JPH04224551A - Production of alpha-hydroxyisobutylamide - Google Patents

Production of alpha-hydroxyisobutylamide

Info

Publication number
JPH04224551A
JPH04224551A JP2406944A JP40694490A JPH04224551A JP H04224551 A JPH04224551 A JP H04224551A JP 2406944 A JP2406944 A JP 2406944A JP 40694490 A JP40694490 A JP 40694490A JP H04224551 A JPH04224551 A JP H04224551A
Authority
JP
Japan
Prior art keywords
catalyst
solution
electrolyte
continuously
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2406944A
Other languages
Japanese (ja)
Inventor
Minahito Karasawa
唐 沢  皆 人
Masasane Inomata
猪 俣 将 実
Hiroharu Kageyama
景 山 弘 春
Masahiro Tokumitsu
徳 満 政 弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP2406944A priority Critical patent/JPH04224551A/en
Publication of JPH04224551A publication Critical patent/JPH04224551A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To greatly improve the service life of a catalyst and enable to industrially and continuously produce the subject compound by supplying a positive electric charge to a catalyst solution, when acetone cyanhydrin is continuously reacted with water in a liquid phase to produce the alpha- hydroxyisobutylamide(HAM). CONSTITUTION:When acetone cyanhydrin is reacted with water in the presence of a manganese oxide catalyst to continuously produce alpha-hydroxyisobutylamide, raw materials are continuously fed into a catalyst-suspension type reactor from an inlet 1, an anode 4 is installed in a catalyst solution containing an electrolyte, and a cathode 5 is installed in an electrolyte solution which is separated from the catalyst solution with an ion or liquid-permeable membrane or a filter 6, followed by applying electric current to the electrodes for the reaction.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、α−ヒドロキシイソブ
チルアミドの製法に関する。更に詳しくは、アセトンシ
アンヒドリン(以下、ACHと略する。)と水とを液相
で連続的に反応させてα−ヒドロキシイソブチルアミド
(以下、HAMと略する。)を製造する方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a process for producing α-hydroxyisobutyramide. More specifically, it relates to a method for producing α-hydroxyisobutyramide (hereinafter referred to as HAM) by continuously reacting acetone cyanohydrin (hereinafter referred to as ACH) and water in a liquid phase. It is.

【0002】0002

【従来の技術】一般にアミド化合物は、相応するニトリ
ル化合物と水との反応でできることが公知であり、この
反応に有効な触媒が種々知られている。米国特許第3,
366,639号に記載されているマンガン酸化物もそ
の一つである。ニトリル化合物の水和反応に多用される
銅含有触媒がACHなどのα−ヒドロキシニトリル化合
物の水和に全く不十分な成績しか与えないのに反し、マ
ンガン酸化物は西ドイツ特許第2,131,813号に
開示されているようにACHの水和に対しても、かなり
の成績を与えるという特徴がある。
BACKGROUND OF THE INVENTION It is generally known that amide compounds can be produced by reacting a corresponding nitrile compound with water, and various catalysts effective for this reaction are known. U.S. Patent No. 3,
Manganese oxide described in No. 366,639 is one of them. In contrast to the copper-containing catalysts often used in the hydration reaction of nitrile compounds, which give completely unsatisfactory results in the hydration of α-hydroxynitrile compounds such as ACH, manganese oxides are As disclosed in No. 1, it has the characteristic of giving considerable results for the hydration of ACH.

【0003】また、特開昭52−222号公報には、触
媒として褐石の存在でACHの水和を 60〜90℃の
温度範囲で行うことによりHAMを製造するに際し、反
応混合物にアセトンを加えることにより、HAMの収率
を高め得ることが記載されている。更に、七価のマンガ
ン酸塩とハロゲン化水素酸から得られたマンガン酸化物
を用いると触媒活性のバラツキがなくなり、また触媒の
性能も向上することが特開昭63−57,535号公報
に開示されている。
[0003] Furthermore, JP-A-52-222 discloses that when HAM is produced by hydrating ACH in the presence of brownstone as a catalyst at a temperature range of 60 to 90°C, acetone is added to the reaction mixture. It is described that the yield of HAM can be increased by adding HAM. Furthermore, JP-A No. 63-57,535 shows that using manganese oxide obtained from heptavalent manganate and hydrohalic acid eliminates variations in catalyst activity and improves catalyst performance. Disclosed.

