JPH04226641A - Method for correcting motion of testee body in tomography - Google Patents

Method for correcting motion of testee body in tomography

Info

Publication number
JPH04226641A
JPH04226641A JP2419069A JP41906990A JPH04226641A JP H04226641 A JPH04226641 A JP H04226641A JP 2419069 A JP2419069 A JP 2419069A JP 41906990 A JP41906990 A JP 41906990A JP H04226641 A JPH04226641 A JP H04226641A
Authority
JP
Japan
Prior art keywords
subject
sensor
testee body
corrected
theta0
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2419069A
Other languages
Japanese (ja)
Inventor
Ichiro Oda
一郎 小田
Hiroto Itoi
弘人 糸井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2419069A priority Critical patent/JPH04226641A/en
Publication of JPH04226641A publication Critical patent/JPH04226641A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

PURPOSE:To eliminate the influence of the motion of a testee body by detecting the motion of the testee body during the operating time of a tomographic device, and subjecting the motion of an operating means to the correction by the motion of the testee body in real time. CONSTITUTION:The noncorrected positions (d), phi of a ray source P and a sensor D are the positions when the positions of the testee body M can be expressed by (X0, Y0, theta0) and, therefore, these positions are corrected by (X-X0, Y-Y0, theta0). The correction of the angle position phi can be executed simply by subtracting the rotation (theta-theta0) of the testee body M therefrom and the corrected angle position is phi-(theta-theta0). Since the displacement position in the beam direction of the testee body M does not affect the result, the position d' obtd. by subtracting the component of the direction perpendicular to the beam in the angle position phi-(theta-theta0) of the displacement vector (X-X0, Y-Y0) at the center of the testee body M from the value (d) is the position on the guide of the ray source P and the sensor D. The angle position phi of the operating device and the position (d) on the guide of the ray source P and the sensor D are corrected at every sampling of the output of the sensor D in such a manner.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はX線,γ線光による被検
体内部の情報を一断面に沿って二次元的に画像表示する
断層撮像装置における被検体の動きの影響に対する補正
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for correcting the influence of movement of a subject in a tomographic imaging apparatus that displays information inside the subject using X-rays and gamma rays as a two-dimensional image along one cross section.

【0002】0002

【従来の技術】断層撮影装置は被検体を横断する一つの
平面内で、一方側から被検体にX線等を投射し、反対側
で透過X線等を位置分解能を有するセンサで検出し、こ
のようにして得られる透過X線等の分布データをX線等
の線源とセンサとを一体的に被検体の周囲で上記平面内
で回転させながら採取し、それらのデータ(以下投影デ
ータと云う)から、上記平面内における被検体内部の情
報を画像化するものである。
2. Description of the Related Art A tomography apparatus projects X-rays, etc. onto the object from one side within a plane that crosses the object, and detects the transmitted X-rays, etc. on the other side using a sensor with positional resolution. The distribution data of transmitted X-rays etc. obtained in this way is collected while rotating the radiation source such as X-rays and the sensor together in the above plane around the subject, and these data (hereinafter referred to as projection data) This is to image the information inside the subject within the above plane.

【0003】従来の断層撮影装置では被検体の周囲で線
源とセンサを回転させながら投影データを採取している
走査時間中被検体は動かないものとして断層像を構成し
ていた。しかし被検体が人間など生体の場合、走査時間
中動かないでいると云うことは困難な場合があり、走査
時間中に被検体が動くと、ムービングアーチファクトと
呼ばれる偽像が現れ、検査の妨げとなる。また走査を繰
り返して、被検体の一断面における状態の経時的な変化
を調べる場合、前後の走査の間に被検体の動きがあると
、それらによって得られる二つの画像情報の差には被検
体内部情報の時間的変化に被検体の動きが重なって、内
部情報の時間的変化が分からなくなる。
[0003] In conventional tomography apparatuses, tomographic images are constructed on the assumption that the subject does not move during a scanning period in which projection data is collected while rotating the radiation source and sensor around the subject. However, if the subject is a living body such as a human being, it may be difficult to keep it still during the scanning period, and if the subject moves during the scanning period, a false image called a moving artifact will appear and interfere with the examination. Become. Furthermore, when repeating scans to investigate changes in the state of a cross-section of a subject over time, if there is movement of the subject between the previous and subsequent scans, the difference in the two image information obtained will be The movement of the subject overlaps with the temporal changes in the internal information, making it difficult to understand the temporal changes in the internal information.

