JPH0421748B2 - - Google Patents

Info

Publication number
JPH0421748B2
JPH0421748B2 JP58110406A JP11040683A JPH0421748B2 JP H0421748 B2 JPH0421748 B2 JP H0421748B2 JP 58110406 A JP58110406 A JP 58110406A JP 11040683 A JP11040683 A JP 11040683A JP H0421748 B2 JPH0421748 B2 JP H0421748B2
Authority
JP
Japan
Prior art keywords
layer
sprayed
ceramics
thermal
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58110406A
Other languages
Japanese (ja)
Other versions
JPS602659A (en
Inventor
Haratsugu Koyama
Shuntaro Sudo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP58110406A priority Critical patent/JPS602659A/en
Publication of JPS602659A publication Critical patent/JPS602659A/en
Publication of JPH0421748B2 publication Critical patent/JPH0421748B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は高温用溶射部材に関し、詳しくは、高
温で使用され、耐熱衝撃性に優れ、かつ耐食性、
耐エロージヨン性、耐摩耗性も良好な、高温用溶
射部材にかかる。 高温で使用する各種部品の、酸化腐食、エロー
ジヨン等からの保護、断熱性の付与、耐摩耗性の
付与などの目的で、セラミツクスを主体とする溶
射が広く使用されている。 セラミツクスは、高温における安定性に優れ、
また、上記諸特性も優れていることから、上記目
的に対して極めて有力な材料であるが、熱膨脹率
が低く、金属母材との熱膨脹差が大きいため、金
属母材へのセラミツクス溶射層は、熱サイクル、
熱衝撃に弱いという欠点がある。 ところで従来の溶射部材は、第1図に示すよう
に、気孔6がほゞ一定に分布しており、その気孔
率は用途によつて変動はあるが、2.5〜10%程度
とされている。 上記のような、金属母材1へのセラミツクス溶
射層の欠点を改善する方法として、従来より各種
の方法が提案・実施されている。 たとえば、 (1) 中間層として、母材金属1とセラミツクス層
との、中間的な熱膨脹率を有する材料を溶射す
る方法。 (2) セラミツクスと耐熱金属を複合させた溶射層
を、母材金属1とセラミツクス層との間に設け
る方法。 (3) 母材金属1の表面部に、ワイヤネツト、繊維
等を複合して、母材金属1の熱膨脹を抑制させ
る方法。 (4) セラミツクス層の気孔率を高めて、熱膨脹差
を吸収させる方法。 (1)〜(4)は、それぞれ、単独あるいは組合せて適
用されるが、これらの方法にも、次のような欠点
があり、必ずしも充分とはいえない。 すなわち、(1)〜(3)の方法においては、 特に、中間層部分を厚くする場合等におい
て、コストアツプは避けられない。 本来の目的である耐久性、耐摩耗性、断熱性
への寄与が殆んどない中間層が存在することに
より、溶射部材全体の重量が増大する。 (1)〜(3)の方法の、単独又は組合せだけでの耐
熱衝撃の改善効果は充分でない場合が多い。 一方、(4)の方法の欠点は、気孔率が高いため、
耐熱衝撃性以外の他の特性が犠牲となることであ
る。 すなわち、気孔率が高いために、酸化腐食、エ
ロージヨン、耐摩耗性が劣つてくることである。 従つて、実際上の気孔率は、両特性の兼ね合い
で、第1図に示すように、均一に気孔6を分散さ
せた、気孔率を低い値に決めざるを得ないことが
多く、耐熱衝撃性の観点からみると、充分とは言
えないものである。 本発明は、母材金属1表面に形成する、セラミ
ツクス単独の溶射層、ないし、セラミツクスと耐
熱金属の複合溶射層の気孔率言を、溶射層の表面
側では小さく、母材側では大きく配分することに
よつて、耐熱衝撃性に優れ、かつ、耐熱性、耐エ
ロージヨン性、耐摩耗性においても、良好である
ばかりでなく、コスト・重量の増大の少ない高温
溶射部材を提供することを目的としている。 このような目的は、本発明によれば、母材金属
表面に、セラミツクス単独溶射層、ないし、セラ
ミツクスと耐熱金属の複合溶射層を形成した高温
用溶射部材であつて、前記セラミツクス単独溶射
層、ないし、セラミツクスと耐熱金属の複合溶射
層の気孔率を、溶射層の表面側では2.5〜7.5%と
し、溶射層の母材側では10〜20%としたことを特
徴とする高温用溶射部材によつて達成される。 ここで、第2図ないし第5図によつて、本発明
を詳細に説明する。 各図において、層1は母材金属を示すもので、
適用される材料は部品の用途により、耐熱鋼を含
む鋼材、鋳鉄、鋳鋼、アルミ合金、焼結材等種々
のものがあり、限定されるものではない。 層2は本発明の主要部材であり、セラミツクス
単独の溶射層、あるいは、セラミツクスと耐熱金
属の複合溶射層である。 ここで適用するセラミツクス、あるいは、耐熱
金属の材料も限定されるものでなく、高温用の各
種用途に使用されるZvO2,Al2O3,Al2O3
MgO,Cr2O3Al2O3・TiO2等のセラミツクスや、
Ni−Al合金、Ni−Cr合金、Ni−Cr−Al合金、
Ni−Cr−Al−Y合金、Co−Cr−Al−Y合金等が
使用される。 層2内における気孔6は、この気孔率を層2の
表面側で小さく、母材側で大きくしている。 その値は用途、要求特性によつて異なるが、層
2の全体厚さのうち、表面側の1/3を2.5〜7.5%、
母材側の1/3を10〜20%とするのが適当である。 当然のことながら、中間部分は実質的に両者の
中間値となる。 また、各気孔率の層内配分は、母材金属側から
表面にわたつて、連続的に変化させてもよい。 つぎに、第3図ないし第5図に示す、層3、層
4、層5の各層は、それぞれ、ボンデイング溶射
層、セラミツクスと耐熱金属との複合溶射層、ワ
イヤネツトや繊維と母材金属1との複合層を示す
もので、この層自体は、従来から適用されている
ものであるが、前記層2と組合せて使用すること
により、耐熱衝撃性が向上するものである。 なお、層2における気孔率を、表面側において
2.5%以上としたのは、優れた耐熱衝撃性を得る
ためであり、7.5%以下としたのは、耐食性・耐
エロージヨン性を確保するためである。 一方、層2における気孔率を、母材金属側にお
いて、10%以上としたのは、優れた耐熱衝撃性を
得るためであり、20%以下としたのは、層強度を
確保するためである。 このように、気孔率を層2内において、表面側
と母材金属1側で変化させる方法としては、溶射
粉末粒度(分布)を変化させる方法、溶射条件を
変化させる方法等が一般に知られており、いずれ
にも限定されるものではないが、溶射粉末粒度に
より変化させる方法が、溶射施行上や気孔率調整
の確実性の点から有利である。 以下、具体的実施例をあげて、詳細に説明す
る。 JISAC8Aアルミニウム合金で、φ20mm、長さ75
mmの円柱テストピースを加工し、これに下表に示
すような、各層を溶射によつて形成して、Aない
しLの溶射試験片を作成した。
The present invention relates to a thermal sprayed member for high temperature use, and more specifically, it is used at high temperatures, has excellent thermal shock resistance, and has corrosion resistance and
