JPH04219317A - Production of titanium oxide thin film - Google Patents

Production of titanium oxide thin film

Info

Publication number
JPH04219317A
JPH04219317A JP2417909A JP41790990A JPH04219317A JP H04219317 A JPH04219317 A JP H04219317A JP 2417909 A JP2417909 A JP 2417909A JP 41790990 A JP41790990 A JP 41790990A JP H04219317 A JPH04219317 A JP H04219317A
Authority
JP
Japan
Prior art keywords
thin film
titanium
titanium oxide
oxide thin
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2417909A
Other languages
Japanese (ja)
Inventor
Yoichi Takaoka
陽一 高岡
Yoshimasa Kamishiro
善正 神代
Yoshiki Kinoshita
義樹 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP2417909A priority Critical patent/JPH04219317A/en
Publication of JPH04219317A publication Critical patent/JPH04219317A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a titanium oxide thin film having uniform crystallinity on a substrate at a low temperature by reacting a titanium halide gas with oxygen gas in a plasma generated by high-frequency electric discharge. CONSTITUTION:Gas of a titanium halide (e.g. titanium tetrachloride) is made to react with oxygen gas in a plasma generated by high-frequency electric discharge to form a titanium oxide thin film on a substrate made of single crystal of magnesium oxide. A titanium oxide thin film having uniform crystallinity can be formed on the substrate at a low temperature by this process.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【発明の技術分野】本発明は、いわゆるプラズマCVD
法でチタン酸化物薄膜を製造する方法に関する。
TECHNICAL FIELD OF THE INVENTION The present invention relates to so-called plasma CVD
The present invention relates to a method for producing a titanium oxide thin film by a method.

【0002】0002

【発明の技術的背景とその問題点】チタン酸化物薄膜は
、かねてより半導体素子や高誘電体素子、さらには光電
気化学素子などいわゆる機能性薄膜素子として注目され
てきているが、近時、機能性薄膜素子の適用分野の急速
な拡大とあいまって、成膜の高性能化や成膜処理プロセ
スの最適化など成膜の品質面、成膜操作や装置面におい
ての種々の改良提案がなされてきている。しかして、チ
タン酸化物薄膜は、真空蒸着法やスパッタリング法、あ
るいは熱または光励起によるCVD法、さらにはプラズ
マ励起CVD法などによる成膜方法が種々試みられてき
ているが、いずれの方法による場合も未だ得られる薄膜
の品質面においても、また成膜操作面においても、改善
すべき問題点が少なくない。ことに薄膜の結晶化度とそ
の均一性は、膜質の諸特性にきわめて影響が大きく、高
結晶化度の薄膜を効率よく均一に形成し得る工業的実施
容易な製造方法が強く希求されている。本発明者等は、
かねてより、チタン酸化物の半導体的特性や誘電体的特
性、さらには光化学的特性などに着目した機能性素材化
について種々の提案をおこなってきている。さらに本発
明者等は、前記の機能性特性についてチタン酸化物の薄
膜結晶化による機能性素子材の開発をはかるべく種々検
討を進めている。
[Technical background of the invention and its problems] Titanium oxide thin films have long been attracting attention as so-called functional thin film devices such as semiconductor devices, high dielectric devices, and even photoelectrochemical devices. Coupled with the rapid expansion of the field of application of functional thin film devices, various improvements have been proposed in terms of film deposition quality, film deposition operations, and equipment, such as improving the performance of film deposition and optimizing the film deposition process. It's coming. Various methods have been tried to form titanium oxide thin films, such as vacuum evaporation, sputtering, CVD using heat or light excitation, and plasma-enhanced CVD, but none of these methods have been used. There are still many problems that need to be improved, both in terms of the quality of the thin films obtained and in the film-forming operation. In particular, the degree of crystallinity of a thin film and its uniformity have an extremely large effect on various film properties, and there is a strong need for an industrially easy manufacturing method that can efficiently and uniformly form a thin film with a high degree of crystallinity. . The inventors,
For some time now, various proposals have been made regarding the use of titanium oxide as a functional material, focusing on its semiconducting properties, dielectric properties, and photochemical properties. Furthermore, the present inventors have been conducting various studies regarding the above-mentioned functional properties in order to develop functional element materials based on thin film crystallization of titanium oxide.

