JPH04223280A - Detecting fault section in power cable - Google Patents

Detecting fault section in power cable

Info

Publication number
JPH04223280A
JPH04223280A JP40686890A JP40686890A JPH04223280A JP H04223280 A JPH04223280 A JP H04223280A JP 40686890 A JP40686890 A JP 40686890A JP 40686890 A JP40686890 A JP 40686890A JP H04223280 A JPH04223280 A JP H04223280A
Authority
JP
Japan
Prior art keywords
grounding
fault
ground
current
current flowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP40686890A
Other languages
Japanese (ja)
Inventor
Yoshio Maruyama
義雄 丸山
Hideji Muto
武藤 秀二
Kuniaki Motohashi
本橋 邦明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP40686890A priority Critical patent/JPH04223280A/en
Publication of JPH04223280A publication Critical patent/JPH04223280A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/081Locating faults in cables, transmission lines, or networks according to type of conductors
    • G01R31/083Locating faults in cables, transmission lines, or networks according to type of conductors in cables, e.g. underground

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Locating Faults (AREA)

Abstract

PURPOSE:To detect ground fault section exactly without being affected by the balance of three phases and location of the ground fault. CONSTITUTION:Balanced grounding currents IA1, IB1, IC1 flowing through each of grounding lines 17, 19, 21 to ground the connection parts 11, 13, 15 facing each other to power sending lines of three pahses A, B, C are measured at determined intervals. When a ground fault occurs, the grounding currents flowing through the grounding lines 17, 19, 21 are compared. If the fault current flowing through the grounding lines 17, 18 at the grounding parts 11, 12 are twice of either of grounding currents flowing on the grounding lines 19 to 22 at grounding parts 13 to 16 the opposit phases B, C to the connection parts 11, 12 and the fault currents flowing through the grounding lines 17, 18 are approximately 1.5 times the grounding currents flowing through the particular grounding lines 17, 18 prior to the fault, then the neighbouring connection part 11 to 12 fulfilling the conditions is detected and the connection part 11 to 12 is detected as the accident zone.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、電力電送線路における
地絡事故区間を検出する電力ケーブルの事故区間検出方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting a fault section of a power cable for detecting a fault section of a power transmission line.

【0002】0002

【従来の技術】従来、この種の事故区間検出方法では、
並列する3相電力ケーブルにおいて地絡事故が発生する
と、特開昭62−265578号公報に示されるように
、各相の接地ジョイントの接続線に流れる接地電流を測
定し、各相の接地電流が不平等で、かつ地絡事故が発生
した電力電送線路における接続部の接地線に流れる事故
電流が他の各相の電力電送線路における接地ジョイント
の接地線に流れる接地電流の2倍であることを見出して
事故区間を検出していた。
[Prior Art] Conventionally, in this type of accident section detection method,
When a ground fault occurs in parallel three-phase power cables, as shown in Japanese Patent Application Laid-Open No. 62-265578, the grounding current flowing through the connection wire of the grounding joint of each phase is measured, and the grounding current of each phase is determined. It is unequal that the fault current flowing through the grounding wire of the connection in the power transmission line where the ground fault occurred is twice the grounding current flowing through the grounding wire of the grounding joint in the power transmission line of each other phase. The accident area was detected.

【0003】0003

【発明が解決しようとする課題】ところが、実際の電力
電送線路においては、3相の平衡度が必ずしも理想的で
ないこと、地絡位置によっては事故電流の分流比が異な
ること等があり、上記検出方法では、事故電流がいずれ
か一方の健全相の接地線に流れる接地電流の2倍になら
ない場合が生じ、地絡事故区間を正確に検出することが
できないという問題点があった。
[Problems to be Solved by the Invention] However, in actual power transmission lines, the degree of balance of the three phases is not necessarily ideal, and the shunting ratio of the fault current may differ depending on the location of the ground fault. In this method, there are cases where the fault current is not twice the ground current flowing through the ground wire of one of the healthy phases, and there is a problem that the ground fault fault section cannot be accurately detected.

