JPH04224662A - Production of copper material having high residual resistance ratio - Google Patents

Production of copper material having high residual resistance ratio

Info

Publication number
JPH04224662A
JPH04224662A JP41432990A JP41432990A JPH04224662A JP H04224662 A JPH04224662 A JP H04224662A JP 41432990 A JP41432990 A JP 41432990A JP 41432990 A JP41432990 A JP 41432990A JP H04224662 A JPH04224662 A JP H04224662A
Authority
JP
Japan
Prior art keywords
copper material
rrr
purity
resistance ratio
residual resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP41432990A
Other languages
Japanese (ja)
Inventor
Koichi Tamura
幸一 田村
Sadahiko Sanki
参木 貞彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP41432990A priority Critical patent/JPH04224662A/en
Publication of JPH04224662A publication Critical patent/JPH04224662A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To easily and stably produce a copper material having high residual resistance ratio by applying sufficient heating treatment to a high purity copper material of specific purity at specific temp. in an inert-gas atmosphere. CONSTITUTION:A copper material with >=99.999% purity is heated for >=30min at 650-800 deg.C in an atmosphere of inert gas, such as N2 gas or Ar gas. If necessary, rare earth elements can be incorporated by about 4-20ppm into the above copper material. By the above heat treatment, the copper material having residual resistance ratio as high as >= about 7500 can be obtained under stable control with reduced man-hour.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、高残留抵抗比銅材の製
造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a copper material with a high residual resistance ratio.

【0002】0002

【従来の技術】金属系超電導線の安定化材として、通常
は99.99%純度の無酸素銅が使用されている。この
銅安定化材は、使用する際に何等かの原因によって超電
導状態が破れた場合に、発生するジュール熱をバイパス
させて、超電導線を保護しようとするものである。従っ
てできる限り抵抗の低い銅材が望まれている。
2. Description of the Related Art Oxygen-free copper with a purity of 99.99% is normally used as a stabilizing material for metallic superconducting wires. This copper stabilizing material is intended to protect the superconducting wire by bypassing the Joule heat generated when the superconducting state is broken for some reason during use. Therefore, a copper material with as low resistance as possible is desired.

【0003】しかしながら、現状は前述のように99.
994%以上の無酸素銅(OFC)が使用されており、
その抵抗率は数1で表される残留抵抗比(RRR)で3
00〜500程度である。
[0003] However, as mentioned above, the current situation is 99.
More than 994% oxygen-free copper (OFC) is used,
Its resistivity is the residual resistance ratio (RRR) expressed by the formula 1, which is 3
It is about 00 to 500.

【0004】0004

【数1】[Math 1]

【0005】[0005]

【発明が解決しようとする課題】超電導線は、さらに高
性能化あるいは超電導ケーブルのコンパクト化のために
安定化材の量を少なくすることが望まれている。このた
めには、より高いRRRの銅材とする必要があるが、現
状の99.99%純度のOFCではRRR値は高々60
0位が限界である。
SUMMARY OF THE INVENTION In order to further improve the performance of superconducting wires or to make superconducting cables more compact, it is desired to reduce the amount of stabilizing material used in superconducting wires. For this purpose, it is necessary to use a copper material with a higher RRR, but with the current 99.99% purity OFC, the RRR value is at most 60.
0th place is the limit.

【0006】そこで高純度銅材を応用することが考えら
れるが、純度が高くなるとコストが非常に高く、実用材
料としての使用は困難であった。しかし、近年99.9
99%以上の高純度銅材の量産方法も確立されて比較的
安価に利用できるようになっており、この場合RRRは
飛躍的に増加して5000〜6000にすることが可能
となった。
[0006] Therefore, it has been considered to apply a high-purity copper material, but the higher the purity, the higher the cost, making it difficult to use it as a practical material. However, in recent years 99.9
A mass production method for high-purity copper material of 99% or more has been established and can be used at a relatively low cost, and in this case, the RRR can be dramatically increased to 5,000 to 6,000.

【0007】本発明は以上の点に鑑みなされたものであ
り、高RRRの銅材料を提供することを可能とした高残
留抵抗比銅材の製造方法を提供することを目的とするも
のである。
The present invention has been made in view of the above points, and an object of the present invention is to provide a method for manufacturing a high residual resistance ratio copper material that makes it possible to provide a high RRR copper material. .