【0004】0004

【発明が解決しようとする課題】本発明は断層撮影装置
で走査時間中に被検体が動いても正しい断層情報が得ら
れるようにすることである。
SUMMARY OF THE INVENTION An object of the present invention is to enable a tomography apparatus to obtain correct tomographic information even if a subject moves during scanning.

【0005】[0005]

【課題を解決するための手段】走査時間中の被検体に付
した被検***置検出用マークを検出する手段と、同手段
により得られる検出情報より上記検出用マークの位置変
化量および回転角を算出する手段と、算出された位置変
化量および回転角のデータによって断層撮影の走査装置
の動きに補正を加えるか或は走査により得られた投影デ
ータから断層画像を構成する演算に上記位置変化量およ
び回転角による補正を施す手段を断層撮影装置に付加し
た。
[Means for Solving the Problems] Means for detecting a mark for detecting the position of a subject attached to a subject during scanning time, and detecting the amount of change in position and rotation angle of the mark for detection from the detection information obtained by the means. A means for calculating the amount of positional change and a means for correcting the movement of the tomographic scanning device using the data of the calculated amount of positional change and rotation angle, or using the amount of positional change in the calculation for constructing a tomographic image from projection data obtained by scanning. Additionally, a means for performing correction based on the rotation angle was added to the tomography apparatus.

【0006】[0006]

【作用】断層撮影装置の走査時間中の被検体の動きを検
出すれば、リアルタイムで走査手段の動きに被検体の動
きによる補正を行うこと或は走査により得られた投影デ
ータから断層像を構成する際補正を行って、被検体の動
きの影響を消去することができる。
[Operation] If the movement of the subject is detected during the scanning time of the tomography device, the movement of the scanning means can be corrected in real time according to the movement of the subject, or a tomographic image can be constructed from the projection data obtained by scanning. When performing a test, correction can be performed to eliminate the influence of the movement of the subject.

【0007】[0007]

【実施例】図1Aにおいて、Mが被検体で、Bは台であ
り、台BをはさんでX線等の投射装置Pと透過X線等を
検出する検出器Dがあり、投射装置Pと検出器Dは中心
線Aを軸として一体的に回転できる。Vは中心線A上に
光軸を有するビデオカメラである。被検体Mにはビデオ
カメラVに対向する位置に図1Bに示すようなマークm
が貼付される。マークは黒地にX軸(水平軸)上±1の
所に設けられた二つの白丸で、このマークがビデオカメ
ラVで撮像される。制御装置Cはこのビデオカメラの映
像信号から、マークの二つの白丸の中心座様(x1,y
1)と(x2,y2)を検出する。断層撮影の走査(C
Tスキャンと云うことにする)開始直前の上記白丸の中
心座標が制御装置Cに記憶される。以後の被検体の動き
は、この最初に記憶された白丸の位置の座標と、任意時
点の白丸の座標との差で与えられる。具体的には二つの
白丸の中心のx座標の平均とy座標の平均が被検体の中
心座標X,Yであり、二つの白丸の中心のx座標の差を
分母とし、y座標の差を分子とする比が被検体のA軸回
りの回転角θの正弦を与え、これら中心座標および回転
角θの経時的な変化を求めて行く。この変化のデータは
CTスキャンの際リアルタイムで走査装置の動きの修正
を行う方式と、断層像構成演算の際用いる式とがあり、
後者の場合、一定時間毎の座標および回転角のデータは
メモリに記憶しておく。
[Example] In FIG. 1A, M is a subject, B is a table, and the table B is sandwiched between a projection device P for emitting X-rays, a detector D for detecting transmitted X-rays, etc., and a projection device P The detector D and the detector D can be rotated together around the center line A. V is a video camera having an optical axis on the center line A. A mark m as shown in FIG. 1B is placed on the subject M at a position facing the video camera V.
will be affixed. The marks are two white circles provided on a black background at positions ±1 on the X axis (horizontal axis), and these marks are imaged by a video camera V. From the video signal of this video camera, the control device C determines the center position of the two white circles of the mark (x1, y
1) and (x2, y2) are detected. Tomography scan (C
The center coordinates of the white circle immediately before the start (referred to as T-scan) are stored in the control device C. Subsequent movement of the subject is given by the difference between the coordinates of the initially stored position of the white circle and the coordinates of the white circle at an arbitrary point in time. Specifically, the average x and y coordinates of the centers of the two white circles are the center coordinates X, Y of the subject, and the difference in the x coordinates of the centers of the two white circles is the denominator, and the difference in the y coordinates is the denominator. The numerator ratio gives the sine of the rotation angle θ of the subject around the A axis, and changes over time in these central coordinates and rotation angle θ are determined. There are two types of data for this change: one is to correct the movement of the scanning device in real time during a CT scan, and the other is to use a formula to calculate the tomographic image configuration.
In the latter case, data on coordinates and rotation angles at fixed time intervals are stored in memory.

