JPH0423152B2 - - Google Patents

Info

Publication number
JPH0423152B2
JPH0423152B2 JP58011503A JP1150383A JPH0423152B2 JP H0423152 B2 JPH0423152 B2 JP H0423152B2 JP 58011503 A JP58011503 A JP 58011503A JP 1150383 A JP1150383 A JP 1150383A JP H0423152 B2 JPH0423152 B2 JP H0423152B2
Authority
JP
Japan
Prior art keywords
flow rate
piston valve
opening
valve
electromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58011503A
Other languages
Japanese (ja)
Other versions
JPS58200874A (en
Inventor
Shizuo Arima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Taisan Industrial Co Ltd
Original Assignee
Hitachi Ltd
Taisan Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Taisan Industrial Co Ltd filed Critical Hitachi Ltd
Priority to JP1150383A priority Critical patent/JPS58200874A/en
Publication of JPS58200874A publication Critical patent/JPS58200874A/en
Publication of JPH0423152B2 publication Critical patent/JPH0423152B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0644One-way valve
    • F16K31/0655Lift valves

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetically Actuated Valves (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、特許請求の範囲第1項の前段に規
定する気体流量を調節することのできる流量調整
電磁弁に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a flow rate regulating solenoid valve capable of regulating a gas flow rate as defined in the first part of claim 1.

〔従来の技術〕[Conventional technology]

燃料ガスの燃焼熱により水あるいは空気を加熱
する給湯器あるいは室内暖房用のストーブ等で
は、所望温度を達成するため、燃焼ガスのような
気体流量を制御する必要がある。そのため、給湯
器では水温及び使用水量、ストーブでは外気温等
の変化に応じて燃焼ガスの流量を調節しなければ
ならない。
BACKGROUND ART In water heaters or room heating stoves that heat water or air using the combustion heat of fuel gas, it is necessary to control the flow rate of gas such as combustion gas in order to achieve a desired temperature. Therefore, water heaters must adjust the water temperature and amount of water used, and stoves must adjust the flow rate of combustion gas according to changes in outside temperature, etc.

しかし、従来のガス給湯器では燃料ガスの供給
量を電磁弁で一定に制御して加熱水量を調節する
か、あるいは、加熱した高温水に冷水を加え、そ
の混合比を調節する温度調節法が採用されてい
る。そのため、低温の湯では供給水量を増加さ
せ、反対に高温の湯では供給水量を低減させる必
要がある。つまり、適温の湯を得ることができて
も、適量の湯を得ることは困難で、使用が不便で
あると同時に不経済である。更に、温水の所望温
度と流量に合わせてガス燃焼量を調節する場合、
供給するガスの調節範囲にも制限がある。
However, with conventional gas water heaters, the amount of heated water is adjusted by controlling the supply amount of fuel gas at a constant level using a solenoid valve, or the temperature adjustment method is to add cold water to heated high-temperature water and adjust the mixing ratio. It has been adopted. Therefore, it is necessary to increase the amount of water supplied for low-temperature hot water, and to reduce the amount of water supplied for high-temperature hot water. In other words, even if it is possible to obtain hot water at an appropriate temperature, it is difficult to obtain an appropriate amount of hot water, making it inconvenient and uneconomical to use. Furthermore, when adjusting the amount of gas combustion according to the desired temperature and flow rate of hot water,
There is also a limit to the adjustment range of the supplied gas.

このような事情は、ストーブその他の燃焼器具
等でも同様である。外気温度の変化に応じて適温
を維持しながら、気体の流量を広い範囲にわたり
自由に可変制御できる流量調整電磁弁の要求は極
めて高いにも拘わらず達成されていない。
This situation also applies to stoves and other combustion appliances. Although there is an extremely high demand for a flow rate regulating solenoid valve that can freely control the flow rate of gas over a wide range while maintaining an appropriate temperature in response to changes in outside air temperature, it has not been achieved.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上に述べた従来の技術の難点に鑑み、この発明
の課題は、加熱温度、使用流量等の使用条件を満
たしながら、なおかつ燃料ガスの流量を広い範囲
にわたつて速い応答をもつて調節可能な、特許請
求の範囲第1項の前段に規定する流量調節電磁弁
を提供することにある。
In view of the above-mentioned difficulties in the conventional technology, an object of the present invention is to provide a method that satisfies usage conditions such as heating temperature and usage flow rate, while also being able to adjust the flow rate of fuel gas over a wide range with quick response. An object of the present invention is to provide a flow rate regulating solenoid valve defined in the first part of claim 1.

〔問題を解決するための手段〕[Means to solve the problem]

上記の課題は、この発明により特許請求の範囲
第1項の特徴部分の構成手段によつて解決されて
いる。
The above-mentioned problem is solved by the constituent means of the characteristic part of claim 1 according to the present invention.

〔作用〕[Effect]

上記の構成手段により、 (1) 開口が軸方向に狭いため、ピストンとプラン
ジヤの連接体又は一体部品は軸方向に僅かに移
動するだけで全開と全閉位置に達する。
With the above configuration means, (1) the opening is narrow in the axial direction, so that the connecting body or integral part of the piston and the plunger reaches the fully open and fully closed positions with only a slight movement in the axial direction;

(2) 可動するピストン弁がその平衡位置から軸方
向に正負に移動する場合、反復作用時にスプリ
ングハンマー作用するフリーピストンであるた
め、戻しバネと支持バネに対してそれぞれ僅か
な反抗力を加えるだけで充分である。
(2) When a movable piston valve moves in the positive and negative axial directions from its equilibrium position, it is a free piston that acts as a spring hammer during repeated action, so it only applies a slight reaction force to the return spring and support spring, respectively. is sufficient.