【0008】[0008]

【課題を解決するための手段】上記目的は、99.99
9%以上の純度を有する銅材を温度650〜800℃、
不活性ガス雰囲気中で少なくとも30分以上加熱して製
造することにより、達成される。
[Means for solving the problem] The above purpose is 99.99
Copper material with a purity of 9% or more is heated at a temperature of 650 to 800°C.
This is achieved by heating in an inert gas atmosphere for at least 30 minutes.

【0009】[0009]

【作用】上記手段を設けたので、RRRの高い銅材料が
得られるようになる。
[Operation] Since the above means is provided, a copper material with high RRR can be obtained.

【0010】0010

【実施例】次に本発明を実施例により具体的に説明する
[Examples] Next, the present invention will be explained in detail with reference to Examples.

【0011】〔実施例  1〕本実施例では99.99
9%以上の純度を有する銅材を温度650〜800℃、
不活性ガス雰囲気中で少なくとも30分以上加熱して製
造した。このようにすることによりRRRの高い銅材料
が得られるようになり、高RRRの銅材料を提供するこ
とを可能とした高残留抵抗比銅材の製造方法を得ること
ができる。
[Example 1] In this example, 99.99
Copper material with a purity of 9% or more is heated at a temperature of 650 to 800°C.
It was produced by heating in an inert gas atmosphere for at least 30 minutes. By doing so, a copper material with high RRR can be obtained, and a method for manufacturing a copper material with a high residual resistance ratio can be obtained, which makes it possible to provide a copper material with high RRR.

【0012】すなわち再電解銅を帯溶精製により99.
999%の高純度銅材を加工度85〜90%施した後に
、350℃中で中間焼鈍を行ってから、さらに85〜9
5%範囲で加工し、500〜900℃でそれぞれ30分
の熱処理後に残留抵抗比(RRR)を測定した。
That is, re-electrolyzed copper is purified by solution refining to achieve a purity of 99.9%.
After processing a 999% high purity copper material with a working degree of 85 to 90%, intermediate annealing is performed at 350°C, and then further annealing is performed at 85 to 90°C.
The residual resistance ratio (RRR) was measured after processing in a range of 5% and heat treatment for 30 minutes at 500 to 900°C.

【0013】さらに帯溶精製した素材へ希土類元素を1
0ppm添加して真空溶解で得られた銅材を上述と同様
の加工→中間焼鈍→加工を加えた後に500〜900℃
で30分の熱処理後RRRを測定した。
[0013] Furthermore, 1 rare earth element is added to the refined material.
Copper material obtained by vacuum melting with 0 ppm added was processed in the same manner as above → intermediate annealing → after processing at 500 to 900°C
RRR was measured after heat treatment for 30 minutes.

【0014】表1は実施した材料の組成を示したもので
あり、図1は各温度で熱処理後のRRR値測定結果を示
したものである。
Table 1 shows the composition of the materials used, and FIG. 1 shows the RRR value measurement results after heat treatment at various temperatures.

【0015】[0015]

【表1】[Table 1]

【0016】同図から明らかなように、この材料は加熱
温度の上昇とともにRRR値は高くなるが、600℃以
下ではRRR=7000未満である。しかし650℃加
熱になるとRRR=7500以上となり、700℃加熱
になると本実施例1(表1参照)の高純度CuはRRR
=8500に到達し、本実施例2(表1参照)の希土類
入りCuはRRR=9500最大となる。しかしさらに
加熱温度が900℃加熱になるとこれら両サンプルは急
激にRRR値は低下するようになる。従って本材料の加
熱温度条件としては、650〜800℃が高RRR値を
維持できる適正な温度である。なお、比較例1(表1参
照)の無酸素銅Cu(OFC)はあまり加熱温度との対
応は見られずRRR=435〜460である。
As is clear from the figure, the RRR value of this material increases as the heating temperature increases, but RRR is less than 7000 at temperatures below 600°C. However, when heated to 650°C, RRR=7500 or more, and when heated to 700°C, the high purity Cu of Example 1 (see Table 1) has an RRR of
= 8500, and the rare earth-containing Cu of Example 2 (see Table 1) has a maximum RRR of 9500. However, when the heating temperature was further increased to 900° C., the RRR values of both these samples suddenly decreased. Therefore, as the heating temperature condition for this material, 650 to 800°C is an appropriate temperature at which a high RRR value can be maintained. In addition, the oxygen-free copper Cu (OFC) of Comparative Example 1 (see Table 1) does not show much correspondence with the heating temperature, and has an RRR of 435 to 460.

