JPH04226073A - Solid-state image sensor and its manufacture - Google Patents

Solid-state image sensor and its manufacture

Info

Publication number
JPH04226073A
JPH04226073A JP3107260A JP10726091A JPH04226073A JP H04226073 A JPH04226073 A JP H04226073A JP 3107260 A JP3107260 A JP 3107260A JP 10726091 A JP10726091 A JP 10726091A JP H04226073 A JPH04226073 A JP H04226073A
Authority
JP
Japan
Prior art keywords
microlens
lens
film
solid
state imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3107260A
Other languages
Japanese (ja)
Other versions
JP3166199B2 (en
Inventor
Yasuaki Hokari
穂苅 泰明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP10726091A priority Critical patent/JP3166199B2/en
Publication of JPH04226073A publication Critical patent/JPH04226073A/en
Application granted granted Critical
Publication of JP3166199B2 publication Critical patent/JP3166199B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Color Television Image Signal Generators (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To enhance sensitivity by making the diameter of a microlens provided in every pixel of a solid-state image sensor wide up to limit and to provide a new manufacture which eliminates the conventional fault that lens shape deteriorates upon contact of adjacent lenses. CONSTITUTION:The top of a photodiode 3 is provided with lenses 11 via a flattening film 65; further, this flattening film and these lenses are surfaced with a lens cover film 12 where the lenses 11 and the lens cover film constitute a lens. As a lens 12, an SiO2 film is deposited at a temperature below 180 deg.C by plasma vapor growth. The contact of adjacent lenses can be V-shaped so that condensing efficiency approximate 100%, which therefore improves sensitivity.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は固体撮像装置の構造およ
びその製造方法に関し、特に光感度を著しく改善するこ
とを特徴とした固体撮像装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the structure of a solid-state imaging device and its manufacturing method, and more particularly to a solid-state imaging device characterized by significantly improved photosensitivity.

【0002】0002

【従来の技術】固体撮像装置としては、すでに種々の構
造が提案され一部は実用化されている。従来の固体撮像
装置は、例えば図4に示す如き構造である。同図は電荷
転送(CCD)型の2次元固体撮像装置の平面構造を説
明する図であり、図に於て11a〜11d,12a〜1
2dは光電変換を行うフォトダイオードを、21,22
はCCDチャネルを示す。当該固体撮像装置の動作は概
略次の通りである。まず、固体撮像装置上に投影される
光パターン強度に応じた電荷がフォトダイオード11a
〜11d,12a〜12dに蓄積される。所定時間経過
後にフォトダイオードに蓄積された電荷が、例えばフォ
トダイオード11a〜11dからCCDチャネル21に
矢印31a〜31dに示された如く一括転送され、続い
て当該電荷がCCDチャネル21の出力部に向けて矢印
41に示す方向に転送され順次読み出される。
2. Description of the Related Art Various structures have already been proposed for solid-state imaging devices, and some of them have been put into practical use. A conventional solid-state imaging device has a structure as shown in FIG. 4, for example. This figure is a diagram explaining the planar structure of a charge transfer (CCD) type two-dimensional solid-state imaging device.
2d is a photodiode that performs photoelectric conversion, 21, 22
indicates a CCD channel. The operation of the solid-state imaging device is roughly as follows. First, a charge corresponding to the intensity of the light pattern projected onto the solid-state imaging device is transferred to the photodiode 11a.
~11d, 12a~12d. After a predetermined period of time has elapsed, the charges accumulated in the photodiodes are collectively transferred from the photodiodes 11a to 11d to the CCD channel 21 as shown by arrows 31a to 31d, and then the charges are directed to the output section of the CCD channel 21. The data is transferred in the direction shown by the arrow 41 and read out sequentially.

【0003】図5は、図4のAA’における断面構造を
説明する図であり、図4に於て、1はn型半導体基板、
2はP型ウェル、3はn型不純物領域からなるフォトダ
イオード、4はn型不純物領域からなるCCDチャネル
、5は分離用P+ 領域、6は絶縁膜、71は第1電極
、72は第2電極、8は光を遮断する遮光膜、9はトラ
ンジスタのゲート部、10は光路、をそれぞれ示す。
FIG. 5 is a diagram illustrating a cross-sectional structure taken along line AA' in FIG. 4. In FIG. 4, 1 is an n-type semiconductor substrate;
2 is a P-type well, 3 is a photodiode made of an n-type impurity region, 4 is a CCD channel made of an n-type impurity region, 5 is a P+ region for isolation, 6 is an insulating film, 71 is a first electrode, and 72 is a second electrode. Reference numeral 8 indicates an electrode, a light shielding film that blocks light, 9 a gate portion of a transistor, and 10 an optical path.