(3) 上記(1)と(2)からこの発明による電磁弁を制御
するのに必要なエネルギは著しく少なく、動作
応答時間も極めて短い。
(3) From the above (1) and (2), the energy required to control the solenoid valve according to the present invention is extremely small, and the operational response time is also extremely short.

(4) 流量は、弁体(ピストン弁)の軸方向の移動
位置に応じて静的に定まるのでなく、開口が電
磁コイルの駆動によるプランジヤの動きに応じ
て全開、全閉を繰り返す周期で動的に制御され
る。
(4) The flow rate is not determined statically according to the axial movement position of the valve body (piston valve), but is determined by a cycle in which the opening repeats fully opening and closing in response to the movement of the plunger driven by the electromagnetic coil. controlled.

(5) 上記繰り返し周期は、電気制御部により定ま
り、具体的には電気制御部中に配設され、電磁
コイルに通電するサイリスタを点弧するパルス
周期によつて定まり、このパルス周期は、例え
ばガス給湯器の場合、温水の温度検出器と設定
可能な可変抵抗のブリツジの非平衡電位に依存
して常時平衡電位になるように可変される。
(5) The above-mentioned repetition period is determined by the electric control unit, and more specifically, it is determined by the pulse period of igniting the thyristor that is disposed in the electric control unit and energizes the electromagnetic coil. In the case of a gas water heater, the potential is always varied to maintain an equilibrium potential depending on the non-equilibrium potential of a hot water temperature sensor and a bridge of a variable resistance that can be set.

〔実施例〕〔Example〕

以下、実施例を示す添付図に基づきこの発明を
詳しく説明する。
Hereinafter, the present invention will be described in detail based on the accompanying drawings showing examples.

第1a図には、この発明による一実施例の電磁
弁が示してある。電磁コイル8の縦軸心上に貫設
された非磁性体のプランジヤケース6内には、電
磁プランジヤ(可動鉄片)7が摺動往復自在に配
設されている。本体18に螺嵌された流出側継手
19の上部には、シリンダ部13が穿設してあ
り、このシリンダ部13内で摺動往復自在に嵌合
せしめられたピストン弁14の一部をなすタペツ
ト部12は電磁プランジヤ7と当接している。こ
れら直線状に一体となつた電磁プランジヤ7とピ
ストン弁14との連接体は、プランジヤケース6
の上端部に気密嵌着された弁ヘツド1と前記流出
継手19の要部との間に、戻しバネ5及び支持バ
ネ17をもつて圧支され、各バネの反発力によつ
て釣合い静止する。
FIG. 1a shows an embodiment of a solenoid valve according to the invention. An electromagnetic plunger (movable iron piece) 7 is disposed in a non-magnetic plunger case 6 that extends on the vertical axis of the electromagnetic coil 8 so as to be able to slide back and forth. A cylinder part 13 is bored in the upper part of the outflow side joint 19 screwed into the main body 18, and forms a part of a piston valve 14 that is fitted to be able to slide and reciprocate within this cylinder part 13. The tappet portion 12 is in contact with the electromagnetic plunger 7. The connecting body of the electromagnetic plunger 7 and the piston valve 14, which are linearly integrated, is connected to the plunger case 6.
A return spring 5 and a support spring 17 are used to support the valve head 1, which is hermetically fitted to the upper end of the valve head 1, and the main part of the outflow joint 19, and the valve head is balanced and stationary by the repulsive force of each spring. .

前記プランジヤケース6の下端部は環状磁路9
に気密を保つて嵌着してある。この環状磁路9
は、前記弁ヘツド1と本体18との間に、磁気座
金2、座金3、コイルカバー4、電磁コイル8及
び下板10を介して螺嵌着され、かつ外側要部に
配設されたO−リング11によつて外部に対して
気密を保持している。
The lower end of the plunger case 6 has an annular magnetic path 9
It is fitted in an airtight manner. This annular magnetic path 9
is screwed between the valve head 1 and the main body 18 via the magnetic washer 2, the washer 3, the coil cover 4, the electromagnetic coil 8, and the lower plate 10, and is provided on the outer main part. - The ring 11 maintains airtightness from the outside.

流出側継手19はパツキン22を介して本体1
8に螺締着され、外部に対して気密を保持してい
る。流出側継手19と一体をなすシリンダ部13
は、その所要位置に内外周の一部を弧状に切断し
て内部から外部へ貫通する溝状開口15を有す
る。この溝状開口15は、前記ピストン弁14が
電磁コイル8へ無通電状態でシリンダ部13内に
釣合静止している場合、ピストン弁14により閉
塞される。第1b図はシリンダ部13の拡大図を
示すもので、この実施例では軸方向に狭くこの軸
方向に垂直な面内で長く延びた二つの溝状開口1
5が配設されている。
The outflow side joint 19 is connected to the main body 1 through the packing 22.
8 to maintain airtightness from the outside. Cylinder part 13 integrated with outflow side joint 19
has a groove-shaped opening 15 at a predetermined position by cutting a part of the inner and outer periphery in an arc shape and penetrating from the inside to the outside. This groove-shaped opening 15 is closed by the piston valve 14 when the piston valve 14 is balanced and stationary within the cylinder portion 13 with no current applied to the electromagnetic coil 8 . FIG. 1b shows an enlarged view of the cylinder part 13, and in this embodiment, two groove-shaped openings 1 are narrow in the axial direction and extend long in a plane perpendicular to the axial direction.
5 are arranged.