【0017】このように本実施例によれば、次に述べる
ような効果を奏することができる。
As described above, according to this embodiment, the following effects can be achieved.

【0018】(1)本実施例の加熱処理方法によれば、
純度の指標であるRRRを高い値でしかも安定的に管理
することができ、また工数も省略できる。
(1) According to the heat treatment method of this example,
RRR, which is an indicator of purity, can be stably managed at a high value, and the number of man-hours can also be omitted.

【0019】(2)応用対象としては超電導線の安定化
材および電子部品の例えば半導体装置のSiチップ発熱
防止用の冷却材がある。
(2) Applications include stabilizing materials for superconducting wires and cooling materials for preventing heat generation of Si chips in electronic components such as semiconductor devices.

【0020】なお、加熱温度および時間、加熱雰囲気、
希土類元素量については、次のようなことが云える。
[0020]Heating temperature and time, heating atmosphere,
Regarding the amount of rare earth elements, the following can be said.

【0021】(1)加熱温度および時間650℃以下で
は指標とするRRR値は望めず、900℃以上ではやは
りRRR値は低下する。
(1) Heating temperature and time At temperatures below 650°C, no RRR value can be expected, and at temperatures above 900°C, the RRR value decreases.

【0022】加熱時間は30分以下では効果がでない。[0022] If the heating time is less than 30 minutes, there will be no effect.

【0023】(2)加熱雰囲気 N2ガスあるいはArガス等の不活性ガス雰囲気を使用
し、ガス流量1リットル/min以上とする。
(2) Heating atmosphere: An inert gas atmosphere such as N2 gas or Ar gas is used, and the gas flow rate is 1 liter/min or more.

【0024】真空雰囲気中の場合は1×10のマイナス
5乗Torrを確保する。
In the case of a vacuum atmosphere, a Torr of 1×10 to the minus fifth power is ensured.

【0025】上記以下の数値では微量の酸素が銅中に固
溶して、RRR値を減少させる原因となる。
[0025] If the value is less than the above value, a trace amount of oxygen will form a solid solution in the copper, causing a decrease in the RRR value.

【0026】(3)希土類元素量 添加量が4ppm以下ではCu中の微量不純物の清浄抑
制効果がない。
(3) Amount of rare earth element If the amount added is less than 4 ppm, there is no effect of suppressing the cleaning of trace impurities in Cu.

【0027】逆に20ppm以上では不純元素として残
留し、混入量が多くなり、RRR値を低下させる。
On the other hand, if it is more than 20 ppm, it remains as an impurity element, increases the amount of contamination, and lowers the RRR value.

【0028】[0028]

【発明の効果】上述のように本発明は、99.999%
以上の純度を有する銅材を温度650〜800℃、不活
性ガス雰囲気中で少なくとも30分以上加熱して製造し
たので、RRRの高い銅材料が得られるようになって、
高RRRの銅材料を提供することを可能とした高残留抵
抗比銅材の製造方法を得ることができる。
Effects of the Invention As mentioned above, the present invention achieves 99.999%
Since the copper material having the above purity is heated at a temperature of 650 to 800°C in an inert gas atmosphere for at least 30 minutes or more, a copper material with high RRR can be obtained.
A method for manufacturing a high residual resistance ratio copper material that makes it possible to provide a copper material with a high RRR can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の高残留抵抗比銅材の製造方法の一実施
例による加熱温度とRRRとの関係を示す特性図である
FIG. 1 is a characteristic diagram showing the relationship between heating temperature and RRR according to an embodiment of the method for manufacturing a high residual resistance ratio copper material of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  99.999%以上の純度を有する銅
材を温度650〜800℃、不活性ガス雰囲気中で少な
くとも30分以上加熱して製造したことを特徴とする高
残留抵抗比銅材の製造方法。
1. A copper material with a high residual resistance ratio, which is produced by heating a copper material having a purity of 99.999% or more at a temperature of 650 to 800° C. in an inert gas atmosphere for at least 30 minutes. Production method.
JP41432990A 1990-12-26 1990-12-26 Production of copper material having high residual resistance ratio Pending JPH04224662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP41432990A JPH04224662A (en) 1990-12-26 1990-12-26 Production of copper material having high residual resistance ratio

