easily impregnates) into the fiber sheet, and is preferable in terms of heat resistance, dimensional stability, and processability. [0011] The above-mentioned fiber sheet preferably does not have a melting point up to a temperature of 400°C, and the fiber sheet having no melting point refers to a fiber sheet that does not melt at a temperature of 400°C. Here, "infusible" refers to a state in which it does not melt or soften when exposed to a temperature of 400°C. If the fiber sheet used in the present invention does not have the above characteristics,
When the laminate of the present invention is heated to a temperature around 300° C., it is thermally deformed and the rate of thermal dimensional change becomes large. In the present invention, poly-p-phenylene sulfide (hereinafter sometimes abbreviated as PPS) is
70 mol% or more (preferably 85 mol%) of repeating units
The above refers to a polymer consisting of a structural unit represented by the following structural formula (Chemical formula 1). If the content of such components is less than 70 mol %, the crystallinity, thermal transition temperature, etc. of the polymer will be low, and the heat resistance, dimensional stability, mechanical properties, etc., which are characteristics of a film made of a resin composition containing PPS as a main component, will be impaired. [0013] In the above PPS, 30 repeating units
Units containing copolymerizable sulfide bonds may be included as long as the amount is less than mol %, preferably less than 15 mol %. Further, the method of copolymerization of the polymer does not matter whether it is random or block type. In the present invention, a resin composition containing poly-p-phenylene sulfide as a main component (hereinafter sometimes abbreviated as PPS composition) refers to a resin composition containing 60% by weight or more of poly-p-phenylene sulfide. A composition. PP
If the S content is less than 60% by weight, the mechanical properties, heat resistance, etc. of the unstretched sheet made of the composition will be impaired. In addition, the remaining less than 40% by weight in the composition is a polymer other than PPS,
Additives such as inorganic or organic fillers, lubricants, colorants, etc. can be included. Further, the melt viscosity of the PPS composition is preferably in the range of 700 to 20,000 poise at a temperature of 300° C. and a shear rate of 200 sec −1 from the viewpoint of sheet formability. [0016] The unstretched (non-oriented) polyphenylene sulfide sheet (PPS sheet) referred to in the present invention refers to the above-mentioned P
It is a general term for films, sheets, and plates with a thickness of 700 μm or less formed by melt-molding a PS composition, and refers to substantially unstretched (non-oriented) films. The biaxially oriented poly-p-phenylene sulfide film (PPS film) in the present invention is a poly-p-phenylene sulfide film (PPS film).
This film is obtained by melt-molding a resin composition containing 90% by weight or more of p-phenylene sulfide into a sheet, biaxially stretching it, and heat-treating it. PPS content is 90% by weight
If it is less than this, the crystallinity, thermal transition degree, etc. of the composition will be low, and the characteristics of the film made of the composition, such as heat resistance, dimensional stability, and mechanical properties, will be impaired. The remaining less than 10% by weight of the composition can include additives such as polymers other than PPS, inorganic or organic fillers, lubricants, colorants, UV absorbers, and the like. The melt viscosity of the resin composition is at a temperature of 300°C and a shear rate of 200 1/sec.
500 to 12,000 poise (more preferably 700 to 1
0000 poise) is preferable from the viewpoint of film formability. The melt viscosity of the resin composition is determined by the finally obtained P
It is equal to the melt viscosity of PS film. The thickness of the film is preferably in the range of 10 to 300 μm. The laminate of the present invention comprises the above-mentioned fiber sheet, P
A PS sheet and a PPS film are laminated in this order without using an adhesive. If an adhesive is present, the adhesive will have an adverse effect and the heat resistance, electrical properties, etc. of the laminate will deteriorate. Here, the adhesive refers to a layer having a thickness of 1 μm or more other than the fiber sheet, PPS sheet, or PPS film used to bond each layer of the laminate. In addition, in the laminate of the present invention, the bonding interface between the fiber sheet and the PPS sheet may be such that they are joined together in a plane, or the PPS sheet may penetrate into the interior of the fiber sheet (impregnation). - When hole processing is performed, it is preferable for the PPS sheet to penetrate inside the fiber sheet in terms of through-hole processability. [0020] The residual crystallization energy ΔHt of layer B of the laminate in the present invention is the crystallization energy of the PPS sheet layer of the laminate (after lamination), and it can be observed from the entire laminate or with a microscope using a microtome or the like. The temperature can be determined from the exothermic peak area of crystallization (Tcc) that appears when the temperature is increased by taking out the PPS sheet and using a differential scanning calorimeter (DSC). Crystallization energy Δ of resin constituting layer B
Hq is measured by measuring the PPS sheet of the laminate with a differential scanning calorimeter (D
SC) to raise the temperature to above the melting point, once melted, and then rapidly cooled in a refrigerant such as liquid nitrogen, the sample is again heated to D.
