JPH04222206A - Production of reinforcing fiber for cement product - Google Patents

Production of reinforcing fiber for cement product

Info

Publication number
JPH04222206A
JPH04222206A JP2418938A JP41893890A JPH04222206A JP H04222206 A JPH04222206 A JP H04222206A JP 2418938 A JP2418938 A JP 2418938A JP 41893890 A JP41893890 A JP 41893890A JP H04222206 A JPH04222206 A JP H04222206A
Authority
JP
Japan
Prior art keywords
fibers
melt index
density
give
cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2418938A
Other languages
Japanese (ja)
Inventor
Tetsuya Takahashi
哲也 高橋
Takeshi Sano
毅 佐野
Ryosuke Kamei
亀井 良祐
Kimitoshi Sano
佐野 仁俊
Yoshimasa Ishimura
石村 善正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2418938A priority Critical patent/JPH04222206A/en
Publication of JPH04222206A publication Critical patent/JPH04222206A/en
Pending legal-status Critical Current

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

PURPOSE:To obtain the title fiber useful for slate, etc., having excellent adhesiveness to cement, showing excellent dispersibility during processing reinforcing fibers into a sheetlike material by blending a specific high-density PE with a given amount of an organosilane compound to give a composition, subjecting the composition to melt spinning, multi-stage drawing and irradiating the fibers with active energy line. CONSTITUTION:A high-density PE having 0.950-0.970g/cm<3> density, 0.1-2.0g/10 minutes melt index and a ratio of high load melt index/melt index of <=40 is blended with 1.0-10.0wt.%, preferably 2.0-7.0wt.% organosilane compound such as vinyltriakoxysilane to give a composition, which is subjected to melt spinning, multi-stage drawing to give PE fibers. The PE fibers are irradiated with 0.5-30Mrad active energy such as electron beam to give the objective fibers. The fineness of the fibers is preferably 10-500d.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、セメントとの接着性、
抄造時の分散性に優れているため抄造法によってセメン
ト製品を製造する際に有効に使用される高密度ポリエチ
レン製のスレート用の補強繊維の製造方法に関する。
[Industrial Application Field] The present invention is characterized by its adhesion to cement,
The present invention relates to a method for producing reinforcing fibers for slate made of high-density polyethylene, which are effectively used when manufacturing cement products by the paper-making method because of their excellent dispersibility during paper-making.

【0002】0002

【従来の技術】従来、抄造法によってセメント製品を製
造するときの補強材は、古くからアスベストが使用され
てきたが、人体への有害性の問題があり、その取り扱い
方がむつかしくなってきている。一方、合成樹脂製のも
のではビニロン繊維、ポリプロピレン繊維等が使用され
ており、これらは径0.01〜1mm程度、長さ5〜5
0mm程度の短繊維として使用されている。
[Prior Art] Asbestos has long been used as a reinforcing material when manufacturing cement products using the papermaking method, but it has become difficult to handle because of the problem of its toxicity to the human body. . On the other hand, synthetic resin fibers such as vinylon fiber and polypropylene fiber are used, and these have a diameter of about 0.01 to 1 mm and a length of 5 to 5 mm.
It is used as short fibers of about 0 mm.

【0003】しかし、ビニロン繊維は親水性であるため
比較的セメントとの接着性がよいが、弾性率が低い欠点
を有する。一方、ポリプロピレン繊維は疎水性であるた
め、セメントとの接着性が悪く、また弾性率も低いため
十分満足すべき補強効果が得られないという欠点を有す
る。また、比重が0.9程度であるため抄造時に浮いて
凝集してしまうため、分散性は良くなく、抄造法により
セメント製品を製造するときの補強材としては好ましく
ない。
However, although vinylon fibers are hydrophilic and have relatively good adhesion to cement, they have the disadvantage of low elastic modulus. On the other hand, since polypropylene fibers are hydrophobic, they have poor adhesion to cement and also have a low modulus of elasticity, making it difficult to obtain a fully satisfactory reinforcing effect. Furthermore, since the specific gravity is about 0.9, it floats and aggregates during papermaking, resulting in poor dispersibility and is not preferred as a reinforcing material when producing cement products by papermaking.