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP41432990A JPH04224662A (en) 1990-12-26 1990-12-26 Production of copper material having high residual resistance ratio

Publications (1)

Publication Number Publication Date
JPH04224662A true JPH04224662A (en) 1992-08-13

Family

ID=18522819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP41432990A Pending JPH04224662A (en) 1990-12-26 1990-12-26 Production of copper material having high residual resistance ratio

Country Status (1)

Country Link
JP (1) JPH04224662A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016125115A (en) * 2015-01-07 2016-07-11 三菱マテリアル株式会社 Superconducting wire and superconducting coil
JP2016125114A (en) * 2015-01-07 2016-07-11 三菱マテリアル株式会社 Superconducting stabilizer, superconducting wire and superconducting coil
JP2016156099A (en) * 2016-05-26 2016-09-01 三菱マテリアル株式会社 Superconducting wire and superconducting coil
JP2016156098A (en) * 2016-05-26 2016-09-01 三菱マテリアル株式会社 Superconduction stabilization material, superconducting wire, and superconducting coil
WO2017175713A1 (en) 2016-04-06 2017-10-12 三菱マテリアル株式会社 Superconducting wire and superconducting coil
JP2017188339A (en) * 2016-04-06 2017-10-12 三菱マテリアル株式会社 Superconductive stabilization material, superconductive wire and superconductive coil
CN108603250A (en) * 2016-04-06 2018-09-28 三菱综合材料株式会社 Superconduction stabilization material
KR20180127330A (en) 2016-04-06 2018-11-28 미쓰비시 마테리알 가부시키가이샤 Superconducting stabilized fire, superconducting wire and superconducting coil