第1図の構成を有する電磁弁では、電磁コイル
8を通電し起磁力を発すると、電磁プランジヤ7
は戻しバネ5の反発力に抗し磁気ヘツド1側に吸
引される。これに伴い支持バネ17の反発力によ
りピストン弁14も上方に移動し、その下端部1
4′は溝状開口15を部分的又は全体的に開放す
る。従つて、流入口16から矢印aのように流入
した流体は、このように開放された溝状開口15
を通過し、流出口20から矢印bのように流出す
る。電磁コイル8への通電が遮断されると、電磁
プランジヤ7及びピストン弁14は釣合静止位置
に復帰するので溝状開口15はピストン弁14に
よつて再び閉塞され、流体の通過を阻止する。
In the solenoid valve having the configuration shown in FIG. 1, when the electromagnetic coil 8 is energized and a magnetomotive force is generated, the electromagnetic plunger 7
is attracted toward the magnetic head 1 against the repulsive force of the return spring 5. Along with this, the piston valve 14 also moves upward due to the repulsive force of the support spring 17, and its lower end 1
4' partially or completely opens the groove-like opening 15. Therefore, the fluid flowing in from the inlet 16 in the direction of arrow a flows through the groove-shaped opening 15 opened in this way.
and flows out from the outlet 20 as shown by arrow b. When the electromagnetic coil 8 is de-energized, the electromagnetic plunger 7 and the piston valve 14 return to the balanced rest position, so that the groove-shaped opening 15 is again closed by the piston valve 14, preventing passage of fluid.

この場合の最大流量は、電磁コイル8による起
磁力が十分であつて溝状開口15が全開状態を継
続した場合に生じ、最小流量は溝状開口15がピ
ストン弁14によつて閉塞された場合に生ずる。
従つて、この電磁弁による流量調整は電磁コイル
8へ通電するパルス電流の周波数又は導通期間を
変え、パルス電流に同期するピストン弁14によ
る溝状開口15の単位時間当たりの繰返し開閉回
数又は開放度を加減して行われる。
In this case, the maximum flow rate occurs when the magnetomotive force by the electromagnetic coil 8 is sufficient and the grooved opening 15 remains fully open, and the minimum flow rate occurs when the grooved opening 15 is closed by the piston valve 14. occurs in
Therefore, the flow rate adjustment by this electromagnetic valve changes the frequency or conduction period of the pulse current applied to the electromagnetic coil 8, and changes the number of times or degree of opening of the groove-shaped opening 15 by the piston valve 14, which is synchronized with the pulse current, per unit time. It is done by adjusting.

第2a図はこの発明の他の実施例を示すもの
で、第1図と同一構成部分には同じ参照符号が付
けてある。この実施例の開口21は、第2b図の
拡大図から明らかなように、同じように軸方向に
狭く、軸方向に対して垂直な面内で長い溝状であ
つて、ピストン弁14に配設されている。シリン
ダ部13の上端部13′と溝状開口21とによる
開閉回数又は開放度を変えて通過流量を調節す
る。
FIG. 2a shows another embodiment of the invention, in which the same components as in FIG. 1 are given the same reference numerals. The opening 21 in this embodiment is similarly narrow in the axial direction and long in a plane perpendicular to the axial direction, and is arranged in the piston valve 14. It is set up. The passing flow rate is adjusted by changing the number of openings and closings or the opening degree of the upper end 13' of the cylinder part 13 and the groove-shaped opening 21.

なお、第1図の実施例で溝状開口15をシリン
ダ部13に、第2図の実施例では溝状開口21を
ピストン弁14にそれぞれ配設しているが、溝状
開口をシリンダ部13とピストン弁14に同時に
設けることもできる。また両開口15,21はそ
れぞれ軸方向に間隔をおき複数個設けることもで
きる。この場合、ピストン弁14の内側の最小開
口面積は流量通過のために必要とする基準の開口
面積である。そしてピストン弁14はシリンダ部
13内を摺動往復運動中に周方向の回動を伴うの
で、シリンダ部13の開口部15とピストン弁1
4の開口部21が軸方向で一致する連通時には、
ピストン弁14の周方向の任意の位置で常に前記
基準の開口面積以上の通路が確保されるようにシ
リンダ部13の開口部15の溝状弧の長さを十分
大きし、少くとも通過する流量が絞られることの
ないように形成する必要がある。
Note that in the embodiment shown in FIG. 1, the groove-shaped opening 15 is provided in the cylinder portion 13, and in the embodiment shown in FIG. and the piston valve 14 at the same time. Further, a plurality of both openings 15 and 21 may be provided at intervals in the axial direction. In this case, the minimum opening area inside the piston valve 14 is the standard opening area required for passage of the flow rate. Since the piston valve 14 rotates in the circumferential direction while sliding and reciprocating inside the cylinder section 13, the opening 15 of the cylinder section 13 and the piston valve 1
When the openings 21 of No. 4 are connected in the axial direction,
The length of the groove-like arc of the opening 15 of the cylinder portion 13 is made sufficiently large so that a passage larger than the standard opening area is always secured at any position in the circumferential direction of the piston valve 14, and at least the flow rate passing through the opening 15 of the cylinder portion 13 is made sufficiently large. It is necessary to form it so that it will not be squeezed.

なお、第1図と第2図の実施例でプランジヤケ
ース6を延長し、環状磁路9を省略してプランジ
ヤケース6を本体18と一体にし、もしくは電磁
プランジヤ7とピストン弁14とを一体部品に構
成しても差支ない。
In addition, in the embodiments shown in FIGS. 1 and 2, the plunger case 6 may be extended, the annular magnetic path 9 may be omitted, and the plunger case 6 may be integrated with the main body 18, or the electromagnetic plunger 7 and the piston valve 14 may be integrated into one part. There is no problem in configuring it as follows.