【0004】ポリエチレンはポリプロピレンより比重が
大きいため、分散性はよくなるが、中高分子量ポリエチ
レンの通常の1段延伸による延伸繊維では弾性率も7〜
20GPa程度と低く、セメントとの親和性もないため
十分満足すべき補強効果が得られない。このため、超高
分子量ポリエチレンに多量のパラフィンワックス、過酸
化物及びシラン化合物をねり込み、加熱によりグラフト
化させてから、有機溶媒中で2段延伸する方法が知られ
ている(特開昭62−187148)が、有機溶媒を使
用することや多量のパラフィンワックスを使用すること
など成形後の後処理の必要性がある点で好ましくない。
Polyethylene has a higher specific gravity than polypropylene, so it has better dispersibility, but the elastic modulus of polyethylene drawn by normal one-step drawing of medium-high molecular weight polyethylene is 7 to 7.
Since it is as low as about 20 GPa and has no affinity with cement, a sufficiently satisfactory reinforcing effect cannot be obtained. For this reason, a method is known in which a large amount of paraffin wax, peroxide, and silane compound is mixed into ultra-high molecular weight polyethylene, grafted by heating, and then stretched in two steps in an organic solvent. -187148) is not preferred because it requires post-treatment after molding, such as the use of an organic solvent or a large amount of paraffin wax.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、前記
従来の抄造法によってセメント製品を製造するときのポ
リエチレン製の補強繊維の欠点を克服し、セメントとの
接着性を有し、抄造時の分散性の良好な高密度ポリエチ
レン製のセメント製品用補強繊維の製造方法を提供する
ことにある。
SUMMARY OF THE INVENTION It is an object of the present invention to overcome the drawbacks of polyethylene reinforcing fibers used when manufacturing cement products by the conventional papermaking method, to have adhesive properties with cement, An object of the present invention is to provide a method for producing reinforcing fibers for cement products made of high-density polyethylene and having good dispersibility.

【0006】[0006]

【課題を解決するための手段】本発明で使用される高密
度ポリエチレンは、溶融紡糸性を有し、メルトインデッ
クス(MI)が0.1〜2.0g/10min、密度が
0.950〜0.970g/cm3 、分子量分布の指
標となるハイロードメルトインデックス/メルトインデ
ックスの比HLMI/MI(ここにHLMIはハイロー
ドメルトインデックスを表わし、荷重が21.6kgで
ある他はMIと同じ方法で測定される値である。)が4
0以下のものである。
[Means for Solving the Problems] The high-density polyethylene used in the present invention has melt spinnability, a melt index (MI) of 0.1 to 2.0 g/10 min, and a density of 0.950 to 0. .970 g/cm3, the ratio of high load melt index/melt index HLMI/MI, which is an index of molecular weight distribution (here HLMI represents high load melt index, and was measured in the same manner as MI except that the load was 21.6 kg) ) is 4
It is less than or equal to 0.

【0007】密度が0.950g/cm3 未満のもの
では、延伸工程において破断が生じ、十分な延伸倍率が
得られないため高い強度が得られない。0.970を越
えるものは、重合するのが困難である。MIが0.1未
満のものは分子量が大きすぎるため延伸性が悪く、高い
強度が得られない。逆に2.0を越えるものは分子量が
小さすぎるため、高い延伸倍率が得られるが十分な強度
が得られない。分子量分布の目安であるハイロードメル
トインデックス/メルトインデックスの比は40以下、
好ましくは20〜30のものが使用される。40を越え
るものは、広分子量分布であるため十分な延伸倍率が得
られず、従って高い強度が得られない。
[0007] If the density is less than 0.950 g/cm3, breakage occurs during the stretching process, and a sufficient stretching ratio cannot be obtained, so that high strength cannot be obtained. Anything over 0.970 is difficult to polymerize. If the MI is less than 0.1, the molecular weight is too large, so the stretchability is poor and high strength cannot be obtained. On the other hand, if the molecular weight exceeds 2.0, the molecular weight is too small, and although a high stretching ratio can be obtained, sufficient strength cannot be obtained. The ratio of high road melt index/melt index, which is a guideline for molecular weight distribution, is 40 or less,
Preferably 20 to 30 are used. If it exceeds 40, a sufficient stretching ratio cannot be obtained due to a wide molecular weight distribution, and therefore high strength cannot be obtained.