It can be determined from the exothermic peak area of crystallization that appears when the temperature is raised in SC. It is important that the residual ratio of ΔHq after the formation of the laminate, that is, ΔHt/ΔHq×100, is 20% or more in order to improve the flexibility and adhesion of the laminate, which is the object of the present invention. PPS film layer (C layer) in the present invention
The surface layer of the PPS film was removed while being observed using a microtome, etc., and then heated from 20°C to 180°C using DSC.
It is necessary from the viewpoint of workability during lamination and processing, shape retention, mechanical properties, heat resistance, and thermal dimensional stability that the material does not have an exothermic peak that causes crystallization during heating. The thickness structure of the laminate of the present invention is such that the thickness of the fiber sheet is [A], the thickness of the PPS sheet is [B], and the thickness of the PPS sheet is [B].
When the thickness of the film is [C], the following (1) and (2)
) is preferable in order to achieve the object of the present invention. 0.3≦A/B≦3.0 (1) 0.2≦B/C
≦5.0 (2) In the above formula (1), if A/B is less than 0.3, P will not reach the inside of the fiber sheet.
It is difficult to insert the PS sheet, and conversely, if A/B exceeds 3.0, the heat resistance of the laminate tends to decrease (form retention during heating tends to decrease), and to prevent this, the PP of the C layer
The thicker the S film is, the higher the heat shrinkage rate will be. Also,
In the above formula (2), when B/C is less than 0.2,
Adhesion between the PPS sheet and PPS film tends to decrease and the heat shrinkage rate increases.On the other hand, if B/C exceeds 5.0, lamination becomes difficult and the flatness of the laminate tends to deteriorate. . [0025] The laminate of the present invention is one in which two or more units are laminated, with the above three-layer structure as one unit, and a PPS film or It includes a PPS sheet and a PPS film laminated in this order. Further, the laminate of the present invention may be oxidized and crosslinked using heat, ultraviolet rays, or the like. The laminate of the present invention is particularly suitable as a base material for circuit boards (including multilayer circuit boards). The circuit board of the present invention has an electric circuit formed on at least one surface of the above-mentioned laminate. An electric circuit is an electrical path formed by patterning a conductor, and the conductor is usually made of a metal such as copper or aluminum, or a conductive paint containing copper, silver, carbon, or the like. Moreover, electric and electronic components may be mounted on the electric circuit. Moreover, the circuit board may be laminated in two or more layers. [0027] In the laminate of the present invention, the residual crystallization energy ΔHt of layer B is reduced in order to improve the adhesion and adhesion between the PPS sheet layer and the fiber sheet and PPS film layer, as well as the flexibility of the laminate as a whole. Although it is an essential condition that ΔHt is 20% or more of the crystallization energy ΔHq constituting the resin of layer B, in the circuit board of the present invention produced using the laminate, ΔHt is not necessarily equal to ΔHq. 20
It does not have to be more than %. In other words, in the case of a final product that has gone through several heating processes, such as the aforementioned circuit board or laminated circuit board, the ΔHt of the B layer of the laminate is not necessarily 2.
It may not necessarily be 0% or more. However, even in this case, the excellent adhesion of PPS sheets and the ability to bond with sufficient strength without the use of adhesives were fully utilized during the laminate production stage.
Moreover, excellent flexibility can be obtained in final products such as circuit boards and laminated circuit boards. (Manufacturing method) Next, a method of manufacturing the laminate and circuit board of the present invention will be described. First, PPS used in the present invention is obtained by reacting an alkali sulfide and paradihalobenzene in a polar solvent at high temperature and high pressure. In particular, it is preferable to react sodium sulfide and paradichlorobenzene in an amide high-boiling polar solvent such as N-methylpyrrolidone. In this case, in order to adjust the degree of polymerization, it is most preferable to add a so-called polymerization auxiliary agent such as an alkali or an alkali metal salt of carboxylic acid, and to carry out the reaction at 230 to 280°C. The pressure within the polymerization system and the polymerization time are appropriately determined depending on the type and amount of the auxiliary agent used, the desired degree of polymerization, etc. The obtained powder or granular polymer is mixed with water or/
and washing with a solvent to separate by-product salts, polymerization aids, unreacted monomers, etc. In order to form this polymer into the PPS sheet of the present invention, the polymer is supplied to a melt extruder such as an extruder, and the melting point of the polymer is exceeded (preferably 3
After heating to a temperature in the range of 00 to 350°C) and sufficiently kneading, the film is continuously extruded through a slit-shaped die and rapidly cooled to a temperature below the glass transition point of the film.