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3243916A4 (en) * 2015-01-07 2018-05-30 Mitsubishi Materials Corporation Superconducting wire and superconducting coil
CN107002180A (en) * 2015-01-07 2017-08-01 三菱综合材料株式会社 Superconduction stabilization material, superconducting line and superconducting coil
WO2016111159A1 (en) * 2015-01-07 2016-07-14 三菱マテリアル株式会社 Superconducting wire and superconducting coil
JP2016125115A (en) * 2015-01-07 2016-07-11 三菱マテリアル株式会社 Superconducting wire and superconducting coil
US10964454B2 (en) 2015-01-07 2021-03-30 Mitsubishi Materials Corporation Superconducting wire and superconducting coil
US10964453B2 (en) 2015-01-07 2021-03-30 Mitsubishi Materials Corporation Superconducting stabilization material, superconducting wire, and superconducting coil
TWI593813B (en) * 2015-01-07 2017-08-01 三菱綜合材料股份有限公司 Superconducting stabilization material, superconducting wire, and superconducting coil
CN108546844A (en) * 2015-01-07 2018-09-18 三菱综合材料株式会社 Superconduction stabilization material, superconducting line and superconducting coil
CN107002179A (en) * 2015-01-07 2017-08-01 三菱综合材料株式会社 Superconducting line and superconducting coil
TWI596622B (en) * 2015-01-07 2017-08-21 三菱綜合材料股份有限公司 Superconducting wire and superconducting coil
KR20170102224A (en) * 2015-01-07 2017-09-08 미쓰비시 마테리알 가부시키가이샤 Superconducting wire and superconducting coil
KR20170102227A (en) * 2015-01-07 2017-09-08 미쓰비시 마테리알 가부시키가이샤 Superconduction stabilizer material, superconducting wire, and superconducting coil
CN108766661A (en) * 2015-01-07 2018-11-06 三菱综合材料株式会社 superconducting line and superconducting coil
JP2016125114A (en) * 2015-01-07 2016-07-11 三菱マテリアル株式会社 Superconducting stabilizer, superconducting wire and superconducting coil
US20180005731A1 (en) * 2015-01-07 2018-01-04 Mitsubishi Materials Corporation Superconducting wire and superconducting coil
EP3243917A4 (en) * 2015-01-07 2018-05-23 Mitsubishi Materials Corporation Superconduction stabilizer material, superconducting wire, and superconducting coil
WO2016111173A1 (en) * 2015-01-07 2016-07-14 三菱マテリアル株式会社 Superconduction stabilizer material, superconducting wire, and superconducting coil
WO2017175713A1 (en) 2016-04-06 2017-10-12 三菱マテリアル株式会社 Superconducting wire and superconducting coil
US10971278B2 (en) 2016-04-06 2021-04-06 Mitsubishi Materials Corporation Superconducting wire and superconducting coil
CN108603251A (en) * 2016-04-06 2018-09-28 三菱综合材料株式会社 superconducting line and superconducting coil
TWI812277B (en) * 2016-04-06 2023-08-11 日商三菱綜合材料股份有限公司 Stabilizer for superconductor
CN108603250A (en) * 2016-04-06 2018-09-28 三菱综合材料株式会社 Superconduction stabilization material
KR20180127331A (en) 2016-04-06 2018-11-28 미쓰비시 마테리알 가부시키가이샤 Superconducting wire and superconducting coil
CN109072339A (en) * 2016-04-06 2018-12-21 三菱综合材料株式会社 Superconduction stabilization material, superconducting line and superconducting coil
TWI771296B (en) * 2016-04-06 2022-07-21 日商三菱綜合材料股份有限公司 Stabilizer for superconductor
KR20180127330A (en) 2016-04-06 2018-11-28 미쓰비시 마테리알 가부시키가이샤 Superconducting stabilized fire, superconducting wire and superconducting coil
KR20180131536A (en) 2016-04-06 2018-12-10 미쓰비시 마테리알 가부시키가이샤 Superconductivity stable fire
JP2017188339A (en) * 2016-04-06 2017-10-12 三菱マテリアル株式会社 Superconductive stabilization material, superconductive wire and superconductive coil
CN112687789A (en) * 2016-04-06 2021-04-20 三菱综合材料株式会社 Superconducting stabilizing material
CN108603251B (en) * 2016-04-06 2021-07-30 三菱综合材料株式会社 Superconducting wire and superconducting coil
US11149329B2 (en) 2016-04-06 2021-10-19 Mitsubishi Materials Corporation Stabilizer material for superconductor
JP2016156099A (en) * 2016-05-26 2016-09-01 三菱マテリアル株式会社 Superconducting wire and superconducting coil
JP2016156098A (en) * 2016-05-26 2016-09-01 三菱マテリアル株式会社 Superconduction stabilization material, superconducting wire, and superconducting coil

Similar Documents

Publication Publication Date Title
US2691577A (en) Alloys and rectifiers made thereof
JPH04224662A (en) Production of copper material having high residual resistance ratio
US2758146A (en) Thermoelectric elements and materials
JP3324228B2 (en) Copper wire for ultrafine wire and method of manufacturing the same
CN113584354B (en) Bonding aluminum alloy wire and preparation method thereof
JPH0525565A (en) High purity cu alloy for stabilizing material for superconducting use having high residual resistance value
JPH0437524B2 (en)
JPS6241303B2 (en)
JPS6245297B2 (en)
JPS6220265B2 (en)
JPS6012421B2 (en) Manufacturing method of lead wire material
JP2564537B2 (en) Black phosphorus-silicon crystal
JPH05179435A (en) Titanium target for sputtering
JPH0253502B2 (en)
KR900005267B1 (en) Process for the production of ptc thermistors
JP3509432B2 (en) Heat treatment method of oxygen-free copper
JPS63192835A (en) Lead material for ceramic package
JPS6328972B2 (en)
JPS6123735A (en) Copper alloy having superior heat resistance and electric conductivity
JPS62214146A (en) Bending resistant copper alloy having high strength and electric conductivity
JPH0694578B2 (en) Copper-iron-cobalt-titanium alloy having high mechanical and electrical properties, and method for producing the same
JPS5821015B2 (en) Conductive copper alloy
KR820000396B1 (en) Production method of silicon for photo-voltaic devices
JPS613856A (en) Copper alloy having superior heat resistance, workability and electric conductivity
JPH0432529A (en) Copper alloy having low constant mass temperature coefficient of electric resistance