この発明による電磁弁の流量調節は、電磁コイ
ルへの通電周期又は周期中の導通期間、即ちデユ
ーテイ比等を変えて行われる。例えば、これら電
磁弁の通過流量と通電電流の周波数との関係は第
3図に示す通りで、横軸の周波数(Hz)と縦軸の
通過気体流量(/min)とはほゞ直線的な比例
関係を示すことが判る。従つて、この発明による
電磁弁ではピストン弁駆動のために電磁コイル8
への励磁電流の周波数を適宜可変することによ
り、流量調整が行える。また通電周期を一定と
し、該周期中の導通期間を調節することにより、
電磁コイルによつて生ずる起磁力と戻しバネ及び
支持バネの反発力との対応関係から流量調節が可
能であるが、これについては後述する。
The flow rate adjustment of the electromagnetic valve according to the present invention is performed by changing the period of energization to the electromagnetic coil or the conduction period in the period, that is, the duty ratio. For example, the relationship between the flow rate passing through these solenoid valves and the frequency of the energizing current is as shown in Figure 3, where the frequency (Hz) on the horizontal axis and the gas flow rate (/min) on the vertical axis are almost linear. It can be seen that a proportional relationship is shown. Therefore, in the solenoid valve according to the present invention, the solenoid coil 8 is used to drive the piston valve.
The flow rate can be adjusted by appropriately varying the frequency of the excitation current. In addition, by keeping the energization period constant and adjusting the conduction period during the period,
The flow rate can be adjusted based on the correspondence between the magnetomotive force generated by the electromagnetic coil and the repulsive forces of the return spring and support spring, which will be described later.

第4図はこの発明による電磁弁を用いて給湯器
の湯温制御を行なうための電磁弁駆動回路の一例
を示すもので、電磁弁の駆動周波数を自動的に変
化させる回路である。入力端子A,Bに印加され
た交流電源はダイオードD1〜D4から成るブリツ
ジにより全波整流され、抵抗R1及びコンデンサ
C1により平滑される。電磁弁の電磁コイルVに
は第一サイリスタSCR1の主回路が直列接続され
てその両端に直流電圧が印加される。また第二サ
イリスタSCR2の主回路には固定抵抗R13及び可変
抵抗VR2が直列接続され、全体が前記電磁コイル
Vと第一サイリスタSCR1との直列回路と並列に
接続され、直流電圧が印加される。電磁コイルV
と第一サイリスタSCR1の左側の回路部分は、
設定値ならびに検出値に応じて第一サイリスタ
SCR1の点弧角を制御する回路で、ツエナーダイ
オードZDによつて安定化された直流電圧によつ
て作動する。流量設定部であるこの回路部分の
可変抵抗VR1及びサーミスタTHは、温度検出ブ
リツジの一部を構成している。VR1で所望温度の
手動設定が行え、THで給湯器出口の温度検出が
行える。VR1、TH及び各抵抗から成る温度検出
ブリツジの出力信号は適宜レベルまで増幅され、
第一サイリスタSCR1の点弧角制御用のプログラ
マブル・ユニジヤンクシヨン・トランジスタ
PUTの作動を制御する。PUTのターンオンに応
じて発生す点弧パルスがゲートに印加されると、
SCR1は導通して電磁コイルVに電流が流れる。
FIG. 4 shows an example of a solenoid valve driving circuit for controlling the temperature of water in a water heater using the solenoid valve according to the present invention, and is a circuit that automatically changes the driving frequency of the solenoid valve. The AC power applied to input terminals A and B is full-wave rectified by a bridge consisting of diodes D1 to D4 , and is rectified by a resistor R1 and a capacitor.
Smoothed by C 1 . The main circuit of the first thyristor SCR 1 is connected in series to the electromagnetic coil V of the electromagnetic valve, and a DC voltage is applied to both ends thereof. Further, a fixed resistor R 13 and a variable resistor VR 2 are connected in series to the main circuit of the second thyristor SCR 2 , and the whole is connected in parallel with the series circuit of the electromagnetic coil V and the first thyristor SCR 1 , so that the DC voltage is applied. Electromagnetic coil V
And the left circuit part of the first thyristor SCR 1 is
The first thyristor is activated depending on the set value and detected value.
This circuit controls the firing angle of SCR 1 and is operated by a DC voltage stabilized by a Zener diode ZD. The variable resistor VR 1 and thermistor TH of this circuit section, which is the flow rate setting section, constitute a part of the temperature detection bridge. VR 1 allows you to manually set the desired temperature, and TH allows you to detect the temperature at the outlet of the water heater. The output signal of the temperature detection bridge consisting of VR 1 , TH and each resistor is amplified to an appropriate level,
Programmable union transistor for firing angle control of the first thyristor SCR 1
Controls PUT operation. When the firing pulse generated in response to PUT turn-on is applied to the gate,
SCR 1 becomes conductive and current flows through the electromagnetic coil V.

SCR1が導通すると、第二サイリスタSCR2を主
体とする回路部分中のコンデンサC4の充電が
始まり、該充電が所定値に達した際にトリガーダ
イオードTDがオンになる。TDのオンに応じて
SCR2がオンすると、コンデンサC4の電荷がSCR2
を通じて放電されてSCR1を遮断する。以後この
過程を繰り返す。従つて、通電期間設定部である
回路部分はSCR1の通電時間を決定する回路で
あり、コンデンサC4の所要充電時間を可変抵抗
VR2で変えて、SCR1が導通してから遮断される
までの通電時間を適宜設定できる。
When SCR 1 becomes conductive, charging of the capacitor C 4 in the circuit section mainly consisting of the second thyristor SCR 2 begins, and when the charging reaches a predetermined value, the trigger diode TD is turned on. Depending on TD on
When SCR 2 is turned on, the charge on capacitor C 4 is transferred to SCR 2
is discharged through and shuts off SCR 1 . This process is then repeated. Therefore, the circuit section that is the energization period setting section is a circuit that determines the energization time of SCR 1 , and the required charging time of capacitor C 4 is determined by changing the variable resistance.
By changing VR 2 , you can set the energization time from when SCR 1 becomes conductive until it is cut off as appropriate.