A substantially non-oriented sheet with a peak crystallization (Tcc) temperature of 125° C. or higher is obtained. If the extrusion temperature is low, the kneading state is insufficient, or the cooling rate is slow, crystallization may occur, which is undesirable. Differential scanning calorimeter (D
SC) in an inert gas atmosphere at a rate of 20°C/min.
The peak temperature (Tcc) of crystallization that occurs when the temperature is raised to ~180℃ is 125℃ or higher (preferably 130℃~1
A sheet having a temperature of 60° C.) is preferable from the viewpoint of being difficult to crystallize as a laminate when heated and from the viewpoint of workability. Furthermore, if the extrusion temperature is too high, there are disadvantages such as foaming on the sheet due to thermal decomposition. [0030] The PPS film is prepared by biaxially stretching and heat-treating the above-mentioned PPS sheet by a well-known method. Stretching is carried out at a temperature of 90 to 110°C in both the longitudinal and width directions to a temperature of 3.0 to 4.5.
Heat treatment is carried out in the range of 180℃ to melting point,
From the viewpoint of heat resistance, mechanical properties, and thermal dimensional stability, it is preferable to carry out the process for 1 to 60 seconds at a constant length or under limited shrinkage of 15% or less. Additionally, the film may be relaxed in one or two directions. Biaxially oriented polyester used in the laminate of the present invention
p-phenylene sulfide film (PPS film)
is measured in an inert gas atmosphere using a differential scanning calorimeter (DSC).
It does not have an exothermic peak due to crystallization that occurs when the temperature is raised from 20°C to 180°C at a rate of 20°C/min. When using a material that has not been heat-treated or has been heat-treated lightly, that is, a material that has the above-mentioned crystallization peak, the object of the present invention cannot be achieved because the heat resistance, mechanical properties, and thermal dimensional stability are poor. [0032] The surface of the PPS film and PPS sheet used in the present invention may be subjected to surface treatment such as corona heat radiation treatment, plasma treatment, primer treatment, etc. to a thickness of less than 1 μm. Next, the fiber sheet (eg, glass cloth), the above-mentioned PPS sheet, and PPS film are heat-sealed in this order. Either the above three layers are superimposed and thermocompressed using a hot roll press method or a hot plate press method, and immediately cooled, or the PPS sheet and the fiber sheet or PPS film are first thermocompression bonded and then the PPS film or fiber is bonded. The sheets are stacked on the PPS sheet side and bonded under heat, and then cooled and laminated. The preferred conditions for thermocompression bonding are a temperature of 180 to 270° C. and a pressure of 1 to 20 kg/cm 2 in terms of adhesiveness, flatness and processability of the laminate. In addition, PPS is supplied to an extruder such as an extruder, melted, and extruded through a slit-shaped die to form the lower fiber sheet or PPS.