【0004】本発明は、上記問題点に鑑みなされたもの
で、地絡位置にかかわらず正確に地絡事故区間を検出す
ることができる電力ケーブルの事故区間検出方法を提供
することを目的とする。
The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a method for detecting a fault section of a power cable, which can accurately detect a fault section of a power cable regardless of the location of the ground fault. .

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明では、複数の電力ケーブルを接続する接続部
と、該接続部を接地する接地線とを有する3相の電力電
送線路において、前記各相の対向する接続部を接地する
各接地線に流れる接地電流を平衡にして該接地電流を所
定間隔で測定し、該測定結果を記憶し、地絡事故が発生
すると、前記各相の対向する接続部を接地する各接地線
に流れる接地電流を比較し、地絡事故が発生した電力電
送線路の接続部における接地線に流れる事故電流が当該
接続部に対向する他相のいずれかの接続部における接地
線に流れる接地電流の2倍になり、かつ前記接地線に流
れる事故電流が、事故発生前の当該接地線に流れる接地
電流の略1.5倍になる条件を満たす相隣合う接続部を
検知し、前記接続部間を事故発生区間として検出する電
力ケーブルの事故区間検出方法が提供される。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a three-phase power transmission line having a connecting portion for connecting a plurality of power cables and a grounding wire for grounding the connecting portion. , the grounding currents flowing through the grounding wires that ground the opposing connections of each phase are balanced, the grounding currents are measured at predetermined intervals, the measurement results are stored, and when a ground fault occurs, each of the phases Compare the grounding currents flowing through the grounding wires that ground the opposing connections of the power transmission line, and determine whether the fault current flowing through the grounding wires at the connection point of the power transmission line where the ground fault occurred is one of the other phases facing the connection point. The grounding current flowing through the grounding wire at the connection point is twice as high as that of the grounding wire, and the fault current flowing through the grounding wire is approximately 1.5 times the grounding current flowing through the grounding wire before the accident occurred. A method for detecting an accident section of a power cable is provided, which detects matching connections and detects a section between the connections as an accident occurrence section.

【0006】[0006]

【作用】事故発生区間の検出条件を、事故電流がいずれ
かの健全相に流れる接地電流の2倍で、かつ前記事故電
流が事故発生前の接地電流の略1.5倍とし、上記条件
を満たす区間を事故区間とする。従って、3相の平衡度
及び地絡位置にかかわらず、地絡事故区間を正確に検出
することができる。
[Operation] The conditions for detecting the fault section are that the fault current is twice the grounding current flowing in any healthy phase, and the fault current is approximately 1.5 times the grounding current before the fault occurs. The section that satisfies this condition is the accident section. Therefore, the ground fault area can be accurately detected regardless of the balance of the three phases and the ground fault position.

【0007】[0007]

【実施例】本発明の実施例を図1乃至図2の図面に基づ
き詳細に説明する。図1は、本発明に係る事故区間検出
方法を実施するための検出装置の一実施例である。図に
おいて、並列する3相A,B,Cの電力ケーブルは、平
衡に近く配置されており、図示しないシースによってそ
れぞれ遮蔽されると共に、接続部11〜16によって同
相の他の電力ケーブルと接続されており、図示しない電
源からの電力を上記各接続部11〜16を介して負荷に
電送するように構成されている。各接続部11〜16の
うち、接続部11と13と15、及び12と14と16
は、それぞれ各相の対向する接続部を構成し、接続部1
1と12、接続部13と14、及び接続部15と16は
、それぞれ同相の相隣合う接続部を構成している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail with reference to FIGS. 1 and 2. FIG. 1 shows an embodiment of a detection device for implementing the accident section detection method according to the present invention. In the figure, parallel three-phase power cables A, B, and C are arranged in a nearly balanced manner, each shielded by a sheath (not shown), and connected to other power cables of the same phase through connection parts 11 to 16. It is configured to transmit electric power from a power source (not shown) to the load via each of the connection sections 11 to 16 described above. Among the connecting parts 11 to 16, the connecting parts 11, 13, and 15, and 12, 14, and 16
constitute the opposing connection parts of each phase, respectively, and the connection part 1
1 and 12, connecting portions 13 and 14, and connecting portions 15 and 16 constitute adjacent connecting portions having the same phase.