なお、説明した回路素子以外の素子の作用は自
明で、回路定数等は全て省略したが、用途及び目
的に応じて当業者が適宜選定可能である。
Note that the functions of elements other than the described circuit elements are self-evident, and although circuit constants and the like are all omitted, those skilled in the art can appropriately select them depending on the use and purpose.

この実施例による駆動回路のサーミスタTHを
給湯器出口に配設し、かつ可変抵抗VR1により温
度設定を行い、電磁弁のガス流量は給湯量に拘わ
りなく自動的に極めて正確に制御され、適温適量
の給湯を得ることができる。
The thermistor TH of the drive circuit according to this embodiment is placed at the outlet of the water heater, and the temperature is set by the variable resistor VR 1 , so that the gas flow rate of the solenoid valve is automatically and extremely accurately controlled regardless of the amount of hot water supplied, and the temperature is maintained at an appropriate temperature. A suitable amount of hot water can be obtained.

第5図は、この発明による電磁弁を用いて給湯
器の温度制御を行なう電磁弁駆動回路の他の実施
例を示すもので、給湯温度の手動遠隔制御に適す
る回路である。電磁コイルVへの導通遮断を行な
う第一サイリスタSCR1及び消弧用の第二サイリ
スタSCR2を含む回路部分(通電期間設定部)
は、第4図とほゞ同様に構成されている。SCR1
の点弧角を制御する回路部分(流量設定部)
は、プログラマブル・ユニジヤンクシヨン・トラ
ンジスタPUTを主体として構成される。この回
路のPUTは、可変抵抗VR101により充電時間が
変るコンデンサC101の電位に応じてオンオフ制御
される。PUTのターンオンによりSCR1に点弧パ
ルスが印加し、SCR1は導通して電磁コイルVに
励磁電流が流れる。SCR1が導通すると、可変抵
抗VR102を経由してコンデンサC102が充電を開始
し、所定時間後に第二SCR2を導通し、SCR1が消
弧する。以後この過程を繰り返す。この回路では
VR101によりSCR1の消弧状態から導通に至る時
間を調整し、VR102により通電時間を調整するこ
とができる。この場合、VR101を遠隔温度設定用
として給湯蛇口付近に配設して、極めて容易にガ
ス流量制御、従つて給湯温度の遠隔制御を行なえ
る。
FIG. 5 shows another embodiment of a solenoid valve drive circuit for controlling the temperature of a water heater using a solenoid valve according to the present invention, and is a circuit suitable for manual remote control of the hot water temperature. A circuit section including the first thyristor SCR 1 that cuts off conduction to the electromagnetic coil V and the second thyristor SCR 2 for arc extinguishing (energization period setting section)
is constructed almost the same as in FIG. SCR 1
The circuit part that controls the firing angle (flow rate setting part)
is mainly composed of a programmable union transistor PUT. PUT in this circuit is controlled on/off by a variable resistor VR 101 depending on the potential of the capacitor C 101 whose charging time varies. When PUT is turned on, an ignition pulse is applied to SCR 1 , SCR 1 becomes conductive, and an exciting current flows through electromagnetic coil V. When SCR 1 becomes conductive, capacitor C 102 starts charging via variable resistor VR 102 , and after a predetermined time, second SCR 2 becomes conductive, and SCR 1 is turned off. This process is then repeated. In this circuit
VR 101 can adjust the time from the extinction state to conduction of SCR 1 , and VR 102 can adjust the energization time. In this case, by disposing the VR 101 near the hot water faucet for remote temperature setting, the gas flow rate and therefore the hot water temperature can be controlled remotely.

なお、上述のような各調整において、点弧角制
御用のPUTの導通制御をアノードAの電位変化
でなく、ゲートGの電位変化でも行える。
In addition, in each of the above-mentioned adjustments, conduction control of PUT for controlling the firing angle can be performed not only by changing the potential of the anode A but also by changing the potential of the gate G.

更に、これら制御回路では転流コンデンサC4
又はC102の充電時間が可変抵抗VR2あるいは
VR102により制御できる。この充電時間の変化は
消弧用サイリスタSCR2の導通時間を変化させる
ので、SCR1の遮断時点を変化させる。その結果、
電磁コイルに対する通電周期中の導通期間が変化
し、電磁プランジヤに及ぶ吸引力が変化する。こ
のように変化する吸引力と戻しバネの反発力との
相互関係から連動するピストン弁の運動量が変化
し、溝状開口の開放度が変化する。その結果、通
過流量を調整できる。
Furthermore, in these control circuits commutation capacitor C 4
or C 102 charging time variable resistor VR 2 or
Can be controlled by VR 102 . This change in charging time changes the conduction time of the arc-extinguishing thyristor SCR 2 , and therefore changes the point at which SCR 1 is cut off. the result,
The conduction period during the energization cycle for the electromagnetic coil changes, and the attractive force exerted on the electromagnetic plunger changes. Due to the mutual relationship between the suction force and the repulsive force of the return spring, which change in this way, the momentum of the linked piston valve changes, and the degree of opening of the groove-shaped opening changes. As a result, the passing flow rate can be adjusted.

以上詳述したように、電磁弁の電磁コイルへの
駆動電源のパルス周期の可変、即ち周波数の加減
によつて、単位時間当たりの弁開閉回数と行程
長、即ち弁開放度を変え、またパルス周期中の導
通期間を変えて行程長、即ち弁開放度を変え、そ
れぞれ流量の通過量を調整できるが、更に前記周
期と導通期間を共に可変調節して通過流量を調整
可能なことも、第4図と第5図の回路説明によつ
て明らかである。
As detailed above, by varying the pulse period of the driving power supply to the electromagnetic coil of a solenoid valve, that is, by adjusting the frequency, the number of valve openings and closings per unit time and the stroke length, that is, the valve opening degree, can be changed, and the pulse By changing the conduction period in the cycle and changing the stroke length, that is, the degree of opening of the valve, the flow rate can be adjusted. This is clear from the circuit explanations in FIGS. 4 and 5.