【0008】断層撮影装置にはT−R方式とR−R方式
の二種が用いられている。T−R方式は図2に示すよう
に、細い平行ビームを放射する線源Pと、一つのセンサ
Dをビームと直角方向に移動させながら、一定間隔で検
出器出力をサンプリングして一方向の投影データを採取
し、次に線源とセンサの移動装置全体を一定角δだけ回
転させて、上と同様にして投影データを採取する。R−
R方式は図3に示すように扇形に広がるビームを放射す
る線源Pと、一次元的な位置分解能を有するセンサDを
用い、線源とセンサを固定して、センサDの出力を取り
出すと、これが一つの投影データとなるから、全体を一
定角度δだけ回転させて再び投影データを採取し、これ
を全回転が180°近くになるまで繰り返す。
[0008] Two types of tomography systems are used: the TR system and the RR system. As shown in Figure 2, the T-R method moves a radiation source P that emits a narrow parallel beam and one sensor D in a direction perpendicular to the beam, and samples the detector output at regular intervals to obtain information in one direction. Projection data is collected, and then the entire radiation source and sensor moving device is rotated by a certain angle δ, and projection data is collected in the same manner as above. R-
As shown in Figure 3, the R method uses a radiation source P that emits a fan-shaped beam and a sensor D that has one-dimensional position resolution.The radiation source and sensor are fixed and the output of sensor D is extracted. , this becomes one piece of projection data, so the whole is rotated by a certain angle δ and projection data is collected again, and this is repeated until the total rotation is close to 180°.

