JPH04213825A - Manufacture of compound semiconductor device - Google Patents

Manufacture of compound semiconductor device

Info

Publication number
JPH04213825A
JPH04213825A JP40132890A JP40132890A JPH04213825A JP H04213825 A JPH04213825 A JP H04213825A JP 40132890 A JP40132890 A JP 40132890A JP 40132890 A JP40132890 A JP 40132890A JP H04213825 A JPH04213825 A JP H04213825A
Authority
JP
Japan
Prior art keywords
gaas
compound semiconductor
semiconductor device
substrate
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP40132890A
Other languages
Japanese (ja)
Inventor
Satoru Fujii
知 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP40132890A priority Critical patent/JPH04213825A/en
Publication of JPH04213825A publication Critical patent/JPH04213825A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Weting (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

PURPOSE:To remove an oxide on the surface of a GaAs wafer for making a crystal surface showing the normal stoichiometrical ratio. CONSTITUTION:The title manufacture of compound semiconductor device is composed of the following two steps i.e., the first step wherein an oxide layer on the surface of a GaAs wafer is removed using ammonium fluoride solution and then washed with water to be dried up in a non-oxidative atmosphere and the second step wherein a surplus As layer after removing the oxide layer is removed using ammonium base corrosive solution.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は化合物半導体装置の製造
方法に関し、特にGaAs半導体装置の製造過程におけ
るGaAs基板表面の酸化物層の除去方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a compound semiconductor device, and more particularly to a method for removing an oxide layer on the surface of a GaAs substrate during the manufacturing process of a GaAs semiconductor device.

【0002】0002

【従来の技術】近年、GaAsをはじめとする化合物半
導体装置の利用が広がっている。化合物半導体にショッ
トキ接合を形成する場合、または化合物半導体基板上に
エピタキシャル成長を行う場合、表面の酸化物層を除去
し、しかもストイキオメトリを良好に保つ必要がある。
2. Description of the Related Art In recent years, compound semiconductor devices including GaAs have been widely used. When forming a Schottky junction in a compound semiconductor or performing epitaxial growth on a compound semiconductor substrate, it is necessary to remove the oxide layer on the surface and maintain good stoichiometry.

【0003】J.Massies らはGaAs基板の
{001} 面をH2SO4,H2O2,H2O溶液で
エッチングすると、従来考えられていたのとは異なって
、基板表面には酸化物膜が生じないこと、酸化された相
はエッチングされた表面と大気中の酸素が汚染元素、特
に炭素核種等の存在下で接触することによって生じるこ
とを報告している(J.Appl. Phys.58(
2), pp806〜810, 1985 参照) 。 一方H. Sugawara らはCF4+O2プラズ
マにさらされたGaAs表面に生成する酸化物の主成分
がGa2O3 であること、このGa2O3 層をNH
4OH とNH4Fの混合液でエッチング除去すること
によって、MESFETのI−V 特性が改善されるこ
とを報告している(J. Vac. Sci. Tec
hnol. B3(6), pp1609〜1613,
1985参照)。しかし、Sugawaraらにおいて
は、エッチング後の結晶表面のストイキオメトリは考慮
されていない。
[0003]J. Massies et al. etched the {001} plane of a GaAs substrate with H2SO4, H2O2, and H2O solutions, and found that, contrary to what was previously thought, no oxide film was formed on the substrate surface, and that the oxidized phase was etched away. It has been reported that this is caused by contact between the exposed surface and atmospheric oxygen in the presence of contaminant elements, particularly carbon nuclides (J. Appl. Phys. 58 (J. Appl. Phys. 58).
2), pp. 806-810, 1985). On the other hand, H. Sugawara et al. found that the main component of the oxide formed on the GaAs surface exposed to CF4 + O2 plasma was Ga2O3, and that this Ga2O3 layer was
It has been reported that the IV characteristics of MESFET can be improved by etching with a mixture of 4OH and NH4F (J. Vac. Sci. Tec.
hnol. B3(6), pp1609-1613,
(see 1985). However, Sugawara et al. do not consider the stoichiometry of the crystal surface after etching.