This applies to high-temperature thermal sprayed parts that have good erosion and abrasion resistance. Thermal spraying, which mainly uses ceramics, is widely used to protect various parts used at high temperatures from oxidative corrosion, erosion, etc., to provide heat insulation, and to provide wear resistance. Ceramics have excellent stability at high temperatures,
In addition, it is an extremely effective material for the above purpose due to the excellent properties listed above, but it has a low coefficient of thermal expansion and a large difference in thermal expansion with the metal base material, so it is difficult to spray a ceramic layer on the metal base material. , thermal cycle,
It has the disadvantage of being susceptible to thermal shock. By the way, in a conventional thermal sprayed member, as shown in FIG. 1, the pores 6 are distributed almost uniformly, and the porosity is about 2.5 to 10%, although it varies depending on the application. Various methods have been proposed and implemented to improve the above-mentioned drawbacks of the ceramic sprayed layer on the metal base material 1. For example, (1) A method of thermally spraying a material having a coefficient of thermal expansion intermediate between that of the base metal 1 and the ceramic layer as the intermediate layer. (2) A method in which a sprayed layer made of a composite of ceramics and a heat-resistant metal is provided between the base metal 1 and the ceramic layer. (3) A method of suppressing thermal expansion of the base metal 1 by compositing wire nets, fibers, etc. on the surface of the base metal 1. (4) A method of increasing the porosity of the ceramic layer to absorb differences in thermal expansion. (1) to (4) can be applied alone or in combination, but these methods also have the following drawbacks and are not necessarily sufficient. That is, in methods (1) to (3), cost increases are unavoidable, especially when increasing the thickness of the intermediate layer. The presence of the intermediate layer, which hardly contributes to the original objectives of durability, wear resistance, and heat insulation, increases the weight of the entire thermal sprayed member. The effects of improving thermal shock resistance by methods (1) to (3) alone or in combination are often insufficient. On the other hand, the disadvantage of method (4) is that the porosity is high;
This means that other properties other than thermal shock resistance are sacrificed. That is, due to the high porosity, oxidation corrosion, erosion, and abrasion resistance become poor. Therefore, as shown in Figure 1, the actual porosity is often forced to be set at a low value, with the pores 6 evenly distributed, as shown in Figure 1, as a balance between both characteristics. From a gender perspective, this cannot be said to be sufficient. The present invention distributes the porosity of the sprayed layer of ceramic alone or the composite sprayed layer of ceramics and heat-resistant metal formed on the surface of the base metal 1 to be small on the surface side of the sprayed layer and large on the base metal side. In particular, we aim to provide high-temperature sprayed parts that not only have excellent thermal shock resistance and also have good heat resistance, erosion resistance, and abrasion resistance, but also have less increase in cost and weight. There is. According to the present invention, such an object is a high-temperature