【0008】各接続部11〜16には、電力の上昇を防
ぐために大地との間に接地線17〜22が接続され、上
記各接地線17〜22にはシース及び各接続部11〜1
6を介して、接地電流及び地絡事故発生時の事故電流が
流れる。各接地線17〜22には、接地電流及び事故電
流を検出する検出センサ23〜28が取り付けられてお
り、検出センサ23,25,27で検出された電流は、
検出装置30に取り込まれ、検出センサ24,26,2
8で検出された電流は、検出装置36に取り込まれてい
る。なお、検出装置30,36は、ともに同一の構成な
ので、ここでは説明の都合上、検出装置30の構成につ
いて説明する。
Grounding wires 17 to 22 are connected to the ground to prevent power from increasing, and each of the grounding wires 17 to 22 has a sheath and a sheath to each of the connecting portions 11 to 1.
6, a ground current and a fault current in the event of a ground fault flow. Detection sensors 23 to 28 for detecting ground current and fault current are attached to each grounding wire 17 to 22, and the current detected by the detection sensors 23, 25, and 27 is
taken into the detection device 30 and detected by the detection sensors 24, 26, 2.
The current detected at 8 is taken into the detection device 36. Note that since both the detection devices 30 and 36 have the same configuration, the configuration of the detection device 30 will be described here for convenience of explanation.

【0009】検出装置30は、受信部31、メモリ部3
2、判定部33、制御部34及び入出力部35からなっ
ている。受信部31は、検出センサ23,25,27で
検出された電流IA1,IB1,IC1を電流データと
して所定間隔ΔT毎に取り込んでいる。メモリ部32は
、上記受信部31で取り込まれた電流データを順次記憶
する更新動作を行い、さらに記憶内容と同一の電流デー
タを隣合う次局の検出装置36のメモリ部に読み出す。 また、上記メモリ部32は、隣合う前局の図示しない検
出装置で検出され、読み出された接地電流の電流データ
を順次記憶する更新動作も行っている。
The detection device 30 includes a receiving section 31 and a memory section 3.
2, a determination section 33, a control section 34, and an input/output section 35. The receiving unit 31 receives the currents IA1, IB1, and IC1 detected by the detection sensors 23, 25, and 27 as current data at every predetermined interval ΔT. The memory section 32 performs an updating operation of sequentially storing the current data taken in by the receiving section 31, and further reads out the same current data as the stored contents to the memory section of the detecting device 36 of the adjacent next station. The memory unit 32 also performs an updating operation of sequentially storing current data of the ground current detected and read by a detection device (not shown) of an adjacent previous station.