【0003】ところでチタン酸化物の薄膜は、通常、チ
タン酸化物を原料とした真空蒸着法やチタン酸化物をタ
ーゲットしたスパッタリング法によって形成する方法が
とられているが、これらの方法は原料融点が高くきわめ
て高温の加熱処理を要したり、また薄膜の形成速度が遅
かったりする。一方、プラズマ励起下でチタン化合物を
CVD法によって基板上にチタン酸化物薄膜を形成させ
る方法もよく知られている。この方法は比較的低温下で
成膜速度が大きいところから、近時種々の試みがなされ
てきている。しかしながら、この方法においても、基板
原子の薄膜中への拡散、常温にしたときの熱応力の発生
などを惹起し易く、このため前記成膜処理のより低温化
とかつ該低温化処理における結晶化度の高い成膜処理方
法が、強く希求されてきている。本発明者等は、前記課
題の改善をはかるべく種々検討を進めた結果、特定の基
板材料を用いて前記プラズマ励起下でCVD法反応で成
膜結晶化をおこなうことによって、前記問題点を解決し
得ることの知見を得、本発明を完成したものである。
By the way, thin films of titanium oxide are usually formed by vacuum evaporation using titanium oxide as a raw material or sputtering using titanium oxide as a target. It requires heat treatment at extremely high temperatures, and the rate of thin film formation is slow. On the other hand, a method of forming a titanium oxide thin film on a substrate by CVD of a titanium compound under plasma excitation is also well known. Since this method has a high film formation rate at a relatively low temperature, various attempts have been made recently. However, even in this method, diffusion of substrate atoms into the thin film and generation of thermal stress when the temperature is brought to room temperature are likely to occur. There is a strong demand for highly efficient film formation processing methods. As a result of various studies aimed at improving the above-mentioned problems, the present inventors solved the above-mentioned problems by performing film formation and crystallization by a CVD method reaction under the plasma excitation using a specific substrate material. The present invention was completed based on the knowledge that it is possible to do so.

【0004】0004

【発明の構成】すなわち、本発明は以下のとおりである
[Structure of the Invention] That is, the present invention is as follows.

【0005】(1)ハロゲン化チタンのガスと酸素ガス
とを、高周波放電によるプラズマ発生下で反応させて、
酸化マグネシウム基板上にチタン酸化物薄膜を形成させ
ることを特徴とするチタン酸化物薄膜の製造方法。
(1) By reacting titanium halide gas and oxygen gas under plasma generation by high-frequency discharge,
A method for producing a titanium oxide thin film, which comprises forming a titanium oxide thin film on a magnesium oxide substrate.

【0006】(2)ハロゲン化チタンが四塩化チタンで
あることを特徴とする請求項1のチタン酸化物薄膜の製
造方法。
(2) The method for producing a titanium oxide thin film according to claim 1, wherein the titanium halide is titanium tetrachloride.

【0007】(3)基板が酸化マグネシウムの単結晶で
あることを特徴とする請求項1のチタン酸化物薄膜の製
造方法である。
(3) The method for producing a titanium oxide thin film according to claim 1, wherein the substrate is a single crystal of magnesium oxide.

【0008】本発明において、出発原料として用いるハ
ロゲン化チタンとしては、たとえば塩化チタン、臭化チ
タン、フッ化チタン、ヨウ化チタンなどが挙げられるが
、とりわけ四塩化チタンは最も好ましい。前記ハロゲン
化チタンは、ガス化されて高周波プラズマ発生CVD反
応器へ導入される。該反応器へのハロゲン化チタンのガ
スの導入量は、そのガス流量が0.5〜2.0sccm
が適当である。なおチタン酸化物薄膜は所望する機能性
特性に応じ、種々の特性付与成分を添加して複合系チタ
ン酸化物薄膜とすることもできる。
In the present invention, the titanium halide used as a starting material includes, for example, titanium chloride, titanium bromide, titanium fluoride, and titanium iodide, but titanium tetrachloride is particularly preferred. The titanium halide is gasified and introduced into a high frequency plasma generating CVD reactor. The amount of titanium halide gas introduced into the reactor is such that the gas flow rate is 0.5 to 2.0 sccm.
is appropriate. Note that the titanium oxide thin film can be made into a composite titanium oxide thin film by adding various characteristic-imparting components depending on the desired functional properties.

【0009】基板としては、酸化マグネシウムの単結晶
体、多結晶体が望ましく、この他に必要に応じ酸化マグ
ネシウムと異種成分との複合系酸化物なども挙げること
ができる。基板の温度は、300〜600℃であり、前
記温度範囲より低きに過ぎると所望の結晶性薄膜が得ら
れず、また高きに過ぎると急速に成膜化されるため均一
な結晶性薄膜が得られにくい。
The substrate is preferably a single crystal or polycrystal of magnesium oxide, and may also include a composite oxide of magnesium oxide and a different component, if necessary. The temperature of the substrate is 300 to 600°C; if the temperature is too low, the desired crystalline thin film cannot be obtained, and if it is too high, the film will be formed rapidly, making it difficult to obtain a uniform crystalline thin film. Hard to obtain.