【0004】当該構造固体撮像装置による動作原理は次
の通りである。まず、フォトダイオード3に入射した光
により電荷が発生し、これがフォトダイオード3に蓄積
される。所定時間経過後に第1電極71にパルス電圧を
印加しトランジスタのゲート部9を導通状態にすること
でフォトダイオード3内の蓄積電荷をCCDチャネル4
に移す。しかる後にトランジスタのゲート部9が導通し
ない程度の低電圧パルス列を電極71および72に加え
、CCDチャネル内を電荷転送する。フォトダイオード
3の周囲部の電極71,72側壁部および電極71,7
2の上部には絶縁膜6を介して遮光膜8が設けられ、フ
ォトダイオード以外の領域に光が入射するのを防いでい
る。
The operating principle of this structural solid-state imaging device is as follows. First, light incident on the photodiode 3 generates charges, which are accumulated in the photodiode 3. After a predetermined time has elapsed, a pulse voltage is applied to the first electrode 71 to make the gate part 9 of the transistor conductive, thereby transferring the accumulated charge in the photodiode 3 to the CCD channel 4.
Move to. Thereafter, a low voltage pulse train is applied to the electrodes 71 and 72 such that the gate portion 9 of the transistor does not become conductive, thereby transferring charge within the CCD channel. Side wall portions of electrodes 71, 72 around photodiode 3 and electrodes 71, 7
A light shielding film 8 is provided on top of the photodiode 2 with an insulating film 6 interposed therebetween to prevent light from entering areas other than the photodiode.

【0005】上述した固体撮像装置では、フォトダイオ
ード3に入る光は遮光膜8で規定されたフォトダイオー
ド開口部の範囲に限られる。CCD型固体撮像装置では
、フォトダイオード3はCCDチャネル4と同一平面上
に形成されるため、1画素のしめる面積に対するフォト
ダイオード開口面積(開口率)は高々30%程度に制限
されてしまう。即ち、固体撮像装置に投影される光の3
0%が有効に利用されるにすぎない。これを改善する手
段として、フォトダイオード3の上部にマイクロレンズ
を設け集光することが行われている。図6はマイクロレ
ンズを設けたCCD型固体撮像装置の断面構造を説明す
る図であり、図5と同じ部分の断面を示す。図に於て、
65は平坦化膜、11はマイクロレンズを示す。マイク
ロレンズ11に入射した光は、光路10に示される如く
フォトダイオード3の開口部に集光される。即ち、レン
ズに入射する光の大部分がフォトダイオード3に入るた
め、マイクロレンズの径を大きくとれば固体撮像装置に
入射する光を有効に利用することが出来、実行的に開口
率を大きくすることができる。従来のレンズでは実行的
開口率を60〜75%、即ち、マイクロレンズを設ける
ことにより感度を2〜2.5倍に向上させる効果があっ
た。
In the solid-state imaging device described above, the light entering the photodiode 3 is limited to the range of the photodiode opening defined by the light shielding film 8. In the CCD type solid-state imaging device, the photodiode 3 is formed on the same plane as the CCD channel 4, so the aperture area (aperture ratio) of the photodiode relative to the area covered by one pixel is limited to about 30% at most. In other words, 3 of the light projected onto the solid-state imaging device
Only 0% is used effectively. As a means to improve this, a microlens is provided above the photodiode 3 to condense light. FIG. 6 is a diagram illustrating a cross-sectional structure of a CCD solid-state imaging device provided with a microlens, and shows a cross-section of the same portion as FIG. 5. In FIG. In the figure,
65 is a flattening film, and 11 is a microlens. The light incident on the microlens 11 is focused on the opening of the photodiode 3 as shown by the optical path 10. In other words, most of the light that enters the lens enters the photodiode 3, so if the diameter of the microlens is made large, the light that enters the solid-state imaging device can be effectively used, effectively increasing the aperture ratio. be able to. Conventional lenses have an effective aperture ratio of 60 to 75%, that is, the provision of microlenses has the effect of improving sensitivity by 2 to 2.5 times.

【0006】[0006]

【発明が解決しようとする課題】マイクロレンズの径を
大きくすれば、実行的な開口率を100%近くに高める
ことは原理的には可能であるが、現状ではマイクロレン
ズの作り方の上で制約がある。図7は、マイクロレンズ
を作る手順を説明する図であり、図6における平坦化膜
65を形成する以降の工程を示している。まず、遮光膜
や周辺部の配線を形成する工程まで完了した固体撮像装
置の表面に、平坦化剤(液体)を塗布し平坦化膜65が
形成される(図7(a))。次に、マイクロレンズとな
る感光材料(フォトレジストなど)を塗布した後に、マ
スクを用いて露光を行いフォトレジストパターン110
を形成する(図7(b))。しかる後に、ベーキングを
行い、フォトレジストパターンをリフローすることによ
り、マイクロレンズ11を形成する(図7(c))。
[Problem to be solved by the invention] Although it is theoretically possible to increase the effective aperture ratio to nearly 100% by increasing the diameter of the microlens, there are currently restrictions on how to make the microlens. There is. FIG. 7 is a diagram illustrating the procedure for making a microlens, and shows the steps after forming the flattening film 65 in FIG. 6. First, a planarizing agent (liquid) is applied to the surface of the solid-state imaging device, which has undergone the process of forming a light-shielding film and peripheral wiring, to form a planarizing film 65 (FIG. 7(a)). Next, after applying a photosensitive material (such as photoresist) that will become the microlens, exposure is performed using a mask to create a photoresist pattern 110.
(Fig. 7(b)). Thereafter, baking is performed and the photoresist pattern is reflowed to form the microlens 11 (FIG. 7(c)).