【0010】判定部33は、自局及び前局の電流データ
を解析し、地絡事故、事故相を検知すると共に、判定条
件に基づき事故区間を判定している。上記判定条件は、
地絡事故が発生した電力ケーブルの接続部における接地
線に流れる事故電流が当該接続部に対向する他相のいず
れかの接続部における接地線に流れる接地電流の2倍以
上になり、かつ上記接地線に流れる事故電流が、事故発
生前の当該接地線に流れる接地電流の略1.5倍以上に
なる条件を満たすかどうかを条件とする。なお、第2の
条件として事故電流を接地電流の略1.5倍以上とした
のは、接地電流の変動幅を考慮したものであり、必ずし
も1.5倍にとらわれることなく、任意の倍率、例えば
1.3倍や1.4倍で条件を設定することも可能である
The determination unit 33 analyzes current data of the own station and the previous station, detects ground faults and failure phases, and determines fault sections based on determination conditions. The above judgment conditions are
The fault current flowing through the grounding wire at the connection point of the power cable where the ground fault occurred is more than twice the grounding current flowing through the grounding wire at the connection point of any of the other phases facing the connection point, and the above-mentioned grounding The condition is whether or not the fault current flowing through the line is approximately 1.5 times or more the ground current flowing through the ground wire before the accident occurred. The reason why the second condition is that the fault current is approximately 1.5 times or more than the grounding current is to take into consideration the variation range of the grounding current. For example, it is also possible to set conditions at 1.3 times or 1.4 times.

【0011】制御部34は、地絡事故が発生すると、入
出力部35を介して隣合う検出装置の制御部とデータ伝
送を行い、地絡事故の発生、事故相や事故区間のデータ
等を伝送している。ここで、A相の電送ケーブルで地絡
事故が起こった場合を考えると、事故電流は、電流I1
 ,I2 に分流してシースを流れるが、3相A,B,
Cの電力ケーブルは、平衡に近く配置されているので、
遠方のシースには等分に電流が流れる傾向にある。上記
平衡度が良く、かつ大地に流れる電流IG が十分に小
さい時には、上記電流IA1,IB1,IC1と電流I
1 との関係は、   が成立し、IA1の絶対値|IA1|は、上記 (
1)、(2) 、(3) 式より、   となる。しかし、実際には、3相A,B,Cの平衡
度は、理想的でないこと、大地に流れ込む電流IG が
存在することにより、式(4) 、(5) が成立する
ことは少ない。
When a ground fault occurs, the control section 34 transmits data to the control section of the adjacent detection device via the input/output section 35, and transmits data regarding the occurrence of the ground fault, the fault phase, the fault section, etc. It is transmitting. Now, if we consider the case where a ground fault occurs in the A-phase transmission cable, the fault current is the current I1
, I2 and flows through the sheath, but the three phases A, B,
Since the power cables of C are arranged close to equilibrium,
Current tends to flow evenly through the far sheaths. When the above-mentioned balance is good and the current IG flowing to the ground is sufficiently small, the above-mentioned currents IA1, IB1, IC1 and the current I
1 holds true, and the absolute value of IA1 |IA1| is the above (
From equations 1), (2), and (3), it becomes. However, in reality, the balance of the three phases A, B, and C is not ideal, and the presence of the current IG flowing into the ground causes equations (4) and (5) to rarely hold.

【0012】そこで、接地電流が不平衡になる条件とし
て、 IA1≧2IB1、又はIA1≧2IC1  …(6)
 とすることが適当であり、判定を誤る可能性がない。 また、地絡事故が起きたことを確実に認識するためには
、上記式(6) の条件に付加した他の条件として、検
出センサ23で検出される接地電流IA1に対し、事故
前の電流をIA1t に、事故後の電流をIA1(t+
1) 、tは正の整数であるとしたとき、50%の余裕
を設けて、IA1(t+1) を IA1(t+1) ≧1.5×IA1t       
…(7) として補助の判定条件とするのが適当である
。なお、上記判定条件は、A相の電力ケーブルで地絡事
故が起こった場合についての条件であり、B相の電力ケ
ーブルで地絡事故が起こった場合には式(6) は、I
B1≧2IA1、又はIB1≧2IC1となり、事故前
の電流をIB1t に、事故後の電流をIB1(t+1
) とすると、式(7) は、IB1(t+1) ≧1
.5×IB1t となる。
[0012] Therefore, the conditions for the unbalanced ground current are IA1≧2IB1, or IA1≧2IC1 (6)
It is appropriate to do so, and there is no possibility of making a mistake in judgment. In addition, in order to reliably recognize that a ground fault has occurred, in addition to the condition in equation (6) above, the ground current IA1 detected by the detection sensor 23 must be is IA1t, and the current after the accident is IA1(t+
1) Assuming that t is a positive integer, set IA1(t+1) to IA1(t+1) ≧1.5×IA1t with a 50% margin.
It is appropriate to use (7) as an auxiliary judgment condition. Note that the above judgment conditions are for the case where a ground fault occurs in the A-phase power cable, and when a ground fault occurs in the B-phase power cable, equation (6) becomes I
B1≧2IA1 or IB1≧2IC1, the current before the accident is IB1t, and the current after the accident is IB1(t+1
), then equation (7) becomes IB1(t+1) ≧1
.. 5×IB1t.