また、前期パルス周期と導通期間とを単一の操
作で可変調整し、もしくは自動連続的に可変調整
して流量を比例制御することも、制御回路の選択
によつて任意であり、さらに広い範囲にわたりき
め細かく流量調整できる。
In addition, it is also possible to variably adjust the pre-pulse period and the conduction period with a single operation, or to automatically and continuously variably adjust the flow rate to proportionally control the flow rate, depending on the selection of the control circuit. You can finely adjust the flow rate over a wide range.

次に、電磁コイルへ通電すると、コイルの抵抗
損失と鉄心中の鉄損とによつてコイルの温度が次
第に上昇して一定時間経過後飽和する。この結果
温度はコイルの内部が最も高くなるが、一般にコ
イルはこの温度上昇を見込んでその熱に耐え得る
ように設計されている。しかし本願の場合の様
に、燃料ガスに使用する電磁弁においては、比較
的高温部たる電磁コイルの軸心内に嵌設したプラ
ンジヤケース内に燃料ガスが流入することは、危
険防止上好ましくない。このような状況では、第
6図に示すように、合成ゴムもしくは合成樹脂等
の弾性体から形成された鍔付帽子状のベローズ2
3もしくはダイヤフラム等の作動隔膜をもつて、
その鍔状外縁を流出接手19と一体をなすシリン
ダ部13の上端面と本体18の内洞頂端面との間
に挟着すると好都合である。この場合、その帽子
状体中央部に小孔を設け、これをタペツト12′
とピストン弁14の上端部との間に、ネジ締め等
の方法で挟着固定し、本体18の内洞と電磁コイ
ル8内部のプランジヤケース6側とを隔絶遮断す
れば、燃料ガスがプランジヤケース6内に流入す
ることを阻止できる。同時に、この構成によれば
外部に対しての電磁コイル側からのガス漏れを防
止でき、二重の安全対策となる。
Next, when electricity is applied to the electromagnetic coil, the temperature of the coil gradually rises due to resistance loss in the coil and iron loss in the iron core, and reaches saturation after a certain period of time. As a result, the temperature inside the coil is highest, but coils are generally designed to withstand this temperature rise. However, as in the case of this application, in a solenoid valve used for fuel gas, it is undesirable for the fuel gas to flow into the plunger case, which is fitted within the axis of the electromagnetic coil, which is a relatively high-temperature part, in order to prevent danger. . In such a situation, as shown in Fig. 6, a cap-shaped bellows 2 made of an elastic material such as synthetic rubber or resin is
3 or with an operating diaphragm such as a diaphragm,
It is convenient to sandwich the brim-shaped outer edge between the upper end surface of the cylinder portion 13 that is integral with the outflow joint 19 and the top end surface of the inner cavity of the main body 18. In this case, a small hole is provided in the center of the cap-like body, and this is inserted into the tapepet 12'.
If the inner cavity of the main body 18 and the plunger case 6 side inside the electromagnetic coil 8 are isolated from each other by being clamped and fixed between the upper end of the piston valve 14 and the upper end of the piston valve 14 by a method such as screw tightening, the fuel gas can be transferred to the plunger case. 6 can be prevented from flowing into the interior. At the same time, this configuration can prevent gas leakage from the electromagnetic coil side to the outside, providing a double safety measure.

なお、第6図は上記構成で気密保持用のベロー
ズ23及びO−リング22′を除き、第1a図及
び第2b図とほゞ同様の構成であるので、重複部
分に関する説明は省略する。
It should be noted that FIG. 6 has the above-mentioned configuration, except for the bellows 23 and O-ring 22' for airtightness, and is substantially the same as that of FIGS. 1a and 2b, so a description of the overlapping parts will be omitted.

また、その他この発明の技術範囲内で多くの変
形又は変更も可能であることは明らかである。
Moreover, it is clear that many other modifications and changes can be made within the technical scope of the present invention.

〔効果〕〔effect〕

既に述べたように、この発明による電磁弁は、
その電磁コイルに付勢する継続パルス電流の周波
数を変えて、電磁プランジヤとこれに連動するピ
ストン弁の単位時間当たりの往復回数、すなわち
弁開閉回数を変換して流量を所望値に加減微調整
することが極めて容易になる。その際、周期中の
導通期間を一定にすれば自らデユーテイー比は変
化して来るが、流量は周波数に比例したほぼ直線
的な関係がある。
As already mentioned, the solenoid valve according to the invention is
By changing the frequency of the continuous pulse current that energizes the electromagnetic coil, the number of reciprocations per unit time of the electromagnetic plunger and the piston valve linked thereto, that is, the number of times the valve opens and closes, is changed to finely adjust the flow rate to the desired value. It becomes extremely easy. At this time, if the conduction period in the cycle is made constant, the duty ratio will change by itself, but the flow rate has an almost linear relationship proportional to the frequency.

また、前記付勢電流の周波数を一定として、周
期中の導通期間を変換しても、ピストン弁が溝状
開口の開閉度合いを変化させながら、往復運動を
持続して流量を抑制するので、何れにしても、所
望温度に即応して極めてきめ細かな燃料ガスの供
給流量の比例制御を可能とするものである。しか
して、開口を全開、全閉にする軸方向の移動長が
極端に短いため、応答が早い。しかもバネに抗し
て移動する期間が短いバネハンマー作用を伴うフ
リーピストンを形成しているので、駆動エネルギ
が非常に少なくて済む。
Furthermore, even if the frequency of the energizing current is kept constant and the conduction period in the cycle is changed, the piston valve continues its reciprocating motion while changing the degree of opening and closing of the grooved opening, suppressing the flow rate. Even so, it is possible to perform very fine proportional control of the fuel gas supply flow rate in immediate response to the desired temperature. Since the axial movement length for fully opening and closing the opening is extremely short, the response is quick. Moreover, since the free piston is formed with a spring hammer effect and moves against the spring for a short period of time, very little driving energy is required.