thermal sprayed member in which a single thermally sprayed layer of ceramics or a composite thermally sprayed layer of ceramics and a heat-resistant metal is formed on the surface of a base metal, wherein the thermally sprayed layer of ceramics alone, Alternatively, the porosity of the composite sprayed layer of ceramics and heat-resistant metal is set to 2.5 to 7.5% on the surface side of the sprayed layer and 10 to 20% on the base material side of the sprayed layer. It is achieved by doing so. The present invention will now be explained in detail with reference to FIGS. 2 to 5. In each figure, layer 1 represents the base metal;
The materials that can be applied include various materials, such as steel materials including heat-resistant steel, cast iron, cast steel, aluminum alloys, and sintered materials, depending on the purpose of the part, and are not limited to any particular material. Layer 2 is a main component of the present invention, and is a thermally sprayed layer made of ceramic alone or a composite thermally sprayed layer of ceramics and heat-resistant metal. The ceramics or heat-resistant metal materials used here are not limited, and include ZvO 2 , Al 2 O 3 , Al 2 O 3 and Al 2 O 3 used for various high-temperature applications.
Ceramics such as MgO, Cr 2 O 3 Al 2 O 3 , TiO 2 ,
Ni-Al alloy, Ni-Cr alloy, Ni-Cr-Al alloy,
Ni-Cr-Al-Y alloy, Co-Cr-Al-Y alloy, etc. are used. The porosity of the pores 6 in the layer 2 is small on the surface side of the layer 2 and large on the base material side. The value varies depending on the application and required characteristics, but the surface side 1/3 of the total thickness of layer 2 is 2.5 to 7.5%.
It is appropriate that 1/3 on the base metal side be 10 to 20%. Naturally, the intermediate portion is substantially the intermediate value between the two. Further, the distribution of each porosity within the layer may be continuously changed from the base metal side to the surface. Next, each of the layers 3, 4, and 5 shown in FIGS. 3 to 5 is a bonding sprayed layer, a composite sprayed layer of ceramics and a heat-resistant metal, and a wire net, fiber, and base metal 1, respectively. This layer itself has been conventionally applied, but when used in combination with layer 2, the thermal shock resistance is improved. Note that the porosity in layer 2 is
The reason why it is 2.5% or more is to obtain excellent thermal shock resistance, and the reason why it is 7.5% or less is to ensure corrosion resistance and erosion resistance. On the other hand, the reason why the porosity in layer 2 was set to 10% or more on the base metal side was to obtain excellent thermal shock resistance, and the reason why the porosity was set to 20% or less was to ensure layer strength. . As described above, methods for changing the porosity within the layer 2 between the surface side and the base metal 1 side include methods such as changing the spray powder particle size (distribution), changing the spray conditions, etc. Although not limited thereto, a method of varying the thermal spray powder particle size is advantageous in terms of thermal spraying execution and reliability of porosity adjustment. Hereinafter, specific examples will be given and explained in detail. JISAC8A aluminum alloy, φ20mm, length 75
A cylindrical test piece with a diameter of mm was processed, and each layer as shown in the table below was formed on the test piece by thermal spraying to prepare thermal sprayed test pieces A to L.