【0009】本発明の走査装置の動きをリアルタイムで
修正しながら投影データを採取する方式をT−R方式に
適用した実施例を説明する。図2で水平をX軸,垂直を
Y軸とし、或る角φにおける投影データ採取動作におい
て、線源PおよびセンサDの或るサンプリング時点で各
ガイド上の無修正の位置をガイド中心からの距離で表し
てdとする。このときの被検体のマーク(図1B)の中
心座標および傾きを(X,Y,θ)とし、CTスキャン
開始時のそれを(Xo,Yo,θo)とする。線源およ
びセンサの無修正の位置d,φは被検体の位置が(Xo
,Yo,θo)で表されるときのものであるから、これ
を(X−Xo,Y−Yo,θ−θo)によって補正する
。まず角位置φの補正は被検体の回転(θ−θo)を引
き算することでよく、修正角位置はφ−(θ−θo)と
なる。次に被検体のビーム方向の変位値は結果に影響が
ないから、被検体中心つまりマーク中心の変位ベクトル
(X−Xo,Y−Yo)の角位置φ−(θ−θo)にお
けるビームと直角方向の成分をdから引き算した位置d
′が修正された線源およびセンサのガイド上の位置とな
る。このようにしてセンサDの出力をサンプリングする
時毎に走査装置の角位置φおよび線源とセンサのガイド
上の位置dを修正して行き、かくして得られた各投影デ
ータからは、補正演算なしに正しい断層画像が構成でき
る。この方式は云わばハードウェアにより修正を行うも
のである。
An embodiment will be described in which the method of acquiring projection data while correcting the movement of the scanning device in real time according to the present invention is applied to the TR method. In Fig. 2, the horizontal axis is the X axis and the vertical axis is the Y axis, and in a projection data acquisition operation at a certain angle φ, the uncorrected position on each guide at a certain sampling point of the radiation source P and sensor D is calculated from the center of the guide. Express it as a distance and let it be d. The center coordinates and inclination of the mark on the subject (FIG. 1B) at this time are (X, Y, θ), and those at the start of the CT scan are (Xo, Yo, θo). The uncorrected positions d and φ of the radiation source and sensor are the position of the object (Xo
, Yo, θo), this is corrected by (X-Xo, Y-Yo, θ-θo). First, the angular position φ may be corrected by subtracting the rotation (θ−θo) of the subject, and the corrected angular position becomes φ−(θ−θo). Next, since the displacement value of the object in the beam direction has no effect on the results, the displacement vector (X-Xo, Y-Yo) at the center of the object, that is, the mark center, is perpendicular to the beam at the angular position φ-(θ-θo). Position d obtained by subtracting the direction component from d
' is the position of the corrected source and sensor on the guide. In this way, each time the output of sensor D is sampled, the angular position φ of the scanning device and the position d on the guide of the radiation source and sensor are corrected, and from each projection data thus obtained, no correction calculation is required. A correct tomographic image can be constructed. In this method, correction is performed by hardware.

【0010】T−R方式で通常通り無修正で投影データ
を採取し、画像構成の際補正演算を行うソフトウェアに
よる方式も可能である。この場合、センサDの出力をサ
ンプリングする度にそのときのマークの中心座標X,Y
と傾き角θのデータを記憶しておく。画像再成に当たっ
て被検体内の任意の位置qのCTスキャン開始時の座標
を基準にして或るサンプリング時点の修正された座標は
そのときのマーク中心座標X,Y,傾きθから求められ
る。任意の一点の画像データはその点を通る各方向のビ
ームに対するセンサ出力即ち各投影データ中のその点に
対応するデータの総和で与えられるから、各投影データ
から、その点を通るビームの検出出力を拾い出す際の、
その点の指定座標として、上記した修正された座標を用
いればよい。
It is also possible to use a software method in which projection data is acquired without modification as usual in the TR method, and correction calculations are performed during image construction. In this case, each time the output of sensor D is sampled, the center coordinates of the mark at that time
and the tilt angle θ are stored. In image regeneration, corrected coordinates at a certain sampling time point are determined from the mark center coordinates X, Y, and inclination θ at that time, based on the coordinates at the start of the CT scan at an arbitrary position q within the subject. Since the image data of an arbitrary point is given by the sensor output for beams in each direction passing through that point, that is, the sum of the data corresponding to that point in each projection data, the detection output of the beam passing through that point from each projection data When picking up the
The above-mentioned corrected coordinates may be used as the designated coordinates of that point.

【0011】R−R方式に本発明を適用した実施例につ
いて述べる。ハードウェアによる場合、図3で線源Pと
センサDを保持しているリングRの回転角φを上述した
θ−θoだけ修正し、リングR全体を垂直面内でX,Y
両軸方向に(X−Xo),(Y−Yo)だけ動かせばよ
いが、装置構成が大型化し余り実用的でない。R−R方
式にはソフトウェアによる補正方式が適している。ソフ
トウェアによる場合、リングRの各角位置毎のX,Y,
θの値を記憶しておく。この場合、センサ上の走査は殆
ど時間を要しないから同時刻のデータと見なせる。被検
体の各点に対する投影データの読み出しは前記段落(O
O1O)におけると同様の修正された座標を指定して読
み出し、これの総和をとればよい。
An embodiment in which the present invention is applied to the R-R system will be described. In the case of hardware, the rotation angle φ of the ring R holding the radiation source P and sensor D in Fig. 3 is corrected by θ-θo as described above, and the entire ring R is
Although it is sufficient to move only (X-Xo) and (Y-Yo) in both axial directions, the device configuration becomes large and is not very practical. A software correction method is suitable for the RR method. When using software, X, Y, for each angular position of ring R,
Remember the value of θ. In this case, since scanning on the sensor takes almost no time, it can be considered as data from the same time. The reading of the projection data for each point on the object is as described in the above paragraph (O
The same corrected coordinates as in O1O) may be designated and read out, and the sum of these may be calculated.