【0008】かかる高密度ポリエチレンはエチレンの単
独重合体もしくは少量の他のα−オレフィン例えばプロ
ピレン、1−ブテン、4−メチル−1−ペンテン、1−
ヘキセン等との共重合体であり、必要に応じて、耐熱安
定剤、耐候安定剤、滑剤、艶消剤、顔料、難燃剤、発泡
剤等を含んでいてもよい。
Such high density polyethylene is a homopolymer of ethylene or a small amount of other α-olefins such as propylene, 1-butene, 4-methyl-1-pentene, 1-
It is a copolymer with hexene and the like, and may contain a heat stabilizer, a weather stabilizer, a lubricant, a matting agent, a pigment, a flame retardant, a foaming agent, etc. as necessary.

【0009】この高密度ポリエチレンに有機シラン化合
物を混合する。
[0009] An organic silane compound is mixed with this high-density polyethylene.

【0010】有機シラン化合物としては例えば、ビニル
トリアルコキシシラン、アリルトリアルコキシシラン、
ジアリルジアルコキシシラン、(メタ)アクリロキシプ
ロピルトリアルコキシシラン、グリシジルオキシプロピ
ルトリアルコキシシラン、3−メルカプトプロピルトリ
アルコキシシラン等が挙げられるが電子線照射により反
応するものである限り使用が可能であり、これらの化合
物に限定されるわけではない。有機シラン化合物の添加
量は1.0〜10.0重量%、好ましくは2.0〜7.
0重量%である。1.0%未満ではセメントとの接着性
の効果が発現しにくい。また10.0重量%をこえると
未反応の有機シラン化合物が存在するようになり、添加
量を多くしても、セメントとの接着性の効果は向上しな
い。有機シラン化合物の添加は、高密度ポリエチレンの
ペレットに対してドライブレンドで行ってもよい、ドラ
イブレンド後押出機を通して再度ペレタイズしてもよい
。また、高密度ポリエチレン製造時に添加してもよい。
Examples of organic silane compounds include vinyltrialkoxysilane, allyltrialkoxysilane,
Examples include diallyldialkoxysilane, (meth)acryloxypropyltrialkoxysilane, glycidyloxypropyltrialkoxysilane, 3-mercaptopropyltrialkoxysilane, etc., but they can be used as long as they react with electron beam irradiation. It is not limited to these compounds. The amount of the organic silane compound added is 1.0 to 10.0% by weight, preferably 2.0 to 7.0% by weight.
It is 0% by weight. If it is less than 1.0%, it is difficult to exhibit the adhesive effect with cement. If the amount exceeds 10.0% by weight, unreacted organic silane compounds will be present, and even if the amount added is increased, the effect of adhesion to cement will not improve. The addition of the organosilane compound may be carried out by dry blending the high density polyethylene pellets, which may be pelletized again through an extruder after dry blending. It may also be added during production of high-density polyethylene.

【0011】この高密度ポリエチレンを用いたポリエチ
レン繊維の製造方法を以下に記す。上記の有機シラン化
合物を含有した高密度ポリエチレンを溶融紡糸し、急冷
後、多段延伸して、モノフィラメントを形成する。溶融
紡糸用ノズルとしてはノズル断面積が0.1〜1.0m
m2 のものであり、断面形状は真円、楕円、その他特
に限定はない。又、紡糸した後の冷却温度は好ましくは
20℃以下に保持されている。多段延伸は、加圧蒸気槽
、熱風槽、熱溶媒、熱板、熱ロール、湿式槽等いづれの
組合せでも良いが、第1段を湿式延伸で行い、第2段以
降の延伸を熱ロールで行う組合せで行ない、各段の延伸
倍率は各段での白濁開始倍率より0.2〜0.5倍低く
なるように且つ全体として14〜18倍延伸となるよう
に設定し、延伸温度は、第1段延伸を100℃以下、第
2段以降の延伸を100℃以上にすることが望ましい。 多段延伸することにより強度を上げることが可能となり
、20GPa以上の弾性率をもつ高密度ポリエチレン製
繊維が得られる。
A method for producing polyethylene fibers using this high-density polyethylene will be described below. High-density polyethylene containing the above-described organic silane compound is melt-spun, rapidly cooled, and then stretched in multiple stages to form a monofilament. As a nozzle for melt spinning, the cross-sectional area of the nozzle is 0.1 to 1.0 m.
m2, and the cross-sectional shape may be a perfect circle, an ellipse, or otherwise not particularly limited. Further, the cooling temperature after spinning is preferably maintained at 20° C. or lower. Multi-stage stretching may be performed using any combination of a pressurized steam tank, a hot air tank, a hot solvent, a hot plate, a heated roll, a wet tank, etc.; The stretching ratio of each stage was set to be 0.2 to 0.5 times lower than the clouding start ratio at each stage, and the stretching was 14 to 18 times as a whole, and the stretching temperature was as follows: It is desirable that the first stage stretching be 100°C or less, and the second and subsequent stages stretching be 100°C or higher. Multi-stage stretching makes it possible to increase the strength, and it is possible to obtain high-density polyethylene fibers with an elastic modulus of 20 GPa or more.