【0007】図8はマイクロレンズを形成するための他
の従来法を説明する図であり、66はレンズ材料膜であ
る。当該法では平坦化膜65の表面にレンズ材料膜66
を設けたのちにフォトレジストパターン110を形成す
る(図8(a))。次にベーキングを行い、フォトレジ
ストパターン110をリフローすることによりレンズ形
状パターン11を形成する(図8(b))。しかるのち
にレンズ形状パターン11をマスク材としてリアクティ
ブイオンエッチング法によりレンズ材料膜66をエッチ
ングすることにより、レンズ形状パターン11の形状が
レンズ材料膜66に転写されレンズ16が形成される(
図8(c))。
FIG. 8 is a diagram illustrating another conventional method for forming a microlens, and 66 is a lens material film. In this method, a lens material film 66 is formed on the surface of the flattening film 65.
After that, a photoresist pattern 110 is formed (FIG. 8(a)). Next, baking is performed and the photoresist pattern 110 is reflowed to form a lens-shaped pattern 11 (FIG. 8(b)). Thereafter, by etching the lens material film 66 using the lens shape pattern 11 as a mask material by a reactive ion etching method, the shape of the lens shape pattern 11 is transferred to the lens material film 66, and the lens 16 is formed (
Figure 8(c)).

【0008】当該従来形成法では、フォトレジストを露
光する時のパターン間のスペースは、レンズ厚が2〜3
μmと厚いために0.8〜1μm程度を形成するのが限
度である。2次元固体撮像装置の1画素のしめる面積を
、例えば55μm2 とした時、マイクロレンズ間のス
ペースを1μmにしたとすると、画素面積に対する実行
的な集光能力が、即ち開口率は高々75%である。さら
に高感度化をめざして開口率を高めるとするならばレン
ズ間のスペースをさらに狭める必要があるが露光技術の
点で制約がある。即ち、上記した従来法では、現露光技
術ではこれ以上の開口率の向上は不可能であるという点
を有していた。さらに、今後の露光技術が進歩し0.7
〜0.5μmのレンズ間スペースが解像できたとしても
実効的な開口率を100%近くまで高めることは困難で
ある。なお、レンズパターン110をベーキングする条
件を選び、レンズパターンの先端部をパターン間の平坦
な部分にもリフローさせることにより、マイクロレンズ
間のスペースを短くすることは可能である。しかし、リ
フロー工程でレンズが近接するとその表面張力によりパ
ターンの先端部がくっつき合い、レンズ端部の形状が下
に凸の丸みをおびる。かかる形状はレンズの集光能力を
低下させるため好ましくない。
In the conventional forming method, the space between the patterns when exposing the photoresist is such that the lens thickness is 2 to 3 mm.
Since it is as thick as .mu.m, the limit is about 0.8 to 1 .mu.m. If the area covered by one pixel of a two-dimensional solid-state imaging device is, for example, 55 μm2, and the space between the microlenses is 1 μm, then the effective light gathering ability for the pixel area, that is, the aperture ratio, is at most 75%. be. If the aperture ratio is to be increased with the aim of achieving even higher sensitivity, it is necessary to further narrow the space between the lenses, but there are limitations in terms of exposure technology. That is, the conventional method described above has the disadvantage that it is impossible to further improve the aperture ratio with the current exposure technology. Furthermore, as exposure technology advances in the future,
Even if an inter-lens space of ~0.5 μm can be resolved, it is difficult to increase the effective aperture ratio to nearly 100%. Note that it is possible to shorten the space between microlenses by selecting the conditions for baking the lens pattern 110 and reflowing the tip of the lens pattern also into the flat part between the patterns. However, when the lenses are brought close together during the reflow process, the tips of the patterns stick together due to surface tension, causing the edges of the lenses to take on a downwardly convex round shape. Such a shape is not preferable because it reduces the light gathering ability of the lens.

【0009】[0009]

【課題を解決するための手段】本発明は、従来法で形成
したマイクロレンズの表面に均一な厚さのマイクロレン
ズカバー膜を200℃以下の低温で数1000オングス
トーロム程度の厚さに形成することにより、マイクロレ
ンズ間スペースを実効的に狭めるものである。本発明に
よれば、現状の露光技術を用いてマイクロレンズを形成
した上でマイクロレンズカバー膜を形成する工程を追加
しレンズ間スペースを原理的に零に近くすることが可能
であり、またレンズ間の形状をV字型に形成することが
できる。このため実効的開口率を100%近くに高める
ことができる。
[Means for Solving the Problems] The present invention forms a microlens cover film with a uniform thickness on the surface of a microlens formed by a conventional method at a low temperature of 200°C or less to a thickness of approximately several thousand angstroms. By doing so, the space between the microlenses is effectively narrowed. According to the present invention, it is possible to form microlenses using current exposure technology, and then add a step of forming a microlens cover film, thereby making it possible in principle to make the interlens space close to zero. The shape in between can be formed into a V-shape. Therefore, the effective aperture ratio can be increased to nearly 100%.