【0013】また、C相の電力ケーブルで地絡事故が起
こった場合には式(6) は、IC1≧2IA1、又は
IC1≧2IB1となり、事故前の電流をIC1t に
、事故後の電流をIC1(t+1) とすると、式(7
) は、IC1(t+1) ≧1.5×IC1t とな
る。
Furthermore, when a ground fault occurs in the C-phase power cable, equation (6) becomes IC1≧2IA1 or IC1≧2IB1, and the current before the fault is IC1t, and the current after the fault is IC1. (t+1), then equation (7
) becomes IC1(t+1) ≧1.5×IC1t.

【0014】上記各判定条件は、他の検出装置について
も、同様に成立するので、検出装置36でも同様に接地
線18,20,22に流れる接地電流及び事故電流を調
べると、A相の接続部11と12の間で地絡事故が起こ
ったことが判明する。次に、本発明に係る事故区間検出
方法を図2のフローチャートに基づいて説明する。
Each of the above-mentioned judgment conditions holds true for other detection devices as well. Therefore, when the grounding current and fault current flowing through the grounding wires 18, 20, and 22 are similarly examined in the detection device 36, the A-phase connection is confirmed. It turns out that a ground fault occurred between sections 11 and 12. Next, the accident section detection method according to the present invention will be explained based on the flowchart of FIG.

【0015】なお、本実施例では、図1に相当する電力
電送線路を構築し、3相A,B,Cの対向するそれぞれ
接続部を同一番号とし、隣合う接続部を順次、NJ1、
NJ2、NJ3、NJ4と表現して、定常電流(事故前
の電流)4〔A〕を流すと共に、上記NJ2とNJ3と
の間で模擬的に地絡事故を起こし、アメリカ政府エネル
ギ省ボンネビル電力局(BPA)が開発したEMTP(
Electro Magnetic Transien
ts Program )Rule Book (日本
EMTP委員会  1982年6月公表)により、上記
各接続部NJ1、NJ2、NJ3、NJ4での事故電流
を計算したものを用いて、本発明に係る事故区間検出方
法を説明する。
In this embodiment, a power transmission line corresponding to that shown in FIG. 1 is constructed, and the opposing connection parts of three phases A, B, and C are given the same number, and the adjacent connection parts are sequentially numbered NJ1, NJ1,
Expressed as NJ2, NJ3, and NJ4, a steady current (current before the accident) of 4 [A] was caused to flow, and a simulated ground fault was caused between NJ2 and NJ3, and the Bonneville Power Bureau of the U.S. government's Department of Energy EMTP (
Electro Magnetic Transien
ts Program) Rule Book (Japan EMTP Committee, published in June 1982), the fault section detection method according to the present invention is carried out using the fault currents calculated at each of the above-mentioned connections NJ1, NJ2, NJ3, and NJ4. explain.

【0016】上記計算結果は、表1に示す通りである。The results of the above calculation are shown in Table 1.