The film is laminated and integrated, and then a PPS film or fiber sheet is laminated on the PPS sheet side of the two-layer laminate under the thermocompression bonding conditions described above and cooled. Of course, the above PPS sheet can also be extruded and laminated between the fiber sheet and the PPS film. There is also a method of laminating one layer at 80 to 130[deg.] C. using the thermocompression bonding method described above, and then laminating the layers under the thermocompression bonding conditions described above and cooling. Further, methods such as impulse and sonic waves can also be used. [0034] In any of the above methods, cooling after heat fusion is necessary to suppress crystallization of the PPS sheet. The above method can also be used when another layer of PPS film is laminated on the fiber sheet side of the three-layer laminate described above, or when a PPS sheet and a PPS film are laminated in this order. Next, a method for manufacturing a circuit board based on the laminate of the present invention will be described. A metal foil such as aluminum or copper is laminated on one or both sides of the above laminate by heat fusion or adhesive, or the above metal layer is provided by a method such as vacuum evaporation, plating, or sputtering. , a desired circuit pattern is formed by etching using a ferric chloride aqueous solution or the like. Further, a circuit pattern is formed using a method such as silk printing using a conductive paint containing silver, copper, carbon, etc., and the paint is cured with heat or ultraviolet rays as necessary. Further, if necessary, the above circuit boards may be laminated to form a multilayer circuit board, through-holes may be processed, or electrical or electronic components may be mounted. Effects of the Invention The present invention has the above-described structure, and thus has excellent heat resistance, dimensional stability (heat, humidity), flexibility, flame retardancy,
The high frequency characteristics etc. have become highly balanced. Furthermore, the adhesive force between the layers of the laminate was strong, and since PPS penetrated into the interior of the fiber sheet, the workability of through-holes was also improved. Therefore, the laminate of the present invention is most suitable for circuit boards and laminated circuit boards. (Applications) In addition to circuit boards and laminated circuit boards, the laminate of the present invention can also be used as a heat-resistant insulating material for transformers, motors, etc., as a covering material for cables used in high-temperature, high-pressure parts, etc.
Ideal for heat-resistant adhesive tapes, prepreg base materials, heat-resistant label base materials, speaker cones, shield base materials, etc. [0038] Further, another material (metal, sheet, etc.) may be laminated on at least one side of the laminate of the present invention, or
It may be coated with another resin or coating agent, or may be molded. (Method for Evaluating Characteristics) Next, a method for evaluating characteristics and evaluation criteria used in describing the present invention will be described. (1) Heat resistance A 2 cm square sample was floated for 10 seconds in a solder bath set at a temperature of 280° C. and evaluated based on the following criteria. ○: No change at all △: Softening, deformation, peeling, wrinkles, etc. are observed in some parts. ×: Deformation such as waving or bending or peeling is present on the entire surface, and the dimensional changes of each layer are significantly different. (2) Heat shrinkage rate: Cut the sample into 100 mm squares, and use a microscope to accurately read the length of each side (α mm). Next, after aging for 5 minutes in a furnace heated to 250° C. (far infrared ray method), the length of each side mentioned above is accurately measured (β mm). The heat shrinkage rate (%) was determined using the following formula and expressed as the larger heat shrinkage rate. Heat shrinkage rate (%) = ((α-β)/α) x 100 004
1) (3) Adhesiveness The laminate was bent 180 degrees five times, the bent portion was observed, and evaluated based on the following criteria. ○: There is no peeling at the bent portion and no decrease in peel strength at that portion. △: The bent portion was partially peeled off, and the peel strength was slightly decreased. ×: The bent portion peels off. (4) Circuit deviation The circuit board was passed through a furnace (far infrared ray method) set at a temperature of 200° C. for 5 seconds, and the circuit deviation between the circuit board and the one that had not been passed through the oven was observed. (5) Through-hole properties The through-hole portions of the through-hole processed samples were observed under a microscope to examine the state of adhesion of the conductive paint. (6) Dielectric properties (dielectric loss) Changes in dielectric loss were investigated by changing the frequency. (JIS-C-6481
Measured according to. (7) The flexible laminate was cut out to a width of 10 mm, and after being bent 50 times using a bending tester, the change in the laminate was measured using the following criteria. ○: No change at all. △: Cracks occur in some parts. ×: Breakage or cracks occur in most parts. (8) Residual crystallization energy (ΔHt) Sampling perpendicular to the layered thickness direction of the laminate, or sampling the PPS sheet after removing the surface layer using PERKI
Calculation method (half width x height, base x height/2) or gravimetrically, calculate the value and constant K obtained from the peak area of the reference material indium, and use the following formula to calculate the crystallization energy ΔHt (unit: cal) of the laminate. /g). Measurement conditions: Sample weight Ws; 5 mg (laminate) Range R; 5 mcal
/ sec・m Chart speed Vc; 40mm/s
ec Heating rate; 20℃/m
in ΔHt=(K×R×peak area (cm2)
)/(Ws×Vc(cm/sec))0047](
9) Crystallization energy (ΔHq) A portion of the PPS sheet of the laminate is sampled and heated to 20 to 340° C. by DSC in an inert gas atmosphere to melt it. after that,
After rapidly cooling with a refrigerant such as liquid nitrogen to obtain a non-oriented sample,
Crystallization energy ΔHq is determined under the conditions when ΔHt was measured using DSC again. (10) Crystallization temperature (Tcc) The crystallization temperature (Tcc) that appears when a sample film is heated to 20 to 180°C under the following conditions using a differential scanning calorimeter manufactured by PERKIN-ELMER (DSC-2 type). It is expressed as the value read from the peak of Tcc). Measurement conditions: Sample weight Ws; 5mg range R
;5mcal/sec・m
Chart speed Vc: 40mm/sec Temperature increase rate: 20°C/min 004
9] [Examples] Next, the present invention will be explained in detail by giving examples. Example 1 (1) Preparation of PPS unstretched sheet used in the present invention. In an autoclave, add 32.6 kg (25 kg) of sodium sulfide.