【0010】0010

【実施例】以下、図面により本発明の実施例につき詳述
する。
[Embodiments] Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

【0011】図1は本発明一実施例になるマイクロレン
ズが設けられた固体撮像装置の断面構造を示しており、
図6と同じ部分の構造図を示す。図に於て、図6と同一
記号は同一機能を有する物質を示し、12はマイクロレ
ンズカバー膜を示す。当該構造の固体撮像装置では、マ
イクロレンズ11の表面にマイクロレンズカバー膜12
が設けられており、この両者がレンズとして機能する。 マイクロレンズカバー膜12を設けた場合にはレンズ間
に平坦な部分はなく、V字型となっている。このため、
当該構造の固体撮像装置はレンズ径が極めて大きく、入
射光に対する実効的な開口率が100%近いという特徴
がある。
FIG. 1 shows a cross-sectional structure of a solid-state imaging device provided with a microlens according to an embodiment of the present invention.
A structural diagram of the same part as FIG. 6 is shown. In the figure, the same symbols as in FIG. 6 indicate substances having the same functions, and 12 indicates a microlens cover film. In the solid-state imaging device having this structure, a microlens cover film 12 is provided on the surface of the microlens 11.
are provided, and both function as a lens. When the microlens cover film 12 is provided, there is no flat part between the lenses, and they are V-shaped. For this reason,
A solid-state imaging device with this structure has an extremely large lens diameter and is characterized by an effective aperture ratio of nearly 100% for incident light.

【0012】図2は図1に示した固体撮像装置の形成方
法を説明する図であり、図1に示した平坦化膜65を形
成する以降のレンズ形成工程を説明している。図に於て
、マイクロレンズ11を形成するまでの工程は図7で説
明した従来法と全く同様にして形成される(図2(c)
)。次に、マイクロレンズ11および平坦化膜65の表
面にマイクロレンズカバー膜12を形成する(同図(d
))。当該膜にはマイクロレンズの形状を忠実に反映さ
せる必要があり、膜圧均一性の良い化学気相成長法など
の手法で形成するのが望ましい。マイクロレンズ11は
材質的に耐熱性が不充分であるため、化学気相成長は1
50〜200℃の温度で行う必要があり、この要求を満
足する手法としてはプラズマ方式の気相成長法が好まし
い。
FIG. 2 is a diagram illustrating a method of forming the solid-state imaging device shown in FIG. 1, and explains the lens forming process after forming the flattening film 65 shown in FIG. 1. In the figure, the steps up to the formation of the microlens 11 are performed in exactly the same manner as the conventional method explained in FIG. 7 (FIG. 2(c)).
). Next, the microlens cover film 12 is formed on the surfaces of the microlens 11 and the flattening film 65 (see FIG.
)). The film needs to faithfully reflect the shape of the microlens, and is preferably formed using a method such as chemical vapor deposition that provides good film thickness uniformity. Since the microlens 11 is made of a material with insufficient heat resistance, chemical vapor deposition
It is necessary to carry out the process at a temperature of 50 to 200°C, and a plasma-based vapor phase growth method is preferable as a method that satisfies this requirement.

【0013】図3はかかる気相成長法でSiO2 膜を
形成する場合の膜堆積速度の結果を示している。ガスと
してはSiH4 とO2 を各々50SCCM,500
SCCM流し、圧力0.5Torr、プラズマ周波数5
0KHz〜1MHzの条件での結果である。例えば、マ
イクロレンズ間の平坦部が1μmの場合には、マイクロ
レンズカバー膜12として0.5μmの膜厚を設ければ
当該平坦部を零にすることができる。図3の結果によれ
ば150℃での膜堆積速度は750オングストローム/
分であり、0.5μmの膜堆積に要する時間は7分弱と
実用上充分な速度である。当該法で形成したマイクロレ
ンズカバー膜12のレンズ間の部分を観察すると良好な
V字型を程しており、集光効率は極めて良好であった。
FIG. 3 shows the results of the film deposition rate when forming a SiO2 film by such a vapor phase growth method. As gases, SiH4 and O2 were used at 50 SCCM and 500 SCCM, respectively.
SCCM flow, pressure 0.5 Torr, plasma frequency 5
These are the results under the conditions of 0 KHz to 1 MHz. For example, if the flat portion between the microlenses is 1 μm, the flat portion can be made zero by providing the microlens cover film 12 with a film thickness of 0.5 μm. According to the results in Figure 3, the film deposition rate at 150°C is 750 angstroms/
The time required to deposit a 0.5 μm film is a little less than 7 minutes, which is a sufficient speed for practical use. When the part between the lenses of the microlens cover film 12 formed by this method was observed, it had a good V-shape, and the light collection efficiency was extremely good.

【0014】なお、レンズの集光効率はレンズに入射す
る光を固体撮像装置のフォトダイオードに集光する割合
と定義される。従って集光効率はレンズ径,レンズの高
さ,平坦化膜の厚さに依存するため、これらを最適に選
ぶ必要がある。一例として、屈折率が1.6と1.55
のレンズ材および平坦化膜を用いるとした時の最適数値
は、レンズ径6.5μ、レンズ間スペース0.8μ、レ
ンズ高さ1.6μ、平坦化膜の厚さ5.5μであり、屈
折率1.54のレンズカバー膜を0.4μm設けて95
%以上の集光効率を得た。
Note that the light collection efficiency of a lens is defined as the ratio of light incident on the lens to the photodiode of the solid-state imaging device. Therefore, since the light collection efficiency depends on the lens diameter, lens height, and thickness of the flattening film, these must be selected optimally. As an example, the refractive index is 1.6 and 1.55
The optimum values when using lens material and flattening film are lens diameter 6.5μ, inter-lens space 0.8μ, lens height 1.6μ, and flattening film thickness 5.5μ. 95 by providing a lens cover film of 0.4 μm with a ratio of 1.54.
% or more of light collection efficiency was obtained.