【0017】[0017]

【表1】[Table 1]

【0018】図2において、各検出装置は、時間ΔT毎
に各接続部NJ1、NJ2、NJ3、NJ4の3相A,
B,Cの接地電流IA1、IB1、IC1を測定する(
ステップ101)。次に、判定部は上記測定した接地電
流IA1、IB1、IC1のデータを解析して、地絡事
故が発生したかどうか判断する(ステップ102)。こ
こで、地絡事故が発生していない場合、つまり各相A,
B,Cとも定常電流4〔A〕のみが測定されている場合
には、ステップ101に戻って上記測定を繰り返す。ま
た、地絡事故が発生した場合、つまり、上記測定した各
接続部NJ1、NJ2、NJ3、NJ4の接地電流IA
1、IB1、IC1のデータが定常電流4〔A〕ではな
く、表1に示すような不平衡な事故電流を測定した場合
には、メモリ部に記憶された事故前の電流IA1t 、
IB1t、IC1t 、実施例では4〔A〕と、事故後
の電流IA1(t+1) 、IB1(t+1) 、IC
1(t+1) 、実施例では表1に示す各事故電流とを
決定し(ステップ103)、事故前の電流と各事故電流
とを判定条件に当てはめて事故区間を判定する(ステッ
プ104)。
In FIG. 2, each detection device detects three phases A, NJ1, NJ2, NJ3, and NJ4 at each connection point NJ1, NJ2, NJ3, and NJ4 every time ΔT.
Measure the ground currents IA1, IB1, and IC1 of B and C (
Step 101). Next, the determination unit analyzes the data of the ground currents IA1, IB1, and IC1 measured above, and determines whether a ground fault has occurred (step 102). Here, if no ground fault has occurred, that is, each phase A,
If only a steady current of 4 [A] is measured for both B and C, the process returns to step 101 and the above measurement is repeated. In addition, if a ground fault occurs, that is, the ground current IA of each connection NJ1, NJ2, NJ3, NJ4 measured above.
If the data of 1, IB1, and IC1 is not the steady current 4 [A] but an unbalanced fault current as shown in Table 1, the current IA1t before the fault stored in the memory section,
IB1t, IC1t, 4 [A] in the example, and the current after the accident IA1(t+1), IB1(t+1), IC
1(t+1), and in the embodiment, each fault current shown in Table 1 is determined (step 103), and the fault section is determined by applying the current before the fault and each fault current to the determination conditions (step 104).

【0019】すなわち、式(6) に基づく判定では、
接続部NJ1のみが条件を満足せず、式(7) に基づ
く判定では、接続部NJ4のみが条件を満足しないこと
が判明した(表1参照)。そこで、両判定条件に該当す
る接続部を判定すると、接続部NJ2とNJ3とが該当
することが分かる。つまり、本実施例では、上記両判定
条件により接続部NJ2とNJ3との間の区間が事故区
間であることが確認される。
That is, in the determination based on equation (6),
Only the connecting portion NJ1 did not satisfy the conditions, and the determination based on equation (7) revealed that only the connecting portion NJ4 did not satisfy the conditions (see Table 1). Therefore, when determining the connection portions that meet both of the determination conditions, it is found that the connection portions NJ2 and NJ3 apply. That is, in this embodiment, it is confirmed that the section between the connecting portions NJ2 and NJ3 is an accident section based on both of the above-mentioned determination conditions.

【0020】従って、本実施例では、地絡事故が発生し
た電力ケーブルの接続部における接地線に流れる事故電
流が当該接続部に対向する他相のいずれかの接続部にお
ける接地線に流れる接地電流の2倍以上になり、かつ上
記接地線に流れる事故電流が、事故発生前の当該接地線
に流れる接地電流の略1.5倍以上になる条件を満たす
、相隣合う接続部を見出し、上記接続部の間を事故区間
として検出するので、地絡位置によって事故電流の分流
比が変化しても、それに影響されることなく、正確に地
絡事故区間を検出することができる。
Therefore, in this embodiment, the fault current flowing through the grounding wire at the connection point of the power cable where a ground fault has occurred is equal to the grounding current flowing through the grounding wire at any connection point of the other phase facing the connection point. , and the fault current flowing through the grounding wire is approximately 1.5 times or more the grounding current flowing through the grounding wire before the occurrence of the accident. Since the area between the connections is detected as the fault section, even if the fault current division ratio changes depending on the ground fault position, the ground fault fault section can be accurately detected without being affected by the change.