0 mol, containing 40% by weight of crystal water), 100 g of sodium hydroxide, 36.1 kg (250 mol) of sodium benzoate, and 79.2 kg of N-methyl-2-pyrrolidone (hereinafter sometimes abbreviated as NMP). After dehydrating at 205°C, 37.5 kg of 1,4 dichlorobenzene (
255 mol) and 20.0 kg of NMP were added, and 26
The reaction was carried out at 5°C for 4 hours. The reaction product was washed with water and dried to obtain 21.1 kg (yield: 78%) of poly-p-phenylene sulfide containing 100 mol % of p-phenylene sulfide units and having a melt viscosity of 3100 poise. [0050] This composition contains 0.1% by weight of silica fine particles having an average particle size of 0.7 μm and 0.1% by weight of calcium stearate.
05% by weight was added, melted at 310°C with a 40mm diameter extruder, filtered with a 95% cut filter using metal fibers with a pore size of 10μm, and then 400mm in length.
The sample was extruded from a T-die having linear lips spaced apart by 0.5 mm and cast onto a metal drum whose surface was kept at 25°C to obtain an unstretched sheet having a crystallization temperature of 140°C and a thickness of 25 μm. Further, both sides of the sheet were subjected to corona discharge treatment at 5000 J/m2 (referred to as PPS sheet-1).
. (2) Adjustment of PPS film A 25 μm thick biaxially oriented poly-p-phenylene sulfide film of “Torelina” type 3000 manufactured by Toray Industries, Inc. was used, and one side of the film was further subjected to a corona discharge of 5000 J/m2. Processed. This film did not have an exothermic peak due to crystallization within the temperature range referred to in the present invention (referred to as PPS film-1). (3) Adjustment of fiber sheet Glass cloth (EPC030 manufactured by Arisawa Seisakusho Co., Ltd.) 3
4 μm was used (referred to as fiber sheet-1). (4) Formation of laminate The above PPS film-1, PPS sheet-1, and fiber sheet-1 are stacked in this order and bonded under heat using a hot roll press method. temperature 25
℃). Lamination conditions are temperature 250℃, pressure 8
kg/cm2, and the line speed is 1.0 m/min. The thickness of the obtained laminate was 76 μm (laminate-1). Example 2 In the same manner as in Example 1, PPS film-1, PPS sheet-1, fiber sheet-1, and PPS film-1 were laminated in this order. Lamination conditions are temperature 260℃, pressure 10
kg/cm2, and the line speed was 1.0 m/min. The thickness of the laminate was 100 μm (laminate-2
). Example 3 PPS film-1, PPS sheet-
1. Fiber sheet-1, PPS sheet-1, and PPS film-1 were stacked in this order, heat-sealed, and then rapidly cooled. The thickness of the laminate was 125 μm (laminate-3)
. Example 4 With the laminated structure of Example 3, the temperature was 250°C and the pressure was 12 kg/
After heat-sealing with a hot plate press method of cm2, the hot plate was rapidly cooled (60°C) (laminate-4). Example 5 The PPS polymer used in Example 1 was melted at 310° C. using a 30 mm diameter extruder and extruded through a T-die having a length of 240 mm and straight lips spaced 0.5 mm apart. On the other hand, a metal press roll whose surface temperature was maintained at 90°C was installed directly below the T-die, and the fiber sheet-1 used in Example 1 was
While pressing at a speed of 1 m/min, the extruded polymers were laminated to a thickness of 50 μm. Further, the laminate was stacked on both sides of the fiber sheet-1 so that the PPS sheet side of the laminate was in contact with the fiber sheet, heat-sealed under the conditions of the example, and rapidly cooled (laminate-5). Comparative Example 1 The manufacturing conditions for the PPS sheet of Example 1 were as follows:
The crystallization temperature was 12° C. in the same manner as in Example 1 except that the cast film was slowly cooled after being extruded from the T-die.