【0010】高周波プラズマ発生CVD反応器内の圧力
は、通常50〜150ミリトール程度である。本発明に
おいて、プラズマCVD法によって成膜処理をおこなう
には、ハロゲン化チタンガスと酸素ガスとを流量を十分
制御しながら導入し、一方ヒーター上の基板と上部電極
との間にたとえば13.56MHzの高周波を印加しグ
ロー放電させてプラズマを発生させながら気相反応処理
して基板上に所望のチタンの酸化物薄膜を結晶成長させ
る。酸素ガスの流量は1.0〜4.0sccmが適当で
ある。プラズマ発生時間は、形成させる膜厚によっても
異なるが、通常10〜30分間である。また成膜速度は
通常5〜100nm/分である。
[0010] The pressure within the high-frequency plasma-generated CVD reactor is usually about 50 to 150 mTorr. In the present invention, in order to perform the film formation process by plasma CVD method, titanium halide gas and oxygen gas are introduced while controlling the flow rates sufficiently, while a 13.56 MHz, for example, gas is introduced between the substrate on the heater and the upper electrode. A desired titanium oxide thin film is crystal-grown on the substrate by applying a high frequency wave and generating plasma through glow discharge and vapor phase reaction treatment. The appropriate flow rate of oxygen gas is 1.0 to 4.0 sccm. The plasma generation time varies depending on the thickness of the film to be formed, but is usually 10 to 30 minutes. Further, the film forming rate is usually 5 to 100 nm/min.

【0011】[0011]

【実施例】実施例 四塩化チタンを加熱してガス化し、高周波プラズマ発生
CVD反応装置内に導入するとともに、酸素ガスを導入
してこれらの流量比を表1に示す数値に保持しかつ真空
ポンプで排出しながら、ついでここに13.56MHz
の高周波を表1に示した放電電力値で印加したところ、
ここにグロー放電が発生し、四塩化チタンはこのグロー
放電によるプラズマCVD反応で二酸化チタンとなり、
これが酸化マグネシウム単結晶(100)よりなる基板
上に表1の成膜速度で薄膜が形成された。このようにし
て得られた二酸化チタン薄膜の厚みは600nmであっ
た。
[Example] Example Titanium tetrachloride was heated to gasify it and introduced into a high-frequency plasma generating CVD reactor, and at the same time oxygen gas was introduced to maintain the flow rate ratio at the values shown in Table 1, and a vacuum pump was used. 13.56MHz here.
When the high frequency of was applied at the discharge power values shown in Table 1,
A glow discharge occurs here, and titanium tetrachloride becomes titanium dioxide through a plasma CVD reaction caused by this glow discharge.
A thin film was formed on a substrate made of magnesium oxide single crystal (100) at the film formation rate shown in Table 1. The thickness of the titanium dioxide thin film thus obtained was 600 nm.

【0012】0012

【表1】[Table 1]

【0013】比較例 実施例1において、基板の酸化マグネシウムを、ガラス
(Ba−B−Si系)に代えたことのほかは、同例の場
合と同様に処理した(二酸化チタン薄膜の厚みは600
nmであった)。
Comparative Example The treatment was carried out in the same manner as in Example 1, except that the magnesium oxide in the substrate was replaced with glass (Ba-B-Si type) (the thickness of the titanium dioxide thin film was 600 mm).
nm).

【0014】前記の実施例及び比較例で得られた二酸化
チタン薄膜について、通常のCuKα線によるX線回析
の測定をおこなった。
The titanium dioxide thin films obtained in the Examples and Comparative Examples described above were subjected to X-ray diffraction measurements using ordinary CuKα rays.

【0015】第1図のX線回析ピークは、実施例の薄膜
についてのものであって、二酸化チタンの高温安定相で
あるルチル型結晶の面指数(110)および(220)
によるもののみであり、しかも強度が大きい。このこと
は、得られた薄膜がルチル型の結晶であって、(110
)方向に完全に配向していることを示している。なお、
MgOのピークは基板のX線回析ピークを示す。
The X-ray diffraction peaks in FIG. 1 are for the thin film of the example, and are due to the plane indices (110) and (220) of the rutile crystal, which is a high temperature stable phase of titanium dioxide.
However, the strength is high. This means that the obtained thin film is a rutile type crystal and (110
) direction. In addition,
The MgO peak indicates the X-ray diffraction peak of the substrate.

【0016】第2図のX線回析ピークは、比較例の薄膜
についてのものであって、二酸化チタンのアナターゼ型
結晶の面指数(101)、(200)、(211)およ
ひ(220)によるものであり、いずれも強度が小さい
。このことは得られた薄膜がアナターゼ型結晶であって
、配向性が弱いことを示している。
The X-ray diffraction peaks in FIG. 2 are for the thin film of the comparative example, and have plane indices of (101), (200), (211) and (220) of the anatase crystal of titanium dioxide. ), and both have low strength. This indicates that the obtained thin film is anatase type crystal and has weak orientation.