【表】 つぎに、これらAないしLの各種溶射試験を用
いて、450℃炉中加熱と水冷を繰り返す熱衝撃試
験を行ない、溶射層がはく離するまでの繰返し数
を測定した。 この結果を示す第6図から明らかなように、 (1) 層2ないし層7と母材金属1との間に、中間
層のないもの、層3を設けたもの、層4を設け
たもの、層5を設けたもので、耐熱衝撃性に相
違が認められ、後者ほど、耐熱衝撃性に優れて
いる。 (2) AとB,DとE,GとH,JとKとの比較か
ら明らかなように、層7の気孔率が大きい方
が、耐熱衝撃性が優れている。 (3) 層2の方が層7(気孔率4.3%、9.3%いづれ
でも)より、耐熱衝撃性が優れている。 (1)の結果は、母材金属1とセラミツクス層との
中間に、両層の熱膨脹差を層3,層4,層5によ
つて、緩和・吸収する効果によるものと思われ
る。 (3)に示すように、本発明にかかる層2の溶射部
材が、気孔率4.3%の層7より耐熱衝撃性が優れ
ているのは、層2の平均気孔率が9.8%であり、
(2)の結果からもうなずけるものである。 また、層2が気孔率9.3%の層7より耐熱衝撃
性が優れているのは、両者の平均気孔率がほゞ同
一であることから、層2の気孔率分布が寄与して
いるものと考えられる。 すなわち、母材金属1とセラミツクス層との、
熱膨脹差による溶射層のはく離性は、その界面で
最大であることから、界面部の気孔率を高めるこ
とによつて、平均気孔率が同一であつても、全体
としての耐熱衝撃性が向上するものと思われる。 以上により明らかなように、本発明にかかる高
温溶射部材によれば、母材金属表面に形成する、
セラミツクス単独の溶射層、ないし、セラミツク
スと耐熱金属の複合溶射層の気孔率を、溶射層の
表面側では小さく、母材側では大きく配分するこ
とによつて、耐熱衝撃性に優れ、かつ、耐熱性、
耐エロージヨン性、耐摩耗性においても、良好で
あるばかりでなく、コスト・重量の増大が少ない
ことから、熱機関の燃焼・排気系部品、産業炉、
溶解設備関係等の高温部品に、好適に適用できる
利点がある。
[Table] Next, using these various thermal spray tests A to L, a thermal shock test was conducted in which heating in a 450°C furnace and water cooling were repeated, and the number of repetitions until the sprayed layer peeled off was measured. As is clear from FIG. 6 showing these results, (1) those with no intermediate layer, those with layer 3, and those with layer 4 between layer 2 to layer 7 and base metal 1; , layer 5 was provided, and differences in thermal shock resistance were recognized, with the latter being more excellent in thermal shock resistance. (2) As is clear from the comparison of A and B, D and E, G and H, and J and K, the higher the porosity of the layer 7, the better the thermal shock resistance. (3) Layer 2 has better thermal shock resistance than Layer 7 (both 4.3% and 9.3% porosity). The result of (1) is considered to be due to the effect of relaxing and absorbing the difference in thermal expansion between the base metal 1 and the ceramic layer by layers 3, 4, and 5. As shown in (3), the thermal shock resistance of the thermal sprayed member of layer 2 according to the present invention is superior to that of layer 7, which has a porosity of 4.3%, because the average porosity of layer 2 is 9.8%.
This can be seen from the result of (2). Furthermore, the reason why Layer 2 has better thermal shock resistance than Layer 7, which has a porosity of 9.3%, is that the porosity distribution of Layer 2 contributes because the average porosity of both is almost the same. Conceivable. That is, between the base metal 1 and the ceramic layer,
The peelability of the sprayed layer due to the difference in thermal expansion is greatest at the interface, so by increasing the porosity at the interface, the overall thermal shock resistance can be improved even if the average porosity is the same. It seems to be. As is clear from the above, according to the high-temperature sprayed member according to the present invention, forming on the base metal surface,
By distributing the porosity of the sprayed ceramic layer alone or the composite sprayed layer of ceramics and heat-resistant metal to a small amount on the surface side of the sprayed layer and a large amount on the base material side, it has excellent thermal shock resistance and heat resistance. sex,
It not only has good erosion resistance and wear resistance, but also has low cost and weight increase, so it is suitable for combustion and exhaust system parts of heat engines, industrial furnaces,
It has the advantage that it can be suitably applied to high-temperature parts such as those related to melting equipment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の溶射部材の表面部断面模式図、
第2図ないし第5図は、本発明にかかる高温用溶
射部材の表面部断面模式図、第6図は本発明及び
比較例の耐熱衝撃試験結果を示す図である。 1……母材金属、2……セラミツクス単独の溶
射層、あるいは、セラミツクスと耐熱金属の複合
溶射層、3……4.5%Al−Ni合金溶射層、4……
5%CaO添加によつて安定化したZrO2と、4.5%
Al−Ni合金粉末を50%づつ混合した粉末の溶射
層、5……5%SiO2−Al2O3の繊維複合溶射層、
6……気孔、7……5%CaO添加によつて安定化
したZrO2の溶射層。
Figure 1 is a schematic cross-sectional view of the surface of a conventional thermal sprayed member.
2 to 5 are schematic cross-sectional views of the surface of a thermal sprayed member for high temperature use according to the present invention, and FIG. 6 is a diagram showing the results of a thermal shock resistance test of the present invention and a comparative example. 1...Base metal, 2...Sprayed ceramic layer alone or composite sprayed layer of ceramics and heat-resistant metal, 3...4.5% Al-Ni alloy sprayed layer, 4...
ZrO 2 stabilized by addition of 5% CaO and 4.5%
A sprayed layer of powder mixed with 50% Al-Ni alloy powder, a fiber composite sprayed layer of 5...5% SiO 2 -Al 2 O 3 ,
6... Pores, 7... Sprayed layer of ZrO 2 stabilized by addition of 5% CaO.