それ故、この電磁弁の弁体、つまりピストン弁
と電磁プランジヤの連接体又は一体部品を速い速
度で駆動でき、流量の調節範囲が広く、しかも速
い応答が必要なサーボループ中で使用するのに適
している。特に、この電磁弁をガス給湯器や暖房
器具に使用すると効果的で、単に適温の湯や空気
を供給できるだけでなく、適切な量の湯や空気を
広い温度範囲及び広い流量範囲にわたつて供給す
ることができる。
Therefore, the valve body of this solenoid valve, that is, the connecting body or integral part of the piston valve and the solenoid plunger, can be driven at a high speed, has a wide flow rate adjustment range, and is suitable for use in a servo loop that requires a fast response. Are suitable. In particular, this solenoid valve is effective when used in gas water heaters and space heaters, and can not only supply hot water and air at an appropriate temperature, but also the appropriate amount of hot water and air over a wide temperature range and wide flow rate range. can do.

【図面の簡単な説明】[Brief explanation of drawings]

第1a図及び第1b図は、この発明による流量
調整電磁弁の第一実施例を示す説明図である。第
2a図及び第2b図は、この発明による流量調整
電磁弁の第二実施例を示す説明図である。第3図
は、この発明による流量調整電磁弁の駆動周波数
に対する流量の特性曲線である。第4図及び第5
図は、この発明による流量調整電磁弁の駆動回路
図を示す。第6図は、この発明による流量調整電
磁弁の第三実施例を示す説明図である。 図中参照符号:5……戻しバネ、6……プラン
ジヤケース、7……電磁プランジヤ、8……電磁
コイル、13……シリンダ部、14……ピストン
弁、15,21……溝状開口、16……流入口、
17……支持バネ、20……流出口、SCR1
SCR2……サイリスタ、V……電磁コイル、PUT
……プログラマブル・ユニジヤンクシヨン・トラ
ンジスタ。
FIGS. 1a and 1b are explanatory diagrams showing a first embodiment of a flow rate regulating solenoid valve according to the present invention. FIGS. 2a and 2b are explanatory diagrams showing a second embodiment of the flow regulating solenoid valve according to the present invention. FIG. 3 is a characteristic curve of flow rate versus driving frequency of the flow rate regulating solenoid valve according to the present invention. Figures 4 and 5
The figure shows a drive circuit diagram of a flow rate regulating solenoid valve according to the present invention. FIG. 6 is an explanatory diagram showing a third embodiment of the flow rate regulating solenoid valve according to the present invention. Reference numbers in the figure: 5... Return spring, 6... Plunger case, 7... Electromagnetic plunger, 8... Electromagnetic coil, 13... Cylinder section, 14... Piston valve, 15, 21... Groove opening, 16...Inlet,
17... Support spring, 20... Outlet, SCR 1 ,
SCR 2 ...Thyristor, V...Magnetic coil, PUT
...Programmable Unijunction Transistor.

Claims (1)