【0015】図9は本発明を実現するための他の手法を
説明する図である。図に於て、図8と同記号は同一機能
を有する物質を示す。当該例では、平坦化膜65には有
機材料からなる膜を用い、レンズ材料膜66にはSiO
2 等の無機材料からなる膜を用いる。従って、フォト
レジストによるレンズパターン11をマスクとして転写
されたレンズ16には無機材料から形成される(図9(
c))。次に、レンズ16表面にのみ選択的にSiO2
 膜を堆積する。かかる膜成長法としては、例えば室温
・液相成長を適用できる。即ち、H2SiF6 水溶液
中にSiO2 粉末を溶解し飽和状態とする。かかる溶
液に図9(c)に示す構造基板を入れたのちにほう酸(
H3 BO3 )水溶液を添加しSiO2 を過飽とさ
せることでレンズ16の表面にSiO2 を堆積させる
。この時、有機材料からなる平坦化膜65の表面にはS
iO2 は形成されず、レンズ16の表面にのみSiO
2 が堆積され、図9(d)に示すマイクロレンズカバ
ー膜12が形成される。
FIG. 9 is a diagram illustrating another method for implementing the present invention. In the figure, the same symbols as in FIG. 8 indicate substances having the same functions. In this example, the flattening film 65 is made of an organic material, and the lens material film 66 is made of SiO.
A membrane made of an inorganic material such as 2 is used. Therefore, the lens 16 transferred using the photoresist lens pattern 11 as a mask is formed of an inorganic material (see FIG.
c)). Next, SiO2 is selectively applied only to the surface of the lens 16.
Deposit the film. As such a film growth method, for example, room temperature/liquid phase growth can be applied. That is, SiO2 powder is dissolved in an aqueous H2SiF6 solution to bring it into a saturated state. After placing the structural substrate shown in FIG. 9(c) in such a solution, boric acid (
SiO2 is deposited on the surface of the lens 16 by adding an aqueous solution (H3BO3) to supersaturate the SiO2. At this time, the surface of the planarization film 65 made of an organic material is S
No iO2 is formed, and SiO2 is formed only on the surface of the lens 16.
2 is deposited to form the microlens cover film 12 shown in FIG. 9(d).

【0016】マイクロレンズカバー膜12の材質として
は、有機材料膜を用いても、あるいはSiO2 ・Si
3 N4 ・SiONなどの無機材料膜を用いてもその
選択は自由であるが、機械的強度の点では無機材料膜を
用いるのが望ましい。なお、マイクロレンズ11の屈折
率は1.6〜1.7程度であるのに対し、SiO2 で
は1.45、Si3 N4 では2.0である。マイク
ロレンズ11とマイクロレンズカバー膜12との屈折率
差が大きいとマイクロレンズの焦点の設計が困難となる
。この点ではSiONは1.6〜1.8程度の範囲で選
択が可能であるため好ましい材料である。しかし、一方
では屈折率の差を積極的に利用して色収差を低減したレ
ンズを実現することも出来る。さらに、マイクロレンズ
カバー膜12の表面に反射防止膜を設けることにより固
体撮像装置に入射する光の反射を防止する手段を適用す
るのも一法であり、反射にはゴーストの発生を防止する
と共に、光に対する感度をさらに改善する効果があり好
ましい結果を得る。
As the material of the microlens cover film 12, an organic material film or SiO2/Si
Although it is possible to use an inorganic material film such as 3 N4 .SiON, it is preferable to use an inorganic material film in terms of mechanical strength. Note that the refractive index of the microlens 11 is about 1.6 to 1.7, whereas it is 1.45 for SiO2 and 2.0 for Si3N4. If the difference in refractive index between the microlens 11 and the microlens cover film 12 is large, it becomes difficult to design the focal point of the microlens. In this respect, SiON is a preferable material because it can be selected from a range of about 1.6 to 1.8. However, on the other hand, it is also possible to actively utilize the difference in refractive index to realize a lens with reduced chromatic aberration. Furthermore, one method is to apply a means to prevent the reflection of light incident on the solid-state imaging device by providing an anti-reflection film on the surface of the microlens cover film 12. , which has the effect of further improving the sensitivity to light and yields favorable results.