A PPS sheet with a thickness of 25 μm was obtained at 0° C. (PPS sheet-2). After that, under the conditions and method of Example 3, PP
The above PPS sheet-2 was used in place of the S sheet-1 and heat-sealed (laminate-6). Comparative Example 2 The configuration of Example 3, temperature 260°C, pressure 10kg/cm
The temperature of the laminate after heat-sealing, which was laminated by the heated roll press method of 2 and then naturally cooled without cooling, was 180°C (laminate-7). Comparative Example 3 A PPS sheet with a thickness of 100 μm was obtained by the method of Example 1. Furthermore, the sheet was heat-treated at a temperature of 250°C for 3 minutes (
PPS sheet-3). Comparative Example 4 100μ of “Torelina” type 3000 manufactured by Toray Industries, Inc.
A biaxially oriented PPS film with a thickness of m was prepared (referred to as PPS film-2). Comparative Example 5 PPS film 1 was superimposed on both sides of fiber sheet 1 and thermally fused using a hot plate press at a temperature of 270° C. and a pressure of 10 kg/cm 2 . The thickness of the laminate was 85 μm (
Laminated body-8). Comparative Example 6 The laminated structure of Comparative Example 5 was laminated using the following epoxy adhesive. “Chemit Epoxy” TE5920 (manufactured by Toray Industries, Inc.) adhesive was applied. The coating method was a gravure roll method and the thickness was adjusted to 10 μm (dry condition). The solvent was dried at a temperature of 100° C. for 3 minutes. In addition, lamination was performed using a heated roll press method at a temperature of 120°C and a pressure of 2.
kg/cm2, and the adhesive was further heat-cured at a temperature of 150°C for 2 hours (laminate-9). (Evaluation of Examples and Comparative Examples) Examples 1 to 5,
Evaluation results of the laminates, sheets, and films of Comparative Examples 1 to 6 are shown in Tables 1 and 2. It can be seen that the laminates of the present invention of Examples 1 to 5 are highly balanced in various properties such as heat resistance, thermal dimensional stability, adhesion, high frequency properties, and flexibility. On the other hand, the laminates of Comparative Examples 1 and 2 had residual crystallization energy rates outside the range of the present invention;
Poor flexibility and adhesion. It can also be seen that the PPS sheet of Comparative Example 3 has poor heat resistance, and the PPS film of Comparative Example 4 has a large heat shrinkage rate. Furthermore, the laminate of Comparative Example 5,
The adhesion between the fiber sheet and the PPS film is weak, and when heat is applied, the PPS film may peel off due to its heat absorption stress. In addition, in the laminate of Comparative Example 6, the adhesive used was heat resistant,
High frequency characteristics etc. are degraded, and the adhesive softens when heated, causing the PPS film in the surface layer to shrink. Example 6 A conductive paint containing silver was used on the PPS film surface of the laminates of Examples 1 to 5 to pattern a circuit by silk printing, and the pattern was cured at a temperature of 150° C. for 10 minutes to form a circuit board. It was created. The thickness of the paint was 10 μm. The obtained circuit board did not soften or deform, and no circuit deviation occurred even when it was floated in solder at 240°C. In addition, although through-hole processing with a diameter of 0.5 mm was performed, there was no cracking of the substrate and the adhesion of the conductive paint was good. Comparative Example 7 A circuit board was prepared in the same manner as in Example 6 using the laminates, sheets, and films of Comparative Examples 2 to 6. As a result, the laminate using the laminate of Comparative Example 2 has high heat resistance and thermal dimensional stability, but the PPS sheet layer easily cracks during punching or the like. The one using the PPS sheet of Comparative Example 3 had poor heat resistance (deforms at high temperatures), and the one using the PPS film of Comparative Example 4 had a large thermal dimensional change rate, causing circuit misalignment. Furthermore, in the case of using the laminate of Comparative Example 5, the interface between the fiber sheet and the PPS film easily peeled off during hole-drilling, etc., and it was difficult to perform through-hole processing (PPS was not impregnated into the fiber sheet at all). do not have). In the case of using the laminate of Comparative Example 6, the adhesive deteriorates heat resistance and high frequency characteristics. Furthermore, the adhesive softened during heating, and only the outer PPS film layer contracted due to heat, causing circuit misalignment. Furthermore, the workability of through-holes was not good. [Table 1] [Table 2]

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  繊維シート(A層)の少なくとも片方
の面に、ポリ−p−フェニレンスルフィドを主成分とす
る未延伸シート(B層)、二軸配向ポリ−p−フェニレ
ンスルフィドフイルム(C層)が、この順序で接着剤を
介することなく固着されている積層体であって、B層の
残留結晶化エネルギーΔHtが該B層を構成する樹脂の
結晶化エネルギーΔHqの20%以上であり、かつC層
は20℃〜180℃の範囲に実質的に結晶化による発熱
ピークを有しないことを特徴とする積層体。
Claim 1: At least one surface of the fiber sheet (layer A) is coated with an unstretched sheet containing poly-p-phenylene sulfide as a main component (layer B) and a biaxially oriented poly-p-phenylene sulfide film (layer C). ) are fixed in this order without using an adhesive, and the residual crystallization energy ΔHt of the B layer is 20% or more of the crystallization energy ΔHq of the resin constituting the B layer, A laminate characterized in that the C layer has substantially no exothermic peak due to crystallization in the range of 20°C to 180°C.