Claims (1)

【特許請求の範囲】 1 母材金属表面に、セラミツクス単独溶射層、
ないし、セラミツクスと耐熱金属の複合溶射層を
形成した高温用溶射部材であつて、前記セラミツ
クス単独溶射層、ないし、セラミツクスと耐熱金
属の複合溶射層の気孔率を、溶射層の表面側では
2.5〜7.5%とし、溶射層の母材側では10〜20%と
したことを特徴とする高温用溶射部材。 2 母材金属表面と、セラミツクス単独溶射層、
ないし、セラミツクスと耐熱金属の複合溶射層と
の間に、耐熱金属ボンドコート層、セラミツクス
と耐熱金属の複合溶射層、ワイヤネツト、繊維等
の耐熱衝撃向上層を、配置したことを特徴とする
特許請求の範囲第1項記載の高温用溶射部材。
[Claims] 1. A single thermal sprayed ceramic layer on the base metal surface,
Or, in a high-temperature thermal sprayed member in which a composite sprayed layer of ceramics and a heat-resistant metal is formed, the porosity of the single ceramics sprayed layer or the composite sprayed layer of ceramics and a heat-resistant metal is set on the surface side of the sprayed layer.
A thermal sprayed member for high temperature use, characterized in that the content is 2.5 to 7.5%, and 10 to 20% on the base material side of the sprayed layer. 2 Base metal surface and ceramics single sprayed layer,
Or, a patent claim characterized in that a heat-resistant metal bond coat layer, a composite sprayed layer of ceramics and heat-resistant metal, a layer for improving thermal shock resistance such as wire net, fiber, etc. are arranged between the composite sprayed layer of ceramics and heat-resistant metal. A thermal sprayed member for high temperature use according to item 1.
JP58110406A 1983-06-20 1983-06-20 Thermally sprayed member for high temperature Granted JPS602659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58110406A JPS602659A (en) 1983-06-20 1983-06-20 Thermally sprayed member for high temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58110406A JPS602659A (en) 1983-06-20 1983-06-20 Thermally sprayed member for high temperature

Publications (2)