【0021】[0021]

【発明の効果】以上、説明したように、本発明では、複
数の電力ケーブルを接続する接続部と、該接続部を接地
する接地線とを有する3相の電力電送線路において、前
記各相の対向する接続部を接地する各接地線に流れる接
地電流を平衡にして該接地電流を所定間隔で測定し、該
測定結果を記憶し、地絡事故が発生すると、前記各相の
対向する接続部を接地する各接地線に流れる接地電流を
比較し、地絡事故が発生した電力電送線路の接続部にお
ける接地線に流れる事故電流が当該接続部に対向する他
相のいずれかの接続部における接地線に流れる接地電流
の2倍になり、かつ前記接地線に流れる事故電流が、事
故発生前の当該接地線に流れる接地電流の略1.5倍に
なる条件を満たす相隣合う接続部を検知し、前記接続部
間を事故発生区間として検出するので、3相の平衡度及
び地絡位置にかかわらず、地絡事故区間を正確に検出す
ることができる。
As explained above, in the present invention, in a three-phase power transmission line having a connecting portion for connecting a plurality of power cables and a grounding wire for grounding the connecting portion, The grounding currents flowing through the respective grounding wires that ground the opposing connections are balanced, the grounding currents are measured at predetermined intervals, and the measurement results are memorized. Compare the grounding current flowing through each grounding wire that connects the power transmission line, and determine whether the fault current flowing through the grounding wire at the connection point of the power transmission line where the ground fault occurred is grounded at any connection point of the other phase facing the connection point. Detects an adjacent connection that satisfies the conditions that the grounding current flowing in the line is twice as much as the fault current flowing in the grounding wire, and that the fault current flowing in the grounding wire is approximately 1.5 times the grounding current flowing in the grounding wire before the accident occurred. However, since the area between the connection parts is detected as the area where the fault has occurred, the ground fault fault area can be accurately detected regardless of the balance of the three phases and the position of the ground fault.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明に係る事故区間検出方法を実施するため
の検出装置の一実施例を示すブロック図である。
FIG. 1 is a block diagram showing an embodiment of a detection device for carrying out an accident section detection method according to the present invention.

【図2】本発明に係る事故区間検出方法を説明するため
のフローチャートである。
FIG. 2 is a flowchart for explaining an accident section detection method according to the present invention.

【符号の説明】[Explanation of symbols]

11〜16,NJ1〜NJ4  接続部17〜22  
接地線 23〜28  検出センサ 30,36  検出装置 31  受信部 32  メモリ部 33  判定部 34  制御部 35  入出力部 IA1、IB1、IC1  接地電流
11-16, NJ1-NJ4 Connection part 17-22
Grounding wires 23 to 28 Detection sensors 30, 36 Detection device 31 Receiving section 32 Memory section 33 Judgment section 34 Control section 35 Input/output section IA1, IB1, IC1 Ground current