【0012】繊度は10〜500dが望ましい。繊度が
10d未満であると細すぎるため延伸工程において破断
等のトラブルが多く、また生産性も低い。500dを越
えると分散性が悪く、また単位重量あたりの比表面積も
小さいため、セメントとの接着性が十分であるといえな
い。
[0012] The fineness is preferably 10 to 500 d. When the fineness is less than 10 d, it is too thin and causes many troubles such as breakage in the drawing process, and the productivity is also low. If it exceeds 500 d, the dispersibility is poor and the specific surface area per unit weight is also small, so it cannot be said that the adhesion to cement is sufficient.

【0013】製造されたポリエチレン繊維に活性エネル
ギー線を照射する。また、活性エネルギー線の種類は特
に制限はなく、例えば電子線、γ−線等が有効である。 照射量は0.1〜50Mradの範囲で好ましくは、0
.5〜30Mardである。活性エネルギー線照射時の
温度は室温付近が望ましいが高密度ポリエチレンが溶融
する温度以下であれば特に制限はしない。
[0013] The produced polyethylene fibers are irradiated with active energy rays. Further, the type of active energy ray is not particularly limited, and for example, electron beams, γ-rays, etc. are effective. The irradiation amount is in the range of 0.1 to 50 Mrad, preferably 0.
.. It is 5-30 Mar. The temperature during active energy ray irradiation is preferably around room temperature, but is not particularly limited as long as it is below the temperature at which high-density polyethylene melts.

【0014】尚、活性エネルギー線照射は不活性雰囲気
中で行うほうが望ましいが、高密度ポリエチレンと反応
しなければよく、空気中でも可能である。この活性エネ
ルギー線照射により有機シランは重合し、セメントとの
接着性が良好な表面を形成するものと考えられる。
[0014] Although it is preferable to carry out active energy ray irradiation in an inert atmosphere, it is possible to carry out the irradiation in air as long as the irradiation does not react with the high-density polyethylene. It is thought that the organic silane is polymerized by this active energy ray irradiation, forming a surface with good adhesion to cement.

【0015】[0015]