【0004】0004

【発明が解決しようとする課題】しかし、従来技術にお
けるACHの水和によるHAMの工業的連続製造方法を
検討した結果、触媒活性は経日と共に急速に低下するこ
とが判明した。このような問題の解決法として特開平2
−196,763号公報が開示されている。これは反応
器に供給される原料液のpHを4〜8の範囲にすること
により、触媒の活性低下を抑制する方法である。しかし
、この方法でも1週間を越える長期間にわたって、触媒
活性の低下を抑制するには、未だ不十分であることが判
った。
[Problems to be Solved by the Invention] However, as a result of examining the conventional industrial continuous production method of HAM by hydration of ACH, it was found that the catalytic activity rapidly decreases with time. As a solution to such problems,
-196,763 is disclosed. This is a method of suppressing a decrease in catalyst activity by adjusting the pH of the raw material liquid supplied to the reactor to a range of 4 to 8. However, it was found that even this method was still insufficient to suppress the decline in catalyst activity over a long period of time exceeding one week.

【0005】以上のように、工業的にACHの水和によ
りHAMを連続製造する上では、マンガン酸化物触媒の
劣化又は失活による触媒交換が頻繁になることと、触媒
費用の増大が大きな問題となるため、マンガン酸化物触
媒の長期活性の維持が最大の課題である。
[0005] As described above, in the industrial continuous production of HAM by hydration of ACH, there are major problems such as frequent catalyst replacement due to deterioration or deactivation of the manganese oxide catalyst and increased catalyst cost. Therefore, maintaining the long-term activity of the manganese oxide catalyst is the biggest challenge.

【0006】[0006]

【課題を解決するための手段】本発明者らは、工業的に
ACHの水和反応によりHAMを経済的に連続製造する
ため、マンガン酸化物触媒の上記の問題点を取り除くべ
く鋭意検討を行った結果、触媒溶液に正電荷を供給する
ことによって、大幅に触媒寿命が改善することを見出し
、更に検討を重ね本発明を完成するに至った。
[Means for Solving the Problems] The present inventors have conducted intensive studies to eliminate the above-mentioned problems with manganese oxide catalysts in order to economically and continuously produce HAM industrially by hydration reaction of ACH. As a result, the inventors discovered that the life of the catalyst can be significantly improved by supplying a positive charge to the catalyst solution, and after further study, the present invention was completed.

【0007】すなわち、マンガン酸化物触媒の懸濁型反
応器に、アセトンシアンヒドリンと水とを連続的に供給
し水和反応させてα−ヒドロキシイソブチルアミドを製
造するに際し、電解質を含む触媒溶液中に陽極を、及び
、イオン又は液体に対し透過性の隔膜又はフィルターに
よって触媒溶液とは隔てられた電解質溶液中に陰極を設
け通電することを特徴とするα−ヒドロキシイソブチル
アミドの製造方法である。
That is, when acetone cyanohydrin and water are continuously supplied to a suspension-type reactor containing a manganese oxide catalyst to cause a hydration reaction to produce α-hydroxyisobutyramide, a catalyst solution containing an electrolyte is used. A method for producing α-hydroxyisobutyramide, which comprises providing an anode in the electrolyte solution and a cathode in an electrolyte solution separated from the catalyst solution by a diaphragm or filter permeable to ions or liquids, and energizing the solution. .

【0008】本発明で使用されるマンガン酸化物は、無
水又は水和された物のどちらでもよい。マンガン酸化物
は公知の方法、例えば、中性ないしアルカリ性の領域で
七価のマンガン化合物を 20〜100℃で還元する方
法(Zeit. Anorg. Allg. Chem
.,309,p.1〜32及びp.121〜150,(
1961))、酸性で過マンガン酸カリウムと硫酸マン
ガンを処理する方法(Biochem. J.,50,
p.43,(1951))、七価のマンガン酸塩をハロ
ゲン化水素酸で還元する方法(特開昭63−57,53
5号公報)、及び硫酸マンガン塩水溶液を電解酸化する
方法などによって得られる二酸化マンガンが用いられる
。触媒は通常適当な粒度の粉末として使用される。
The manganese oxide used in the present invention may be either anhydrous or hydrated. Manganese oxide can be obtained by a known method, for example, a method of reducing a heptavalent manganese compound at 20 to 100°C in a neutral to alkaline region (Zeit. Anorg. Allg. Chem
.. , 309, p. 1-32 and p. 121-150, (
1961)), Method of treating potassium permanganate and manganese sulfate in acidic conditions (Biochem. J., 50,
p. 43, (1951)), a method for reducing heptavalent manganate with hydrohalic acid (JP-A-63-57, 53)
5), and manganese dioxide obtained by electrolytically oxidizing an aqueous solution of manganese sulfate. The catalyst is usually used as a powder of suitable particle size.