【特許請求の範囲】 1 流出口、この流出口に連通するシリンダ部、
前記シリンダ部に対して同心状に摺動可能に挿入
されたピストン弁、前記ピストン弁と同心状に配
設された電磁プランジヤ、前記電磁プランジヤを
摺動可能に保持するプランジヤケース及び流入口
を有する本体と、 前記プランジヤケースの外側に設けた電磁コイ
ルと、 前記ピストン弁及び/又はシリンダ部の側面
に、これ等ピストン弁とシリンダ部の相対位置に
応じて流入口と流出口間の気体の流れを断続させ
る少なくとも1個の開口と、 気体流量を調節するために使用される電磁コイ
ルの励磁電流を制御する電気制御部と、 を具備する、気体の流量を調節できる流量調整電
磁弁において、 前記電磁プランジヤとピストン弁とは両端をそ
れぞれ本体に対して固定接続された支持バネと戻
しバネによつて往復自在に保持されているフリー
ピトンを形成し、 前記開口は、ピストン弁の軸方向で狭く、この
軸方向に垂直な面内で長く伸びた溝状であり、弁
開口度はピストン弁又はシリンダ部が保有する開
口に対するそれぞれ他方のシリンダ部又はピスト
ン弁の他方の端部又は開口との相対位置によつて
定まり、 前記電気制御部には、電磁コイルに流す励磁電
流を断続させる電気開閉手段と、この電気開閉手
段の制御端子に所望流量に応じて定まる繰り返し
周期の点弧パルスを印加して、前記電気開閉手段
を断続させる流量設定部と、前記開閉手段が点弧
されてオンになり一定期間経過した後開閉手段を
オフに切り換える通電期間を可変設定する通電期
間設定部とが配設してあり、 気体流量は開口が上記電気制御回路によつて制
御されるピストン弁の動きにより、全開、全閉を
繰り返す周期によつて定まる、 ことを特徴とする流量調節型電磁弁。 2 前記流量設定部には、給湯器又は燃焼器具の
の所要箇所の温度に応じて電気出力が変わる温度
素子と前記所要箇所の温度を所望値に設定するこ
とのできる可変抵抗器とを有するブリツジ回路が
配設してあることを特徴とする特許請求の範囲第
1項記載の電磁弁。 3 前記流量設定部には、気体の所望流量を定め
る可変抵抗器が配設してあることを特徴とする特
許請求の範囲第1項記載の電磁弁。 4 前記通電期間設定部は、通電期間を可変でき
る半固定抵抗器とコンデンサとを有することを特
徴とする特許請求の範囲第1〜3項の何れか1項
に記載の電磁弁。
[Claims] 1. An outflow port, a cylinder portion communicating with the outflow port,
It has a piston valve slidably inserted concentrically into the cylinder part, an electromagnetic plunger arranged concentrically with the piston valve, a plunger case that slidably holds the electromagnetic plunger, and an inflow port. a main body, an electromagnetic coil provided on the outside of the plunger case, and a side surface of the piston valve and/or cylinder section, which controls the flow of gas between the inlet and the outlet depending on the relative position of the piston valve and the cylinder section. A flow rate adjusting solenoid valve capable of adjusting the gas flow rate, comprising: at least one opening that makes the gas flow intermittent; and an electric control unit that controls the excitation current of the electromagnetic coil used to adjust the gas flow rate. The electromagnetic plunger and the piston valve form a free piton that is held reciprocally by a support spring and a return spring, both ends of which are fixedly connected to the main body, respectively, and the opening is narrow in the axial direction of the piston valve. , is in the shape of a long groove extending in a plane perpendicular to the axial direction, and the valve opening degree is relative to the opening held by the piston valve or cylinder part, respectively, and the other end or opening of the other cylinder part or piston valve. The electric control unit includes an electric switching means for intermittent excitation current flowing through the electromagnetic coil, and a control terminal of the electric switching means for applying an ignition pulse with a repetition period determined according to the desired flow rate. A flow rate setting section that makes the electric switching means intermittent, and an energization period setting section that variably sets the energization period that turns off the switching means after the switching means is ignited and turned on and a certain period of time has elapsed. A flow rate regulating solenoid valve characterized in that the gas flow rate is determined by the cycle of repeating fully opening and fully closing by the movement of a piston valve whose opening is controlled by the electric control circuit. 2 The flow rate setting section includes a bridge having a temperature element whose electrical output changes depending on the temperature of a required point of the water heater or combustion appliance, and a variable resistor that can set the temperature of the required point to a desired value. 2. The electromagnetic valve according to claim 1, further comprising a circuit. 3. The electromagnetic valve according to claim 1, wherein the flow rate setting section is provided with a variable resistor that determines a desired flow rate of gas. 4. The electromagnetic valve according to any one of claims 1 to 3, wherein the energization period setting section includes a semi-fixed resistor and a capacitor that can vary the energization period.
JP1150383A 1983-01-28 1983-01-28 Flow regulation type solenoid valve Granted JPS58200874A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1150383A JPS58200874A (en) 1983-01-28 1983-01-28 Flow regulation type solenoid valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1150383A JPS58200874A (en) 1983-01-28 1983-01-28 Flow regulation type solenoid valve

Publications (2)

Publication Number Publication Date
JPS58200874A JPS58200874A (en) 1983-11-22
JPH0423152B2 true JPH0423152B2 (en) 1992-04-21

Family

ID=11779820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1150383A Granted JPS58200874A (en) 1983-01-28 1983-01-28 Flow regulation type solenoid valve

Country Status (1)

Country Link
JP (1) JPS58200874A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2567461B2 (en) * 1988-08-19 1996-12-25 三菱電機株式会社 Flow control valve
US5018431A (en) * 1988-12-09 1991-05-28 Quadrastat Corporation Apparatus for positioning a work implement
JP6617406B2 (en) * 2015-01-26 2019-12-11 Toto株式会社 Valve device
JP6357444B2 (en) * 2015-05-21 2018-07-11 株式会社豊田中央研究所 Valve, adsorption heat pump

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49100616A (en) * 1973-01-27 1974-09-24
JPS51110730A (en) * 1975-03-26 1976-09-30 Hitachi Ltd Deijitaru saabosochi
JPS5431626A (en) * 1977-08-12 1979-03-08 Aisin Seiki Air flow control valve device
JPS5451025A (en) * 1977-09-29 1979-04-21 Sumitomo Heavy Industries Solenoid valve driving apparatus for hydraulic control

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49100616A (en) * 1973-01-27 1974-09-24
JPS51110730A (en) * 1975-03-26 1976-09-30 Hitachi Ltd Deijitaru saabosochi
JPS5431626A (en) * 1977-08-12 1979-03-08 Aisin Seiki Air flow control valve device
JPS5451025A (en) * 1977-09-29 1979-04-21 Sumitomo Heavy Industries Solenoid valve driving apparatus for hydraulic control

Also Published As

Publication number Publication date
JPS58200874A (en) 1983-11-22

Similar Documents

Publication Publication Date Title
US6619612B2 (en) Extended range proportional valve
US3469590A (en) Modulating control valve
US4247077A (en) Slow-opening valve operated by a solenoid pump
US5544856A (en) Remotely controlling modulated flow to a fuel gas burner and valve therefor
CA2105451C (en) Solenoid gas valve
US5294089A (en) Proportional flow valve
US4921208A (en) Proportional flow valve
US5466995A (en) Zoning circulator controller
US11566793B2 (en) Electro-mechanical energy regulator providing enhanced simmer performance
KR20070026622A (en) Variable flow valve
US4434933A (en) Gas flow rate control system
EP2520861A2 (en) Field adjustable gas valves and methods of control
US4621771A (en) Flow control nozzle
JPH0423152B2 (en)
JP2003232462A (en) Gas valve
US4219863A (en) Drive circuit for solenoid pump
JPH0370131B2 (en)
US3979708A (en) Thermostat and anticipator therefor
US3545676A (en) Temperature control system
US2791394A (en) Control device for fluid fuel burning apparatus and the like
JPS6235179A (en) Flow control device
US3423020A (en) Multi-position solenoid and control circuit
GB2121520A (en) Gas valve means
US4016520A (en) Thermostat and anticipator therefor and methods of operating and making such
JPH0313463B2 (en)