【0017】[0017]

【発明の効果】以上説明したように、本発明はマイクロ
レンズが設けられた固体撮像装置の表面にマイクロレン
ズカバー膜を設けレンズ径を拡大することにより、入射
光に対する開口率を実効的に100%近くに向上出来、
従って光感度を大幅に改善する効果を有する。さらに、
マイクロレンズカバー膜として無機材料を選ぶことによ
りレンズの機械的強度を高められる効果がある。また、
マイクロレンズカバー膜の屈折率を選ぶことにより色収
差の少いレンズを実現することが出来るため、感度の波
長依存性を改善できる効果を持つ。さらに、マイクロレ
ンズカバー膜表面に反射防止膜を設けることにより、表
面反射により発生するゴーストを除去すると共に、感度
をさらに向上できる効果を有する。
As explained above, the present invention provides a microlens cover film on the surface of a solid-state imaging device provided with microlenses to enlarge the lens diameter, thereby effectively increasing the aperture ratio to 100% for incident light. It was possible to improve close to %,
Therefore, it has the effect of significantly improving photosensitivity. moreover,
Choosing an inorganic material for the microlens cover film has the effect of increasing the mechanical strength of the lens. Also,
By selecting the refractive index of the microlens cover film, it is possible to create a lens with less chromatic aberration, which has the effect of improving the wavelength dependence of sensitivity. Furthermore, by providing an antireflection film on the surface of the microlens cover film, ghosts generated by surface reflection can be removed, and sensitivity can be further improved.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明一実施例を示す断面図である。FIG. 1 is a sectional view showing one embodiment of the present invention.

【図2】図1の装置の製造工程を部分的に示す断面図で
ある。
FIG. 2 is a cross-sectional view partially showing the manufacturing process of the device of FIG. 1;

【図3】膜の堆積速度を示す図である。FIG. 3 is a diagram showing the deposition rate of a film.

【図4】固体撮像装置の原理を示す図である。FIG. 4 is a diagram showing the principle of a solid-state imaging device.

【図5】従来例を示す断面図である。FIG. 5 is a sectional view showing a conventional example.

【図6】他の従来例を示す断面図である。FIG. 6 is a sectional view showing another conventional example.

【図7】従来例の方法を示す断面図である。FIG. 7 is a sectional view showing a conventional method.

【図8】他の従来例の方法を示す断面図である。FIG. 8 is a sectional view showing another conventional method.

【図9】本発明他の実施例の方法を示す断面図である。FIG. 9 is a cross-sectional view showing a method according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1    n型半導体基板 2    P型ウェル 3    フォトダイオード 4    CCDチャネル 5    P+ 領域 6    絶縁膜 65    平坦化膜 71,72    電極 8    遮光膜 10    光路 11,16    マイクロレンズ 12    マイクロレンズカバー膜 1 N-type semiconductor substrate 2 P-type well 3 Photodiode 4 CCD channel 5 P+ area 6 Insulating film 65 Planarization film 71, 72 Electrode 8. Light shielding film 10 Optical path 11, 16 Micro lens 12 Microlens cover film

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】  画素の上部に設けられたマイクロレン
ズと、該マイクロレンズの表面を含む装置の表面に設け
られたマイクロレンズカバー膜とで構成されるレンズに
おいて、隣りあうレンズ間部分の形状がV字型に形成さ
れることを特徴とした固体撮像装置。
Claim 1: In a lens composed of a microlens provided above a pixel and a microlens cover film provided on the surface of the device including the surface of the microlens, the shape of the portion between adjacent lenses is A solid-state imaging device characterized by being formed in a V-shape.
【請求項2】  画素上に設けられたマイクロレンズと
、該マイクロレンズの表面を含む装置の表面に設けられ
た屈折率の異なる複数層のマイクロレンズカバー膜とで
色収差を除去したレンズを構成することを特徴とした固
体撮像装置。
2. A lens in which chromatic aberration is removed is constituted by a microlens provided on a pixel and a plurality of layers of microlens cover films having different refractive indexes provided on the surface of the device including the surface of the microlens. A solid-state imaging device characterized by:
【請求項3】  画素上に設けられたマイクロレンズと
、該マイクロレンズの表面を含む装置の表面に設けられ
たマイクロレンズカバー膜とで構成されたレンズの表面
に、反射防止膜が設けられることを特徴とした固体撮像
装置。
3. An antireflection film is provided on the surface of the lens, which is composed of a microlens provided on the pixel and a microlens cover film provided on the surface of the device including the surface of the microlens. A solid-state imaging device featuring:
【請求項4】  画素の上部にマイクロレンズを形成す
る工程と、該マイクロレンズ表面を含む装置の表面に前
記マイクロレンズの径を拡大し、かつ隣り合うレンズ間
部分の形状がV字型とするべくマイクロレンズカバー膜
を設ける工程とを含むことを特徴とした固体撮像装置の
製造方法。
4. Forming a microlens above a pixel, enlarging the diameter of the microlens on the surface of the device including the microlens surface, and making the shape of the portion between adjacent lenses V-shaped. A method for manufacturing a solid-state imaging device, comprising the step of providing a microlens cover film.
【請求項5】  前記マイクロレンズカバー膜はマイク
ロレンズの表面にのみ選択的に設けられることを特徴と
した請求項4記載の固体撮像装置の製造方法。
5. The method of manufacturing a solid-state imaging device according to claim 4, wherein the microlens cover film is selectively provided only on the surface of the microlens.
JP10726091A 1990-05-16 1991-05-13 Solid-state imaging device and method of manufacturing the same Expired - Lifetime JP3166199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10726091A JP3166199B2 (en) 1990-05-16 1991-05-13 Solid-state imaging device and method of manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2-126151 1990-05-16
JP12615190 1990-05-16
JP10726091A JP3166199B2 (en) 1990-05-16 1991-05-13 Solid-state imaging device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH04226073A true JPH04226073A (en) 1992-08-14
JP3166199B2 JP3166199B2 (en) 2001-05-14