Publication Number Publication Date
JPS602659A JPS602659A (en) 1985-01-08
JPH0421748B2 true JPH0421748B2 (en) 1992-04-13

Family

ID=14534976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58110406A Granted JPS602659A (en) 1983-06-20 1983-06-20 Thermally sprayed member for high temperature

Country Status (1)

Country Link
JP (1) JPS602659A (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3421569C1 (en) * 1984-06-09 1985-06-27 Goetze Ag, 5093 Burscheid Wear-resistant coating
AT396119B (en) * 1988-04-08 1993-06-25 Stangl Kurt Dipl Ing Method of applying an inscription to hot steel blocks
AT396120B (en) * 1988-04-13 1993-06-25 Stangl Kurt Dipl Ing METHOD FOR LABELING HOT STEEL BLOCKS
JPH0339458A (en) * 1989-07-04 1991-02-20 Ngk Insulators Ltd Clad material of metal and oxide superconductor and its production
CN100387775C (en) * 2006-04-13 2008-05-14 山东科技大学 Wearable papermaking coating scraper
CN100432333C (en) * 2006-05-12 2008-11-12 戴亚洲 Ceramic coating scraper and its machining process
JP2008127614A (en) * 2006-11-20 2008-06-05 Mitsubishi Engineering Plastics Corp Thermal spray coating structure, and insert
JP5040374B2 (en) * 2007-03-07 2012-10-03 三菱瓦斯化学株式会社 Mold assembly and injection molding method
JP5045221B2 (en) * 2007-05-07 2012-10-10 三菱瓦斯化学株式会社 Mold assembly and injection molding method
JP2009161846A (en) * 2007-12-10 2009-07-23 Densho Engineering Co Ltd Method for manufacturing inner member of plasma treatment vessel
JP2009264236A (en) * 2008-04-24 2009-11-12 Toyota Motor Corp Piston of internal combustion engine and manufacturing method for piston
JP5247233B2 (en) * 2008-05-15 2013-07-24 三菱瓦斯化学株式会社 Mold assembly and injection molding method
JP5149069B2 (en) * 2008-05-15 2013-02-20 三菱瓦斯化学株式会社 Mold assembly and injection molding method
US20120177908A1 (en) * 2010-07-14 2012-07-12 Christopher Petorak Thermal spray coatings for semiconductor applications
JP5609497B2 (en) * 2010-09-30 2014-10-22 マツダ株式会社 Thermal insulation structure
JP5598794B2 (en) * 2010-12-07 2014-10-01 吉川工業株式会社 Splicing plate for high strength bolt friction welding
JP6406677B2 (en) 2016-02-01 2018-10-17 本田技研工業株式会社 Constant velocity joint and manufacturing method thereof

Also Published As

Publication number Publication date
JPS602659A (en) 1985-01-08

Similar Documents

Publication Publication Date Title
JPH0421748B2 (en)
JPH0250173B2 (en)
US5305726A (en) Ceramic composite coating material
JPH0333428B2 (en)
JPH0343339B2 (en)
US6238807B1 (en) Thermal spraying composite material containing molybdenum boride and a coat formed by thermal spraying
JPS5837387B2 (en) Powder suitable for fire spraying
JP2016535714A (en) Enamel powder, metal component having a surface portion provided with an enamel coating, and method for producing such metal component
CN108251832A (en) One or more layers of microballoon are deposited to form the method for thermal barrier coating
JPS5815742A (en) Engine part having flamed surface
JPH0527706B2 (en)
EP0217991A1 (en) Ceramic material coatings
JPH028894B2 (en)
JPS6217169A (en) Surface coating method for metallic material
JPH01172554A (en) Flame spraying material
JPS63290254A (en) Thermally sprayed film combining heat resistance with wear resistance
JPS61243164A (en) Formation of heat resistant coating
JPS63161150A (en) Formation of heat insulating thermally sprayed layer
JP2747087B2 (en) Thermal spray coating material and thermal spray coating heat resistant member
JPS646274B2 (en)
JPH04231451A (en) Thermal spray material and sprayed heat-resistant member
JPS61126359A (en) Heat resisting piston and its manufacture
JPS61207567A (en) Formation of thermally sprayed ceramic film
JPH0436062B2 (en)
JP3076888B2 (en) 2 melting point heat-resistant sprayed material and heat-resistant member processed by thermal spraying