【0009】本発明において使用される水は、ACHの
1モルに対し、通常1モル以上、好ましくは、2〜20
モル、特に好ましくは、4〜10モルである。反応溶媒
として水の他に、新たに反応に不活性な溶媒を用いるこ
とができる。例えば、特開昭52−222号公報に開示
されているアセトン及びアルコールなどが用いられる。 触媒懸濁型反応器の触媒溶液中の触媒濃度は特に限定さ
れないが、通常2重量%以上、好ましくは、5〜50重
量%にするのがよい。
The amount of water used in the present invention is usually 1 mol or more, preferably 2 to 20 mol, per 1 mol of ACH.
mol, particularly preferably 4 to 10 mol. In addition to water, a solvent inert to the reaction can be used as the reaction solvent. For example, acetone and alcohol disclosed in JP-A-52-222 are used. The catalyst concentration in the catalyst solution of the catalyst suspension type reactor is not particularly limited, but it is usually 2% by weight or more, preferably 5 to 50% by weight.

【0010】本発明における反応温度は 10〜150
℃の範囲であり、好ましくは、20〜100℃、特に好
ましくは、30〜80℃の範囲である。10℃未満の温
度では、触媒の活性が低くなり、実用的でない。また、
150℃を越える温度では、触媒活性は高いものの、H
AMの収率が急速に低くなるため、好ましくない。
[0010] The reaction temperature in the present invention is 10 to 150
The temperature range is preferably from 20 to 100°C, particularly preferably from 30 to 80°C. At temperatures below 10°C, the activity of the catalyst decreases and is not practical. Also,
At temperatures exceeding 150°C, although the catalyst activity is high, H
This is not preferred because the yield of AM decreases rapidly.

【0011】本発明の方法でACHの連続水和反応にお
ける触媒の活性を長期間維持するために用いられる陽極
は、触媒懸濁型反応器内のマンガン酸化物触媒溶液中に
設けられる。  更に、反応器が電気絶縁性の材料で構
成されている場合を除き、導電性の反応器においては漏
電を防止する目的で、陽極は反応器と絶縁されるのがよ
い。  陽極材料としては、黒鉛等の炭素材料、鉛−ア
ンチモン等の鉛合金、チタン、アルミニウム及び希土類
酸化物等が挙げられるが、防食材料であればよい。
The anode used in the method of the present invention to maintain the activity of the catalyst in the continuous hydration reaction of ACH for a long period of time is provided in the manganese oxide catalyst solution in the catalyst suspension type reactor. Furthermore, unless the reactor is constructed of an electrically insulating material, in an electrically conductive reactor, the anode is preferably insulated from the reactor in order to prevent electrical leakage. Examples of the anode material include carbon materials such as graphite, lead alloys such as lead-antimony, titanium, aluminum, and rare earth oxides, but any anticorrosive material may be used.

【0012】また、対極としての陰極は、触媒溶液中の
触媒と接触しないようにすることが必要であり、更に陽
極と陰極間にだけ電流が流れるようにすることが好まし
い。そのため触媒溶液と、イオン又は液体に対し透過性
の隔膜又はフィルターによって隔てられた電解質溶液中
又はこの溶液に接するように陰極を設ける。更に、反応
器が電気絶縁性の材料で構成されている場合を除き、導
電性の反応器においては、陰極も反応器と絶縁されるの
が好ましい。  陰極材料は黒鉛、鉛、アルミニウム、
ステンレス、鉄及び銅等の耐食材料が好ましい。
[0012] Furthermore, it is necessary that the cathode serving as the counter electrode does not come into contact with the catalyst in the catalyst solution, and furthermore, it is preferable to allow current to flow only between the anode and the cathode. For this purpose, a cathode is provided in or in contact with an electrolyte solution separated from the catalyst solution by a membrane or filter permeable to ions or liquids. Additionally, in electrically conductive reactors, the cathode is also preferably insulated from the reactor, unless the reactor is constructed of an electrically insulating material. Cathode materials are graphite, lead, aluminum,
Corrosion resistant materials such as stainless steel, iron and copper are preferred.