Family

ID=26447301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10726091A Expired - Lifetime JP3166199B2 (en) 1990-05-16 1991-05-13 Solid-state imaging device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3166199B2 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5396090A (en) * 1993-02-17 1995-03-07 Sharp Kabushiki Kaisha Solid state imaging device having partition wall for partitioning bottom portions of micro lenses
US5605783A (en) * 1995-01-06 1997-02-25 Eastman Kodak Company Pattern transfer techniques for fabrication of lenslet arrays for solid state imagers
US5723264A (en) * 1996-03-14 1998-03-03 Eastman Kodak Company Pattern transfer techniques for fabrication of lenslet arrays using specialized polyesters
US6043001A (en) * 1998-02-20 2000-03-28 Eastman Kodak Company Dual mask pattern transfer techniques for fabrication of lenslet arrays
KR100259085B1 (en) * 1997-06-19 2000-06-15 김영환 charge coupled device and method for fabricating the same
US6221687B1 (en) * 1999-12-23 2001-04-24 Tower Semiconductor Ltd. Color image sensor with embedded microlens array
US6291811B1 (en) 1997-04-09 2001-09-18 Nec Corporation Solid state image sensing element improved in sensitivity and production cost, process of fabrication thereof and solid state image sensing device using the same
JP2002181734A (en) * 2000-12-13 2002-06-26 Rohm Co Ltd Apparatus for inspecting transparent laminated body
JP2002280532A (en) * 2001-03-14 2002-09-27 Sharp Corp Solid-state imaging device
JP2003051588A (en) * 2001-08-07 2003-02-21 Sony Corp Solid-state image pickup device and its manufacturing method
KR100388474B1 (en) * 2000-12-30 2003-06-25 주식회사 하이닉스반도체 Image sensor capable of increasing capacitance of photodiode and method for fabricating the same
KR100410613B1 (en) * 2001-06-28 2003-12-18 주식회사 하이닉스반도체 Image sensor with IR filter
KR100449951B1 (en) * 2001-11-14 2004-09-30 주식회사 하이닉스반도체 Image sensor and method of fabricating the same
JP2006190906A (en) * 2005-01-07 2006-07-20 Toppan Printing Co Ltd Solid-stage image pickup element
KR100670536B1 (en) * 2000-08-31 2007-01-16 매그나칩 반도체 유한회사 Image sensor having oxide layer over micro-lens
JP2007019435A (en) * 2005-07-11 2007-01-25 Sony Corp Solid state imaging device and its manufacturing method, and camera
JP2007133196A (en) * 2005-11-11 2007-05-31 Dainippon Printing Co Ltd Light convergence sheet and surface light source device
JP2008166762A (en) * 2006-12-29 2008-07-17 Dongbu Hitek Co Ltd Method of manufacturing image sensor
JP2008227507A (en) * 2007-03-14 2008-09-25 Dongbu Hitek Co Ltd Image sensor and manufacturing method thereof
JP2009157397A (en) * 2009-04-13 2009-07-16 Sony Corp Method for manufacturing solid image pickup device and solid image pickup device
US7923798B2 (en) 2007-06-07 2011-04-12 Panasonic Corporation Optical device and method for fabricating the same, camera module using optical device, and electronic equipment mounting camera module
WO2012008387A1 (en) * 2010-07-15 2012-01-19 ソニー株式会社 Solid-state imaging element, process for producing solid-state imaging element, and electronic device
US20120050599A1 (en) * 2010-08-25 2012-03-01 Pixart Imaging Inc. Image sensing device
US8253142B1 (en) * 1999-08-27 2012-08-28 Sony Corporation Solid-state imaging device and method of fabricating the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012084608A (en) 2010-10-07 2012-04-26 Sony Corp Solid-state imaging device, method of manufacturing the same, and electronic apparatus