【0004】0004

【発明が解決しようとする課題】GaAs基板上に半導
体装置を形成する場合、絶縁膜などを反応性イオンエッ
チングするため、あるいはフォトレジストの灰化処理の
ために、GaAs表面が酸素ガスを含むプラズマにさら
されることがある。この時、GaAsの表面には厚い酸
化物層が形成される。以後の工程のためには、この酸化
物を除去しなければならず、しかも、その際GaAsの
組成比が化学量論比からずれないことが必要であり、し
かも酸化物を除去した後に、新たに酸化膜が形成されな
い様にする必要がある。しかし、上述した従来の方法で
は、これらの諸点について、必ずしも十分な結果が得ら
れていない。
[Problems to be Solved by the Invention] When forming a semiconductor device on a GaAs substrate, the GaAs surface is exposed to plasma containing oxygen gas for reactive ion etching of an insulating film or for ashing of photoresist. May be exposed to. At this time, a thick oxide layer is formed on the surface of GaAs. For subsequent steps, this oxide must be removed, and in doing so, it is necessary that the composition ratio of GaAs does not deviate from the stoichiometric ratio. It is necessary to prevent an oxide film from forming on the surface. However, the conventional methods described above do not necessarily provide sufficient results in these respects.

【0005】本発明は、GaAs表面に形成された酸化
物を十分に除去し、しかも表面の組成が化学量論比から
ずれず、従って以後の工程によってすぐれた特性の化合
物半導体装置を製造し得る方法を提供することを目的と
する。
According to the present invention, the oxide formed on the GaAs surface is sufficiently removed, and the composition of the surface does not deviate from the stoichiometric ratio, so that a compound semiconductor device with excellent characteristics can be manufactured in subsequent steps. The purpose is to provide a method.

【0006】[0006]

【課題を解決するための手段】このような目的を達成す
るために、本発明は、GaAs結晶表面のGa酸化物層
を除去する工程と、前記結晶表面に残されたAs過剰層
を除去する工程とを有することを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the present invention includes a step of removing a Ga oxide layer on the surface of a GaAs crystal, and a step of removing an excess As layer left on the surface of the crystal. It is characterized by having a process.

【0007】さらに本発明は、GaAs基板をフッ化ア
ンモニウム液に浸漬し、水洗し、非酸化性雰囲気中で乾
燥する工程と、該乾燥された基板をアンモニア系腐食液
に浸漬し、水洗し、非酸化性雰囲気中で乾燥する工程を
含むことを特徴とする。
The present invention further includes the steps of immersing a GaAs substrate in an ammonium fluoride solution, washing with water, and drying in a non-oxidizing atmosphere; immersing the dried substrate in an ammonia-based corrosive solution and washing with water; The method is characterized by including a step of drying in a non-oxidizing atmosphere.

【0008】[0008]

【作用】本発明においては、例えばO2を含むプラズマ
にさらされてGaAs表面に厚く形成された酸化物、特
にGa2O3 を90%から100 %の純度のフッ化
アンモニウム(NH4F)液によってまず除去する。次
にGa2O3 の除去によってAsリッチになった表面
層を、NH4OH,H2O2,H2Oの混合液によって
除去する。そのために、GaAs表面の酸化物は除去さ
れ、しかもGaAs表面の組成は、化学量論比に保たれ
る。
In the present invention, for example, oxides, particularly Ga2O3, which have formed thickly on the GaAs surface by exposure to O2-containing plasma are first removed using an ammonium fluoride (NH4F) solution with a purity of 90% to 100%. Next, the surface layer which has become rich in As due to the removal of Ga2O3 is removed using a mixed solution of NH4OH, H2O2, and H2O. Therefore, the oxide on the GaAs surface is removed, and the composition of the GaAs surface is maintained at a stoichiometric ratio.