【実施例】実施例1 メルトインデックス(JIS  K6760)0.51
g/10min 、密度0.953g/cm3 、HL
MI/MIが25の高密度ポリエチレンに有機シラン化
合物としてアリルトリエトキシシラン(TEAS)を6
重量%混入し、溶融押出し急冷後、4段延伸して100
dの高密度ポリエチレン繊維を製造した。製造された高
密度ポリエチレン繊維に電子線を5.0Mrad照射し
た。電子線照射機はESI社製(加速電圧165KeV
)を使用した。なお、繊維の物性を表1に示す。その後
、所定の繊維長にカットし短繊維とした(繊維長5mm
,8mm計2種)。この短繊維をポルトランドセメント
に対して体積混入率がそれぞれ1.5容量%、3容量%
、5容量%となるように混入し、セメント100重量部
に対して、パルプ4重量部、シリカヒューム5重量部を
混合し、水1000重量部を加えて、セメント組成物を
得た。得られた組成物からスレート板(幅×長さ×厚さ
=130mm×500mm×5mm)を抄造法により作
製した。スレート板は70℃で10時間養生を行ない、
曲げ強度を測定し、その結果を表2に示した。曲げ強度
は支点間距離300mmの3等分点載荷法により行った
[Example] Example 1 Melt index (JIS K6760) 0.51
g/10min, density 0.953g/cm3, HL
Allyltriethoxysilane (TEAS) as an organic silane compound is added to high-density polyethylene with an MI/MI of 25.
% by weight, melt-extruded, rapidly cooled, and stretched in 4 stages to 100%
A high-density polyethylene fiber of d was manufactured. The manufactured high-density polyethylene fiber was irradiated with an electron beam of 5.0 Mrad. The electron beam irradiation machine is made by ESI (acceleration voltage 165KeV)
)It was used. The physical properties of the fibers are shown in Table 1. Thereafter, the fibers were cut to a predetermined length to obtain short fibers (fiber length: 5 mm)
, 8mm total, 2 types). The volume mixing ratio of these short fibers to Portland cement is 1.5% by volume and 3% by volume, respectively.
, 5% by volume, 4 parts by weight of pulp and 5 parts by weight of silica fume were mixed with 100 parts by weight of cement, and 1000 parts by weight of water was added to obtain a cement composition. A slate board (width x length x thickness = 130 mm x 500 mm x 5 mm) was produced from the obtained composition by a papermaking method. The slate board was cured at 70℃ for 10 hours.
The bending strength was measured and the results are shown in Table 2. The bending strength was measured by a three-point loading method with a distance between fulcrums of 300 mm.

【0016】比較例1 アリルエトキシシランを混入しなかった以外は、実施例
1の条件で繊維を製造した。これを短繊維としてスレー
ト板を作成した。結果を表1,表2に示す。
Comparative Example 1 A fiber was produced under the conditions of Example 1 except that allyl ethoxysilane was not mixed. A slate board was created using this short fiber. The results are shown in Tables 1 and 2.

【0017】比較例2 メルトインデックス2.2g/10min 、密度0.
938g/cm3 、HLMI/MI=31の高密度ポ
リエチレンにアリルエトキシシランを6%混入して溶融
紡糸し、1段延伸して繊維を製造した。単糸繊度を10
0dとして電子線を5.0Mrad照射し、短繊維とし
てスレート板を作成した。結果を表1,表2に示す。
Comparative Example 2 Melt index 2.2g/10min, density 0.
High-density polyethylene of 938 g/cm3 and HLMI/MI=31 was mixed with 6% allyl ethoxysilane, melt-spun, and then drawn in one stage to produce fibers. Single yarn fineness is 10
An electron beam of 5.0 Mrad was irradiated at 0d, and a slate board was created as short fibers. The results are shown in Tables 1 and 2.

【0018】比較例3 比較例2の条件でアリルエトキシシランを混入せずに高
密度ポリエチレン繊維を製造した。これを短繊維として
スレート板を作成した。結果を表1,表2に示す。
Comparative Example 3 High-density polyethylene fibers were produced under the conditions of Comparative Example 2 without mixing allyl ethoxysilane. A slate board was created using this short fiber. The results are shown in Tables 1 and 2.

【0019】[0019]

【表1】[Table 1]

【0020】[0020]

【表2】[Table 2]

【0021】[0021]

【発明の効果】セメントとの接着性が良好で、弾性率が
高い、抄造法によってセメント製品を製造するときに使
用される高密度ポリエチレン製補強繊維が得られる。
[Effects of the Invention] A reinforcing fiber made of high-density polyethylene, which has good adhesion to cement and a high modulus of elasticity and is used when manufacturing cement products by a paper-making method, can be obtained.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  密度が0.950〜0.970g/c
m3 、メルトインデックスが0.1〜2.0g/10
min 、ハイロードメルトインデックス/メルトイン
デックスの比が40以下の高密度ポリエチレンに有機シ
ラン化合物を1.0〜10.0重量%配合した組成物を
、溶融紡糸し、さらに多段延伸して、えられるポリエチ
レン繊維に、活性エネルギー線を照射することを特徴と
する高密度ポリエチレン製のセメント製品用補強繊維の
製造方法。
[Claim 1] Density is 0.950 to 0.970 g/c
m3, melt index 0.1-2.0g/10
obtained by melt-spinning a composition in which 1.0 to 10.0% by weight of an organic silane compound is blended with high-density polyethylene having a high road melt index/melt index ratio of 40 or less, followed by multi-stage stretching. A method for producing reinforcing fibers for cement products made of high-density polyethylene, which comprises irradiating polyethylene fibers with active energy rays.
JP2418938A 1990-12-21 1990-12-21 Production of reinforcing fiber for cement product Pending JPH04222206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2418938A JPH04222206A (en) 1990-12-21 1990-12-21 Production of reinforcing fiber for cement product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2418938A JPH04222206A (en) 1990-12-21 1990-12-21 Production of reinforcing fiber for cement product