【0013】陽極と陰極間に所定値の電流を流すために
、触媒溶液を構成する成分の他に電解質を触媒溶液に供
給する。その方法として、予め、反応原料液に所定量溶
解させておくことや所定濃度の電解質溶液を単独に反応
器に供給することができる。電解質としては、通常アル
カリ金属塩及びアルカリ土類金属塩等が用いられるが、
特に限定されない。触媒溶液中の電解質濃度は、通常 
0.2重量%以上、好ましくは、2〜10重量%の範囲
に設定されるのがよい。本発明の方法によれば陽極と陰
極間に流す電流値は、触媒溶液中の触媒濃度によって変
わるが、触媒溶液1Lに対し、通常 0.005〜1.
0 Amp 、好ましくは、0.02〜0.2 Amp
 の範囲に設定されるのがよい。本発明における触媒懸
濁型反応器の構成の概略を図1に示した。
[0013] In order to cause a predetermined current to flow between the anode and the cathode, an electrolyte is supplied to the catalyst solution in addition to the components constituting the catalyst solution. As a method for this, it is possible to dissolve a predetermined amount in the reaction raw material liquid in advance, or to supply an electrolyte solution of a predetermined concentration alone to the reactor. As the electrolyte, alkali metal salts and alkaline earth metal salts are usually used.
Not particularly limited. The electrolyte concentration in the catalyst solution is usually
It is preferably set at 0.2% by weight or more, preferably in the range of 2 to 10% by weight. According to the method of the present invention, the current value passed between the anode and the cathode varies depending on the catalyst concentration in the catalyst solution, but is usually 0.005 to 1.
0 Amp, preferably 0.02-0.2 Amp
It is best to set it within the range of . FIG. 1 shows an outline of the configuration of the catalyst suspension type reactor in the present invention.

【0014】[0014]

【実施例】以下に、実施例で本発明を詳細に説明する。[Examples] The present invention will be explained in detail with reference to Examples below.

【0015】触媒調製 硫酸第一マンガン水溶液(395g/L)2Lに硫酸を
添加してpH1の硫酸第一マンガン水溶液を調製した。 この溶液に過マンガン酸カリウム 557.2gを添加
して、酸化させた後、温度を 50℃前後に保ちながら
このスラリー溶液に水を1L添加し、30分間熟成させ
た。  できたスラリー溶液をアスピレータによって吸
引濾過し、乾燥器によって 110℃にて12時間乾燥
し、二酸化マンガン触媒 680gを得た。この二酸化
マンガン触媒を粉砕し、16〜100メッシュ粉末触媒
として520gを得た。
Catalyst Preparation Sulfuric acid was added to 2 L of a manganous sulfate aqueous solution (395 g/L) to prepare a manganese sulfate aqueous solution having a pH of 1. After adding 557.2 g of potassium permanganate to this solution and oxidizing it, 1 L of water was added to this slurry solution while maintaining the temperature at around 50° C., and the mixture was aged for 30 minutes. The resulting slurry solution was suction-filtered using an aspirator and dried in a drier at 110°C for 12 hours to obtain 680 g of manganese dioxide catalyst. This manganese dioxide catalyst was pulverized to obtain 520 g of a 16-100 mesh powder catalyst.

【0016】ACHの調製 丸底反応器(ガラス製、内容量2L;還流冷却器、撹拌
機、温度計及び液導入部付き)にアセトン 580gと
2%水酸化ナトリウム水溶液 10gを仕込み、 20
℃を維持しながら液体青酸 284gを注入した。  
反応後、硫酸を添加し、液のpHを3.0に調製した。 次に、未反応の青酸とアセトンを減圧留去し、99.8
%ACH 843gを得た。
Preparation of ACH 580 g of acetone and 10 g of 2% aqueous sodium hydroxide solution were charged into a round bottom reactor (made of glass, internal capacity 2 L; equipped with a reflux condenser, stirrer, thermometer and liquid inlet).
284 g of liquid hydrocyanic acid was injected while maintaining the temperature at °C.
After the reaction, sulfuric acid was added to adjust the pH of the solution to 3.0. Next, unreacted hydrocyanic acid and acetone were distilled off under reduced pressure.
843 g of %ACH were obtained.