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  複数の電力ケーブルを接続する接続部
と、該接続部を接地する接地線とを有する3相の電力電
送線路において、前記各相の対向する接続部を接地する
各接地線に流れる接地電流を平衡にして該接地電流を所
定間隔で測定し、該測定結果を記憶し、地絡事故が発生
すると、前記各相の対向する接続部を接地する各接地線
に流れる接地電流を比較し、地絡事故が発生した電力電
送線路の接続部における接地線に流れる事故電流が当該
接続部に対向する他相のいずれかの接続部における接地
線に流れる接地電流の2倍になり、かつ前記接地線に流
れる事故電流が、事故発生前の当該接地線に流れる接地
電流の略1.5倍になる条件を満たす相隣合う接続部を
検知し、前記接続部間を事故発生区間として検出するこ
とを特徴とする電力ケーブルの事故区間検出方法。
Claim 1: In a three-phase power transmission line having a connecting portion for connecting a plurality of power cables and a grounding wire for grounding the connecting portion, each grounding wire for grounding the opposing connecting portion of each phase is provided. Balance the flowing ground current, measure the ground current at predetermined intervals, store the measurement results, and when a ground fault occurs, reduce the ground current flowing through each ground wire that grounds the opposing connections of each phase. In comparison, the fault current flowing in the grounding wire at the connection point of the power transmission line where the ground fault occurred is twice the grounding current flowing in the grounding wire at any connection point of the other phase facing the connection point, Detect adjacent connections that satisfy the condition that the fault current flowing through the ground wire is approximately 1.5 times the ground current flowing through the ground wire before the accident occurred, and define the area between the connection points as an accident occurrence section. A method for detecting a fault section of a power cable.
JP40686890A 1990-12-26 1990-12-26 Detecting fault section in power cable Pending JPH04223280A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP40686890A JPH04223280A (en) 1990-12-26 1990-12-26 Detecting fault section in power cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP40686890A JPH04223280A (en) 1990-12-26 1990-12-26 Detecting fault section in power cable

Publications (1)

Publication Number Publication Date
JPH04223280A true JPH04223280A (en) 1992-08-13

Family

ID=18516486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP40686890A Pending JPH04223280A (en) 1990-12-26 1990-12-26 Detecting fault section in power cable

Country Status (1)

Country Link
JP (1) JPH04223280A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104154949A (en) * 2013-05-15 2014-11-19 北汽福田汽车股份有限公司 Automobile high-voltage cable joint state detection method and system
CN105203925A (en) * 2015-10-12 2015-12-30 国家电网公司 Method for online detecting fault sections of 110-KV or 220-KV cable lines

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104154949A (en) * 2013-05-15 2014-11-19 北汽福田汽车股份有限公司 Automobile high-voltage cable joint state detection method and system
CN105203925A (en) * 2015-10-12 2015-12-30 国家电网公司 Method for online detecting fault sections of 110-KV or 220-KV cable lines

Similar Documents

Publication Publication Date Title
CN101120259B (en) Drain current circuit breaker and method
Kezunovic et al. Design, modeling and evaluation of protective relays for power systems
US4314199A (en) Method for locating a fault point on a transmission line
EP2676346B1 (en) Method and arrangement for detecting an internal failure in h-bridge connected capacitor bank
JP2000214210A (en) Accident point locater
KR101989350B1 (en) Appatus for protecting of microgrid using superimposed reactive energy and method thereof
JP2992615B2 (en) Line constant measuring device and ground fault monitoring device for ungrounded electric circuit
US5325061A (en) Computationally-efficient distance relay for power transmission lines
JPH04223280A (en) Detecting fault section in power cable
JP2609331B2 (en) Accident point locator for parallel two-circuit power system
JP3274607B2 (en) Transmission line failure monitoring method and device
JPH0417013B2 (en)
JP3221000B2 (en) Method and apparatus for determining ground fault section of distribution line
JP2568097B2 (en) Power cable accident section detection method
JP2003009381A (en) Troue phase selector
JPH0365016A (en) Ground fault detector for distribution line
JP2777266B2 (en) Ratio differential relay
JPH04347532A (en) Method and device for detecting disconnected section of distribution line
JPH0437651B2 (en)
JPH04161023A (en) Detector of ground fault section of distribution line
JP2020176950A (en) Phase discrimination system, power distribution slave device, and program
JPH0283467A (en) Apparatus for detecting distribution line accident section
JPH03270633A (en) Ground relay device
JPH01160313A (en) Protective relay
JPH0210650B2 (en)