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5396090A (en) * 1993-02-17 1995-03-07 Sharp Kabushiki Kaisha Solid state imaging device having partition wall for partitioning bottom portions of micro lenses
US5605783A (en) * 1995-01-06 1997-02-25 Eastman Kodak Company Pattern transfer techniques for fabrication of lenslet arrays for solid state imagers
US5691116A (en) * 1995-01-06 1997-11-25 Eastman Kodak Company Pattern transfer techniques for fabrication of lenslet arrays for solid state imagers
US5723264A (en) * 1996-03-14 1998-03-03 Eastman Kodak Company Pattern transfer techniques for fabrication of lenslet arrays using specialized polyesters
US6291811B1 (en) 1997-04-09 2001-09-18 Nec Corporation Solid state image sensing element improved in sensitivity and production cost, process of fabrication thereof and solid state image sensing device using the same
KR100259085B1 (en) * 1997-06-19 2000-06-15 김영환 charge coupled device and method for fabricating the same
US6043001A (en) * 1998-02-20 2000-03-28 Eastman Kodak Company Dual mask pattern transfer techniques for fabrication of lenslet arrays
US8253142B1 (en) * 1999-08-27 2012-08-28 Sony Corporation Solid-state imaging device and method of fabricating the same
US8729650B2 (en) 1999-08-27 2014-05-20 Sony Corporation Solid-state imaging device and method of fabricating the same
US6221687B1 (en) * 1999-12-23 2001-04-24 Tower Semiconductor Ltd. Color image sensor with embedded microlens array
KR100670536B1 (en) * 2000-08-31 2007-01-16 매그나칩 반도체 유한회사 Image sensor having oxide layer over micro-lens
JP2002181734A (en) * 2000-12-13 2002-06-26 Rohm Co Ltd Apparatus for inspecting transparent laminated body
KR100388474B1 (en) * 2000-12-30 2003-06-25 주식회사 하이닉스반도체 Image sensor capable of increasing capacitance of photodiode and method for fabricating the same
JP2002280532A (en) * 2001-03-14 2002-09-27 Sharp Corp Solid-state imaging device
KR100410613B1 (en) * 2001-06-28 2003-12-18 주식회사 하이닉스반도체 Image sensor with IR filter
JP2003051588A (en) * 2001-08-07 2003-02-21 Sony Corp Solid-state image pickup device and its manufacturing method
KR100449951B1 (en) * 2001-11-14 2004-09-30 주식회사 하이닉스반도체 Image sensor and method of fabricating the same
JP2006190906A (en) * 2005-01-07 2006-07-20 Toppan Printing Co Ltd Solid-stage image pickup element
JP2007019435A (en) * 2005-07-11 2007-01-25 Sony Corp Solid state imaging device and its manufacturing method, and camera
JP4684859B2 (en) * 2005-11-11 2011-05-18 大日本印刷株式会社 Light convergence sheet, surface light source device
JP2007133196A (en) * 2005-11-11 2007-05-31 Dainippon Printing Co Ltd Light convergence sheet and surface light source device
JP2008166762A (en) * 2006-12-29 2008-07-17 Dongbu Hitek Co Ltd Method of manufacturing image sensor
JP2008227507A (en) * 2007-03-14 2008-09-25 Dongbu Hitek Co Ltd Image sensor and manufacturing method thereof
US7923798B2 (en) 2007-06-07 2011-04-12 Panasonic Corporation Optical device and method for fabricating the same, camera module using optical device, and electronic equipment mounting camera module
JP2009157397A (en) * 2009-04-13 2009-07-16 Sony Corp Method for manufacturing solid image pickup device and solid image pickup device
WO2012008387A1 (en) * 2010-07-15 2012-01-19 ソニー株式会社 Solid-state imaging element, process for producing solid-state imaging element, and electronic device
US8710608B2 (en) 2010-07-15 2014-04-29 Sony Corporation Solid-state imaging device, method for manufacturing solid-state imaging device, and electronic apparatus
US9111828B2 (en) 2010-07-15 2015-08-18 Sony Corporation Solid-state imaging device, method for manufacturing solid-state imaging device, and electronic apparatus
US20120050599A1 (en) * 2010-08-25 2012-03-01 Pixart Imaging Inc. Image sensing device

Also Published As

Publication number Publication date
JP3166199B2 (en) 2001-05-14

Similar Documents

Publication Publication Date Title
JP3166199B2 (en) Solid-state imaging device and method of manufacturing the same
TW513809B (en) Method of fabricating an image sensor
US7670867B2 (en) Method for manufacturing CMOS image sensor having microlens therein with high photosensitivity
JP2833941B2 (en) Solid-state imaging device and method of manufacturing the same
JP4733030B2 (en) Solid-state imaging device
US7579209B2 (en) Image sensor and fabricating method thereof
US10804306B2 (en) Solid-state imaging devices having flat microlenses
JP2001237405A (en) Solid-state image pickup device and its manufacturing method
US7723147B2 (en) Image sensor and method of manufacturing the same
KR100585137B1 (en) CMOS image sensor having high image light collection efficiency and method for manufacturing the same
KR100937654B1 (en) Image Sensor and Method of Manufaturing Thereof
US7166489B2 (en) Complementary metal oxide semiconductor image sensor and method for fabricating the same
US20220262845A1 (en) Lens structure configured to increase quantum efficiency of image sensor
CN110164897B (en) Phase focusing image sensor and forming method thereof
KR20000060698A (en) Solid state image sensor and method for fabricating the same
JP2000357786A (en) Solid state imaging device
KR19990054300A (en) Solid state imaging device
US20020102498A1 (en) Method for forming biconvex microlens of image sensor
JP4067175B2 (en) Method for manufacturing solid-state imaging device
JP2000304906A (en) Microlens array for solid-state image pickup element and solid-state image pickup element using the same
US20040082096A1 (en) Method for forming an image sensor having concave-shaped micro-lenses
KR100399939B1 (en) Image sensor and method of manufacturing the same
US20040080006A1 (en) Image sensor having concave-shaped micro-lenses
CN110379828B (en) Method for forming image sensor
KR100741922B1 (en) CMOS image sensor and method of manufacturing the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080309

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090309

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 11