【0017】[0017]

【発明の効果】本発明は、結晶性の均一なチタン酸化物
薄膜を低い温度で製造する方法であって、機能性素子材
の展開をはかる上できわめて好適なものである。
The present invention is a method for producing a uniformly crystalline titanium oxide thin film at a low temperature, and is extremely suitable for the development of functional element materials.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】実施例で得られた薄膜のX線回析図である。R
は二酸化チタンのルチル型結晶を示す。
FIG. 1 is an X-ray diffraction diagram of a thin film obtained in an example. R
indicates a rutile-type crystal of titanium dioxide.

【図2】比較例で得られた薄膜のX線回析図である。A
は二酸化チタンのアナターゼ型結晶を示す。
FIG. 2 is an X-ray diffraction diagram of a thin film obtained in a comparative example. A
indicates anatase crystals of titanium dioxide.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】ハロゲン化チタンのガスと酸素ガスとを、
高周波放電によるプラズマ発生下で反応させて、酸化マ
グネシウム基板上にチタン酸化物薄膜を形成させること
を特徴とするチタン酸化物薄膜の製造方法。
Claim 1: Titanium halide gas and oxygen gas,
A method for producing a titanium oxide thin film, which comprises forming a titanium oxide thin film on a magnesium oxide substrate by reacting under plasma generation by high-frequency discharge.
【請求項2】ハロゲン化チタンが四塩化チタンであるこ
とを特徴とする請求項1のチタン酸化物薄膜の製造方法
2. The method for producing a titanium oxide thin film according to claim 1, wherein the titanium halide is titanium tetrachloride.
【請求項3】基板が酸化マグネシウムの単結晶であるこ
とを特徴とする請求項1のチタン酸化物薄膜の製造方法
3. The method for producing a titanium oxide thin film according to claim 1, wherein the substrate is a single crystal of magnesium oxide.
JP2417909A 1990-12-19 1990-12-19 Production of titanium oxide thin film Pending JPH04219317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2417909A JPH04219317A (en) 1990-12-19 1990-12-19 Production of titanium oxide thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2417909A JPH04219317A (en) 1990-12-19 1990-12-19 Production of titanium oxide thin film

Publications (1)

Publication Number Publication Date
JPH04219317A true JPH04219317A (en) 1992-08-10

Family

ID=18525913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2417909A Pending JPH04219317A (en) 1990-12-19 1990-12-19 Production of titanium oxide thin film

Country Status (1)

Country Link
JP (1) JPH04219317A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0866635A (en) * 1993-12-14 1996-03-12 Toto Ltd Photocatalytic thin film and its formation
JP2002009355A (en) * 2000-06-22 2002-01-11 Ngk Spark Plug Co Ltd Substrate with metal oxide film and its producing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0866635A (en) * 1993-12-14 1996-03-12 Toto Ltd Photocatalytic thin film and its formation
JP2002009355A (en) * 2000-06-22 2002-01-11 Ngk Spark Plug Co Ltd Substrate with metal oxide film and its producing method

Similar Documents

Publication Publication Date Title
JP3728465B2 (en) Method for forming single crystal diamond film
JPH0333641B2 (en)
JPH04219317A (en) Production of titanium oxide thin film
JP2002080296A (en) Thin film rock crystal and its manufacturing method
JPH06340422A (en) Production of thin titanium oxide film
JPH03122266A (en) Production of thin nitride film
JPH09227296A (en) Silicon nitride single crystal film and its production
JP2623475B2 (en) Counter electrode type microwave plasma processing apparatus and processing method
JPH0573337B2 (en)
JPH0940683A (en) Highly pure titanium complex, its production and liquid composition for forming bst membrane
JPH08225398A (en) Oxide thin film having rock crystal structure and its production
JP4055939B2 (en) LiNbO3 thin film forming method
JP3219832B2 (en) Manufacturing method of silicon carbide thin film
JPH0769792A (en) Method for epitaxial growth of diamond crystal and method for selective epitacial growth
JPS60186500A (en) Method for synthesizing diamond from vapor phase
JPS6355197A (en) Production of diamond having high purity
JPH064520B2 (en) Manufacturing method of oxide thin film
JP2679808B2 (en) Method for producing diamond-like carbon film
JPH06158274A (en) Surface-wave element and production thereof
JP3190100B2 (en) Carbon material production equipment
JPS6240377A (en) Production of antimony nitride
JPH02196096A (en) Method for synthesizing thin diamond film
JPS62180072A (en) Amorphous carbon film and its production
JPH01298093A (en) Production of diamond film
JPH02157123A (en) Production of thin barium titanate film