【0012】上述実施例の説明では被検体の断層面に垂
直な方向の動きの補正はないが、被検体が人間である場
合の動きとしては、断層面内の動きだけ考えれば充分で
ある。また上述実施例では一回のCTスキャンにおける
場合の説明だけを行っているが、本発明方法はCTスキ
ャンを繰り返して断層面の経時的な変化を調べる場合に
も有効なことは云うまでもない。
In the explanation of the above embodiment, there is no correction for the movement of the subject in the direction perpendicular to the tomographic plane, but when the subject is a human being, it is sufficient to consider only the movement within the tomographic plane. Furthermore, although the above embodiments only explain the case of one CT scan, it goes without saying that the method of the present invention is also effective when repeating CT scans to investigate changes over time in a tomographic plane. .

【0013】[0013]

【発明の効果】本発明によれば断層撮影装置で被検体が
動いても、アーチファクトのない断層像が得られ、断層
面内の経時的な変化を調べる場合にも正しい差画像が得
られる。
According to the present invention, a tomographic image without artifacts can be obtained even when a subject moves in a tomography apparatus, and a correct difference image can be obtained even when examining changes over time in a tomographic plane.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】  A.は本発明方法を実施する装置の一例の
ブロック図、Bは被検体に付されるマークの図。
[Figure 1] A. B is a block diagram of an example of an apparatus for carrying out the method of the present invention, and B is a diagram of marks placed on a subject.

【図2】T−R方式の説明図[Figure 2] Explanatory diagram of the T-R method

【図3】R−R方式の説明図[Figure 3] Explanatory diagram of R-R method

【符号の説明】[Explanation of symbols]

M…被検体 B…台 P…線源 D…センサ V…ビデオカメラ C…制御装置 M...Subject B...unit P...ray source D...Sensor V...Video camera C...control device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  被検体に付したマークを検出して走査
時間中の被検体の位置のデータを経時的に得る手段を断
層撮影装置に設け、上記した位置のデータによって走査
装置の線源およびセンサの走査時間中の位置を修正する
ようにしたことを特徴とする断層撮影における被検体の
動きの補正方法。
Claim 1: A tomography apparatus is provided with means for detecting marks attached to the subject and obtaining data on the position of the subject over time during the scanning time, and the position data is used to detect the radiation source and the position of the scanning apparatus. 1. A method for correcting movement of a subject in tomography, comprising correcting the position of a sensor during scanning time.
【請求項2】  被検体に付したマークを検出して走査
時間中の被検体の位置のデータを経時的に得る手段を断
層撮影装置に設け、上記した位置のデータを投影データ
のサンプリング時点毎に記憶しておき、断層像を構成す
る演算の際、上記位置のデータを用いて被検体の動きに
対する補正を行うようにしたことを特徴とする断層撮影
における被検体の動きの補正方法。
2. The tomography apparatus is provided with means for detecting marks attached to the subject and obtaining data on the position of the subject over time during the scanning time, and the above-mentioned position data is acquired at each sampling time point of the projection data. 1. A method for correcting the movement of a subject in tomography, characterized in that the movement of the subject is corrected using the position data during calculations for configuring a tomographic image.
JP2419069A 1990-12-29 1990-12-29 Method for correcting motion of testee body in tomography Pending JPH04226641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2419069A JPH04226641A (en) 1990-12-29 1990-12-29 Method for correcting motion of testee body in tomography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2419069A JPH04226641A (en) 1990-12-29 1990-12-29 Method for correcting motion of testee body in tomography