【請求項2】  前記繊維シートが、400℃まで実質
的に融点を有しないものである請求項1の積層体。
2. The laminate according to claim 1, wherein the fiber sheet has substantially no melting point up to 400°C.
【請求項3】  前記繊維シートがガラスクロスである
請求項2の積層体。
3. The laminate according to claim 2, wherein the fiber sheet is glass cloth.
【請求項4】  請求項1ないし請求項3のいずれかに
記載の積層体の少なくとも片方の面に電気回路を設けて
なることを特徴とする回路基板。
4. A circuit board, characterized in that an electric circuit is provided on at least one surface of the laminate according to any one of claims 1 to 3.
JP2415387A 1990-12-28 1990-12-28 Laminate and printed circuit board using the same Pending JPH04232739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2415387A JPH04232739A (en) 1990-12-28 1990-12-28 Laminate and printed circuit board using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2415387A JPH04232739A (en) 1990-12-28 1990-12-28 Laminate and printed circuit board using the same

Publications (1)

Publication Number Publication Date
JPH04232739A true JPH04232739A (en) 1992-08-21

Family

ID=18523752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2415387A Pending JPH04232739A (en) 1990-12-28 1990-12-28 Laminate and printed circuit board using the same

Country Status (1)

Country Link
JP (1) JPH04232739A (en)

Similar Documents

Publication Publication Date Title
KR101884585B1 (en) Polyimide film, polyimide laminate comprising same, and polyimide/metal laminate comprising same
EP1531657A1 (en) Multi-layer substrates having at least two dissimilar polyimide layers and a conductive layer, useful for electronics-type applications, and compositions relating thereto
KR20120065349A (en) Polyimide film and process for producing polyimide film
JP5609891B2 (en) Method for producing polyimide film and polyimide film
JP2002096437A (en) Multi-layer polyimide film and laminate
US20210283882A1 (en) Polyimide film for metal lamination and polyimide metal laminate using same
WO2022080314A1 (en) Multilayer polyimide film, metal-clad laminated plate, and method for producing multilayer polyimide film
KR100673339B1 (en) Roll of metal film/aromatic polyimide film composite web
WO2010119907A1 (en) Polyimide film, method for producing same, and metal-laminated polyimide film
JPH03227624A (en) Laminated body
JP2805882B2 (en) Laminate
JP3047474B2 (en) Laminated body and circuit board using the same
JPH04232739A (en) Laminate and printed circuit board using the same
JP3077857B2 (en) Metal base circuit board
WO1994022941A1 (en) Resin-impregnated fiber sheet
JP2002047360A (en) Polyphenylene sulfide film and method of preparing the same and circuit board produced from the same
JP3139515B2 (en) Fiber sheet and circuit board using the same
JP3152002B2 (en) Resin impregnated fiber sheet
JPH04155883A (en) Laminated circuit board
JP3060729B2 (en) Multilayer wiring board
JPH0598042A (en) Fibrous sheet impregnated with polyphenylene sulfide resin
JP2007254530A (en) Laminated adhesive sheet, metal layer-adhered laminated adhesive sheet and circuit substrate
JP2001162719A (en) Polyimide single surface laminate having reinforcing material and method of manufacturing the same
JP3339098B2 (en) Resin impregnated fiber sheet
JP3029071B2 (en) Laminate