【0017】実施例1(連続水和反応)ガラス撹拌棒、
水銀温度計、原料供給口、炭素電極(陽極)、液出口に
ガラスボールフィルター及びフィルターより流出するH
AM生成液中にステンレス製陰極を備えた丸底フラスコ
(ガラス製、内容量 500mL)に、上記で得た二酸
化マンガン粉末触媒 50gと水450gを充填した後
、内温を 60℃まで上げ、この温度に保持した。  
上記で調製したACHに水を、ACH:水のモル比が1
:6になるように加え調製した液に対し、硝酸カリウム
を2重量%になるように添加し調整した原料液を、15
mL/hrの流速で定量ポンプによって反応器に供給し
た。その後、陽極と陰極間に 0.07 Ampの定電
流を流した。反応器内は 58〜62℃に維持され、ま
た反応器内の液量は 430〜480mLの範囲に調整
され、1カ月間連続運転された。  HAM収率の経日
変化の結果を表1に示す。
Example 1 (continuous hydration reaction) Glass stirring rod,
Mercury thermometer, raw material supply port, carbon electrode (anode), glass ball filter at liquid outlet, and H flowing out from the filter
A round bottom flask (made of glass, internal capacity 500 mL) equipped with a stainless steel cathode in the AM production solution was filled with 50 g of the manganese dioxide powder catalyst obtained above and 450 g of water, and the internal temperature was raised to 60 °C. maintained at temperature.
Water was added to the ACH prepared above, and the molar ratio of ACH:water was 1.
: To the solution prepared by adding potassium nitrate to 2% by weight, add 15% by weight of potassium nitrate.
A flow rate of mL/hr was fed to the reactor by a metering pump. Thereafter, a constant current of 0.07 Amp was passed between the anode and the cathode. The temperature inside the reactor was maintained at 58 to 62°C, and the liquid volume in the reactor was adjusted to a range of 430 to 480 mL, and the reactor was operated continuously for one month. Table 1 shows the results of changes in HAM yield over time.

【0018】比較例1 実施例1において、原料液中の硝酸カリウムを用いない
こと及び通電を行わないことを除いては、実施例1と全
く同様に連続水和反応を行った。その結果を表1に示す
Comparative Example 1 A continuous hydration reaction was carried out in exactly the same manner as in Example 1, except that potassium nitrate in the raw material solution was not used and electricity was not applied. The results are shown in Table 1.

【0019】[0019]

【表1】[Table 1]

【0020】[0020]

【発明の効果】本発明によれば、従来のマンガン酸化物
触媒を用いたACHの水和反応によるHAMの工業的連
続製造法における触媒寿命を大幅に改善し、工業的に有
利にHAMの連続製造が可能になった。
Effects of the Invention According to the present invention, the catalyst life in the conventional industrial continuous production method of HAM by the hydration reaction of ACH using a manganese oxide catalyst is greatly improved, and the continuous production of HAM is industrially advantageous. Manufacture is now possible.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明における触媒懸濁型反応器の構成の概略
を示す縦断面図である。
FIG. 1 is a vertical cross-sectional view schematically showing the configuration of a catalyst suspension type reactor according to the present invention.

【符号の説明】[Explanation of symbols]

1  原料液入口 2  HAM生成液出口 3  触媒溶液 4  陽極 5  陰極 6  フィルター部 7  撹拌機 8  直流電源 1 Raw material liquid inlet 2 HAM generated liquid outlet 3 Catalyst solution 4 Anode 5 Cathode 6 Filter part 7 Stirrer 8 DC power supply