【0009】[0009]

【実施例】以下、図面を参照して本発明の実施例を詳細
に説明する。
Embodiments Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

【0010】GaAs単結晶基板を反応性イオンエッチ
ング装置に装填し、CF2 とO2よりなるプラズマに
さらして表面に厚い酸化膜を形成した。この表面が酸化
された基板の表面をオージェ電子分光(AES)によっ
て分析した。図1は、AES によるGa,As,Oお
よびCの深さ方向の分布を示す。図に示されるように、
表面から数十オングストロームの深さにわたって0が存
在するのでこの範囲に酸化物が形成されていることがわ
かる。また、表面におけるGa原子の量はAs原子より
多く、従って酸化物の主成分はGa2O3 であると結
論づけることができる。
[0010] A GaAs single crystal substrate was loaded into a reactive ion etching apparatus and exposed to plasma consisting of CF2 and O2 to form a thick oxide film on the surface. The surface of this oxidized substrate was analyzed by Auger electron spectroscopy (AES). FIG. 1 shows the depth distribution of Ga, As, O, and C by AES. As shown in the figure,
Since zero exists over a depth of several tens of angstroms from the surface, it can be seen that oxide is formed in this range. Furthermore, the amount of Ga atoms on the surface is greater than that of As atoms, so it can be concluded that the main component of the oxide is Ga2O3.

【0011】次に同一条件で酸化膜を形成した他のGa
As基板を90%から100 %の純度の高いフッ化ア
ンモニウム(NH4F)液に浸漬した。浸漬時間は酸化
物の厚さによって変化するが、この場合は5分間とした
。ついで、純水(好ましくは 18.0MΩ・cm 以
上)の流水中に基板を浸し、NH4Fを洗い去った。洗
浄時間は1分間またはそれ以上で十分である。さらに水
洗いした基板を窒素雰囲気中のスピンドライヤで乾燥し
た。この様な工程を経た基板表面のAES 分析を行っ
た。図2にGa,As,OおよびCの深さ方向の分布を
示す。図1と比較してみるとGaおよびOの含有率が減
少し、酸化物であるGa2O3 が除去されたことが示
されている。Oの含有率は自然吸着のレベルと同等であ
って、これは水洗後、基板をAES 分析にかける間に
生じたものと思われる。同時に、図2はGa2O3 の
除去に基づくGaの減少に伴って、基板表面のAs濃度
が高く、その組成がストイキオメトリからかなりずれて
いることを示している。
Next, another Ga oxide film was formed under the same conditions.
An As substrate was immersed in ammonium fluoride (NH4F) solution with a high purity of 90% to 100%. The immersion time varied depending on the thickness of the oxide, but in this case it was 5 minutes. Next, the substrate was immersed in running pure water (preferably 18.0 MΩ·cm or higher) to wash away the NH4F. A cleaning time of 1 minute or more is sufficient. Furthermore, the washed substrate was dried using a spin dryer in a nitrogen atmosphere. An AES analysis of the surface of the substrate that underwent such a process was performed. FIG. 2 shows the distribution of Ga, As, O, and C in the depth direction. Comparison with FIG. 1 shows that the contents of Ga and O have decreased, indicating that the oxide Ga2O3 has been removed. The O content is comparable to the level of natural adsorption, which appears to have occurred during AES analysis of the substrates after water washing. At the same time, Figure 2 shows that with the decrease of Ga due to the removal of Ga2O3, the As concentration on the substrate surface is high and its composition deviates considerably from the stoichiometry.