Publications (1)

Publication Number Publication Date
JPH04222206A true JPH04222206A (en) 1992-08-12

Family

ID=18526688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2418938A Pending JPH04222206A (en) 1990-12-21 1990-12-21 Production of reinforcing fiber for cement product

Country Status (1)

Country Link
JP (1) JPH04222206A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2230350A1 (en) * 2009-03-18 2010-09-22 baumhueter extrusion GmbH Polymer fiber, its use and process for its manufacture
WO2020106544A1 (en) * 2018-11-20 2020-05-28 Micon Technology, Inc. Electron beam irradiated product and methods

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2230350A1 (en) * 2009-03-18 2010-09-22 baumhueter extrusion GmbH Polymer fiber, its use and process for its manufacture
WO2010105981A1 (en) * 2009-03-18 2010-09-23 Baumhueter Extrusion Gmbh Polyethylene fiber, its use and process for its manufacture
WO2020106544A1 (en) * 2018-11-20 2020-05-28 Micon Technology, Inc. Electron beam irradiated product and methods
CN113227510A (en) * 2018-11-20 2021-08-06 迈肯技术股份有限公司 Electron beam irradiation product and method
CN113227510B (en) * 2018-11-20 2024-03-22 迈肯技术股份有限公司 Electron beam irradiation product and method

Similar Documents

Publication Publication Date Title
KR100996019B1 (en) Improved binder fiber and nonwoven web
US5368919A (en) Propylene polymer compositions containing high melt strength propylene polymer material
US4543286A (en) Composite containing coated extended chain polyolefin fibers
US3935344A (en) Sizing composition and glass fibers treated therewith
JPH06508892A (en) polyethylene bicomponent fiber
JP2604347B2 (en) Coated extended chain polyethylene fiber
JP2001316534A (en) Long-fiber reinforced polypropylene resin composition and molded product
JPH03220308A (en) Open fiber, production thereof, open fiber aggregate using same fiber and production thereof
CN113136636B (en) Super-absorbent ES composite fiber and preparation method thereof
DE69925118D1 (en) Mixture for air-permeable films and process for the production of air-permeable films
EP1169500B1 (en) Polypropylene fibres
US3366710A (en) Modification of stereoregular polyolefins with polyethylene glycol
EP0424841B1 (en) Speaker diaphragm and method for making it
CN111235686A (en) Composite ultrashort fiber and preparation method thereof
KR102322603B1 (en) Fiber yarn for net and manufacturing method thereof
KR100304297B1 (en) Suitable fibers for nonwoven fabrication with improved strength and softness
JPH04222206A (en) Production of reinforcing fiber for cement product
JPH05132345A (en) Production of reinforcing fiber for cement product
JP4742211B2 (en) Long fiber reinforced polypropylene resin composition and molded product
KR101142724B1 (en) Method for the manufacture of a functionalised polyolefin, functionalised polyolefin, bicomponent fiber, nonwoven and hygienic absorbent product
JP7432603B2 (en) Airlaid substrate with at least one bicomponent fiber
JP2002301772A (en) Method for manufacturing polypropylene fiber- reinforced polyolefin resin moldings and polypropylene fiber-reinforced polyolefin resin moldings
CN113186617A (en) Anion antibacterial ES composite fiber and preparation method thereof
KR102654493B1 (en) Thermoplastic resin composition comprising fiber network structure and method for manufacturing the same
JPH05311507A (en) Production of reinforcing fiber for cement product