Publications (1)

Publication Number Publication Date
JPH04226641A true JPH04226641A (en) 1992-08-17

Family

ID=18526777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2419069A Pending JPH04226641A (en) 1990-12-29 1990-12-29 Method for correcting motion of testee body in tomography

Country Status (1)

Country Link
JP (1) JPH04226641A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6259942B1 (en) * 1997-09-27 2001-07-10 Surgical Navigation Specialist Inc. Method and apparatus for recording a three-dimensional image of a body part
JP2004000568A (en) * 2002-04-24 2004-01-08 Morita Mfg Co Ltd Subject blurring correcting means and medical x-ray equipment using the same
JP2012513883A (en) * 2010-02-10 2012-06-21 清華大学 CT apparatus and method based on motion compensation
JP2016523685A (en) * 2013-07-15 2016-08-12 シロナ・デンタル・システムズ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング How to create an X-ray image
JP2019510604A (en) * 2016-03-24 2019-04-18 エヌビュー メディカル インク System and method for image reconstruction
US11610346B2 (en) 2017-09-22 2023-03-21 Nview Medical Inc. Image reconstruction using machine learning regularizers

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6259942B1 (en) * 1997-09-27 2001-07-10 Surgical Navigation Specialist Inc. Method and apparatus for recording a three-dimensional image of a body part
JP2004000568A (en) * 2002-04-24 2004-01-08 Morita Mfg Co Ltd Subject blurring correcting means and medical x-ray equipment using the same
JP2012513883A (en) * 2010-02-10 2012-06-21 清華大学 CT apparatus and method based on motion compensation
JP2016523685A (en) * 2013-07-15 2016-08-12 シロナ・デンタル・システムズ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング How to create an X-ray image
US10052079B2 (en) 2013-07-15 2018-08-21 Sirona Dental Systems Gmbh Method for producing an X-ray image
JP2019510604A (en) * 2016-03-24 2019-04-18 エヌビュー メディカル インク System and method for image reconstruction
US11610346B2 (en) 2017-09-22 2023-03-21 Nview Medical Inc. Image reconstruction using machine learning regularizers

Similar Documents

Publication Publication Date Title
US7424089B2 (en) System and method for reconstructing image by using straight-line trajectory scan
US5598453A (en) Method for X-ray fluoroscopy or radiography, and X-ray apparatus
US6580777B1 (en) X-ray CT apparatus
US7372935B2 (en) Method for minimizing image artifacts and medical imaging system
US8260017B2 (en) Rotation center identifying method and apparatus, ring artifact correction method, and X-ray diagnostic apparatus employing the same
US9042627B2 (en) X-ray diagnostic apparatus, X-ray diagnostic method and stent for X-ray diagnosis
US7978895B2 (en) X-ray CT system
US20060074287A1 (en) Systems, methods and apparatus for dual mammography image detection
JP3548339B2 (en) X-ray equipment
JP2006006939A (en) Tomographic apparatus and system angle determination method of photographing system of tomographic apparatus
KR20120099082A (en) Extracting patient motion vectors from marker positions in x-ray images
US11403793B2 (en) X-ray system for the iterative determination of an optimal coordinate transformation between overlapping volumes that have been reconstructed from volume data sets of discretely scanned object areas
JPH0767445B2 (en) X-ray CT system
JPS582695B2 (en) Inspection device using penetrating radiation
JPH10234724A (en) X-ray computed tomograph
JPH04226641A (en) Method for correcting motion of testee body in tomography
JP2002291726A (en) X-ray rotary radiographic apparatus
JP4592346B2 (en) Medical diagnosis system
JP2000014664A (en) Radiodiagnostic device and radiation diagnostic device
JPS62284250A (en) Industrial ct scanner
JP7391185B2 (en) Tomographic imaging using motion detection system
JP3662354B2 (en) X-ray CT system
CN112957059A (en) Medical imaging method, apparatus, device, system and storage medium
JP4808296B2 (en) X-ray CT system
JPH06308243A (en) Scintillation camera and radiation diagnostic method using it