【0012】次に、酸化膜の形成,Ga2O3 の除去
および水洗,乾燥までを同一の条件で行った他のGaA
s基板をNH4OH:H2O2:H2O=5:2:40
00 の水溶液に浸漬して、表面のAs過剰層を除去し
た。浸漬時間は基板表面におけるAs原子の過剰度,あ
るいは除去されたGa2O3 層の厚さによるが、1分
以上、好ましくは3分ないし5分間の浸漬が適当である
。次に純水の流水中に1分またはそれ以上浸して水洗し
、さらに窒素雰囲気中のスピンドライヤで乾燥した。水
洗後、乾燥までの間、大気に触れる時間を極力短くし、
可能ならば全く大気に触れずに乾燥させることが好まし
い。この様にして乾燥した基板表面のAES分析結果を
図3に示す。酸素の含有率は自然吸着のレベルであって
、この基板の表面は極めて清浄である。Ga原子とAs
原子の存在比は殆んど1:1であって、正しくストイキ
オメトリが保たれ、As過剰層が完全に除去されたこと
を示している。
[0012] Next, other GaA samples were prepared in which the formation of an oxide film, removal of Ga2O3, washing with water, and drying were performed under the same conditions.
s substrate NH4OH:H2O2:H2O=5:2:40
The excess As layer on the surface was removed by immersion in a 0.00 aqueous solution. The immersion time depends on the degree of excess of As atoms on the substrate surface or the thickness of the removed Ga2O3 layer, but immersion for 1 minute or more, preferably 3 to 5 minutes, is appropriate. Next, it was washed by immersing it in running pure water for 1 minute or more, and then dried in a spin dryer in a nitrogen atmosphere. After washing with water and before drying, minimize the time of exposure to the atmosphere,
If possible, it is preferable to dry without exposing it to the atmosphere at all. FIG. 3 shows the results of AES analysis of the surface of the substrate dried in this manner. The oxygen content is at the level of natural adsorption, and the surface of this substrate is extremely clean. Ga atoms and As
The abundance ratio of atoms was almost 1:1, indicating that correct stoichiometry was maintained and the As excess layer was completely removed.

【0013】この様に、本発明によれば、清浄でかつ化
学量論理的に正常なGaAs表面が得られるので、金属
とのショットキ接合を形成すると、ショットキバリアハ
イトの大きなものが得られる。例えば、O2プラズマに
さらした直後のGaAsウエハに形成したTi金属電極
とのショットキバリアハイトが0.6eV であったの
に対し、本発明に従って処理されたGaAsウエハに形
成されたTi金属電極とのショットキバリアハイトは0
.75〜0.80eVであった。
As described above, according to the present invention, a clean and stoichiometrically normal GaAs surface can be obtained, so that when a Schottky junction is formed with a metal, a large Schottky barrier height can be obtained. For example, the Schottky barrier height between Ti metal electrodes formed on GaAs wafers immediately exposed to O2 plasma was 0.6 eV, while that between Ti metal electrodes formed on GaAs wafers processed according to the present invention was 0.6 eV. Schottky barrier height is 0
.. It was 75 to 0.80 eV.

【0014】なお、図1から図3の各図において、表面
から深くなるに従ってGa原子の含有率がAs原子の含
有率より多くなっている。これはAES による深さ方
向の分布の測定がArイオンによるスパッタリングによ
って表面を削りながら行われるが、このスパッタリング
に際し、As原子がGa原子よりも飛散し易いためであ
って、化学量論比からのずれを意味するものではない。
In each of FIGS. 1 to 3, the content of Ga atoms becomes greater than the content of As atoms as the depth increases from the surface. This is because the measurement of the distribution in the depth direction by AES is performed while scraping the surface by sputtering with Ar ions, and during this sputtering, As atoms scatter more easily than Ga atoms. This does not mean a deviation.

【0015】Ga2O3 を除去するために、NH4F
にNH4OH を混合した液を用いることも可能である
が、下地結晶に影響を与えずにGa2O3 のみを除去
するには、NH4Fの高純度原液を使用することが望ま
しい。次に上述した実施例では、As過剰層を除去する
ための腐食液として、 NH4OH:H2O2:H2O
=5:2:4000 の液を示した。As過剰な層を制
御性よくエッチング除去するためには、エッチング速度
は早すぎないことが望ましい。上に示した腐食液の組成
はそのための標準組成であって、NH4OH およびH
2O2の濃度は、それぞれこの組成から20%〜30%
程度ずれても差しつかえなく、その場合は浸漬時間を調
節すればよい。
[0015] To remove Ga2O3, NH4F
It is also possible to use a mixture of NH4OH and NH4F, but in order to remove only Ga2O3 without affecting the underlying crystal, it is desirable to use a high purity stock solution of NH4F. Next, in the above-mentioned embodiment, NH4OH:H2O2:H2O was used as the corrosive solution for removing the As excess layer.
=5:2:4000 liquid. In order to remove the excess As layer by etching with good controllability, it is desirable that the etching rate is not too high. The composition of the etchant shown above is the standard composition for that purpose, consisting of NH4OH and H
The concentration of 2O2 is 20% to 30% from this composition, respectively.
There is no problem even if the degree differs, and in that case, the soaking time can be adjusted.