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  マンガン酸化物触媒の懸濁型反応器に
、アセトンシアンヒドリンと水とを連続的に供給し水和
反応させてα−ヒドロキシイソブチルアミドを製造する
に際し、電解質を含む触媒溶液中に陽極を、及び、イオ
ン又は液体に対し透過性の隔膜又はフィルターによって
触媒溶液とは隔てられた電解質溶液中に陰極を設け通電
することを特徴とするα−ヒドロキシイソブチルアミド
の製造方法。
Claim 1: When producing α-hydroxyisobutyramide by continuously supplying acetone cyanohydrin and water to a manganese oxide catalyst suspension reactor and causing a hydration reaction, a catalyst solution containing an electrolyte is used. 1. A method for producing α-hydroxyisobutyramide, which comprises providing an anode therein and a cathode in an electrolyte solution separated from a catalyst solution by a diaphragm or filter permeable to ions or liquids, and supplying electricity.
JP2406944A 1990-12-26 1990-12-26 Production of alpha-hydroxyisobutylamide Pending JPH04224551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2406944A JPH04224551A (en) 1990-12-26 1990-12-26 Production of alpha-hydroxyisobutylamide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2406944A JPH04224551A (en) 1990-12-26 1990-12-26 Production of alpha-hydroxyisobutylamide

Publications (1)

Publication Number Publication Date
JPH04224551A true JPH04224551A (en) 1992-08-13

Family

ID=18516566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2406944A Pending JPH04224551A (en) 1990-12-26 1990-12-26 Production of alpha-hydroxyisobutylamide

Country Status (1)

Country Link
JP (1) JPH04224551A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002371046A (en) * 2001-06-11 2002-12-26 Showa Denko Kk Method for producing 2-hydroxycarboxylic amide
JP2009210333A (en) * 2008-03-03 2009-09-17 Nippon Mining & Metals Co Ltd Pretreatment apparatus for analyzing concentration of metal in wastewater and analyzing system equipped with it

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002371046A (en) * 2001-06-11 2002-12-26 Showa Denko Kk Method for producing 2-hydroxycarboxylic amide
JP2009210333A (en) * 2008-03-03 2009-09-17 Nippon Mining & Metals Co Ltd Pretreatment apparatus for analyzing concentration of metal in wastewater and analyzing system equipped with it

Similar Documents

Publication Publication Date Title
CN101792913B (en) Paired electrolytic synthesis method for producing butanedioic acid and sulfuric acid
US4589963A (en) Process for the conversion of salts of carboxylic acid to their corresponding free acids
JPH04224551A (en) Production of alpha-hydroxyisobutylamide
KR100425662B1 (en) Basic Cobaltous Carbonates, Process for Preparing the Same and Their Use
CN109056024B (en) Organic acid formation process for producing high specific volume electrode foil
US4451339A (en) Preparation of blue iron hexacyanoferrate-III pigments, and the pigments obtained
EP0013415B1 (en) Fabrication of nickel electrodes for alkaline batteries
JPS60243293A (en) Manufacture of m-hydroxybenzyl alcohol
CN114075675A (en) Method for synthesizing 4-amino-3, 6-dichloropicolinic acid through electrolytic dechlorination, product and application
CA2096901A1 (en) Electrochemical process for reducing oxalic acid to glyoxylic acid
TW201627227A (en) Method of producing vanadyl sulfate from vanadium pentoxide
CA2726438A1 (en) Process for producing pure ammonium perrhenate
JPH04149164A (en) Production of alpha-hydroxyisobutylamide
EP0037178B1 (en) Electrochemical maintenance of activity of copper-containing catalyst in copper-catalysed nitrile hydrolysis process, and production of amides by such hydrolysis process
KR840000157B1 (en) Preparation for gluconic acid by electrolysis
US4024033A (en) Process for preparing cyanogen halides
JPH04282352A (en) Production of alpha-hydroxyisobutyramide
JPH05147948A (en) Production of manganese sulfate
JP3478893B2 (en) Method for producing high-purity choline
JPS6342712B2 (en)
SU382603A1 (en) WAY OF OBTAINING DIACETON-2-KETO-1-GULONOVA
US4381977A (en) Electrochemical maintenance of optimum catalytic activity in copper-catalyzed nitrile hydrolysis processes
KR940003268B1 (en) Method of l-cysteine
US4035253A (en) Electrolytic oxidation of phenol at lead-thallium anodes
JPH072837A (en) Preparation of n-acetylhomocysteine thiolactone from dl-homocystine by electrochemical process