【0016】[0016]

【発明の効果】以上説明した様に、本発明によれば、G
aAs表面の酸化物を完全に除去することができ、しか
も表面の組成はストイキオメトリを維持することができ
る。 従って、本発明によってすぐれた特性の化合物半導体装
置を製造することができる。
[Effects of the Invention] As explained above, according to the present invention, G
Oxides on the aAs surface can be completely removed, and the surface composition can maintain stoichiometry. Therefore, according to the present invention, a compound semiconductor device with excellent characteristics can be manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】図1はGaAsウエハをプラズマにさらした直
後の元素分布を示す図である。
FIG. 1 is a diagram showing the element distribution of a GaAs wafer immediately after it is exposed to plasma.

【図2】図2はNH4Fによるエッチング,水洗,乾燥
後の元素分布を示す図である。
FIG. 2 is a diagram showing the element distribution after etching with NH4F, washing with water, and drying.

【図3】図3はNH4OH,H2O2,H2O混合液に
よるエッチング,水洗,乾燥後の元素分布を示す図であ
る。
FIG. 3 is a diagram showing the element distribution after etching with a mixed solution of NH4OH, H2O2, and H2O, washing with water, and drying.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  GaAs結晶表面のGa酸化物層を除
去する工程と、前記結晶表面に残されたAs過剰層を除
去する工程とを有することを特徴とする化合物半導体装
置の製造方法。
1. A method for manufacturing a compound semiconductor device, comprising the steps of removing a Ga oxide layer on the surface of a GaAs crystal, and removing an excess As layer left on the surface of the crystal.
【請求項2】  GaAs基板をフッ化アンモニウム液
に浸漬し、水洗し、非酸化性雰囲気中で乾燥する工程と
、該乾燥された前記基板をアンモニア系腐食液に浸漬し
、水洗し、非酸化性雰囲気中で乾燥する工程を含むこと
を特徴とする化合物半導体装置の製造方法。
2. A step of immersing a GaAs substrate in an ammonium fluoride solution, washing it with water, and drying it in a non-oxidizing atmosphere; immersing the dried substrate in an ammonia-based corrosive solution, washing it with water, and drying it in a non-oxidizing atmosphere. 1. A method for manufacturing a compound semiconductor device, comprising a step of drying in a neutral atmosphere.
JP40132890A 1990-12-11 1990-12-11 Manufacture of compound semiconductor device Pending JPH04213825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP40132890A JPH04213825A (en) 1990-12-11 1990-12-11 Manufacture of compound semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP40132890A JPH04213825A (en) 1990-12-11 1990-12-11 Manufacture of compound semiconductor device

Publications (1)

Publication Number Publication Date
JPH04213825A true JPH04213825A (en) 1992-08-04

Family

ID=18511165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP40132890A Pending JPH04213825A (en) 1990-12-11 1990-12-11 Manufacture of compound semiconductor device

Country Status (1)

Country Link
JP (1) JPH04213825A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002071461A1 (en) * 2001-03-06 2002-09-12 Sumitomo Electric Industries, Ltd. Method of manufacturing compound semiconductor wafer
US7078343B2 (en) 2001-03-06 2006-07-18 Sumitomo Electric Industries, Ltd. Method of manufacturing compound semiconductor wafer
JP2012119636A (en) * 2010-12-03 2012-06-21 Fujitsu Ltd Compound semiconductor device and method of manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002071461A1 (en) * 2001-03-06 2002-09-12 Sumitomo Electric Industries, Ltd. Method of manufacturing compound semiconductor wafer
US7078343B2 (en) 2001-03-06 2006-07-18 Sumitomo Electric Industries, Ltd. Method of manufacturing compound semiconductor wafer
CN100405553C (en) * 2001-03-06 2008-07-23 住友电气工业株式会社 Method of manufacturing compound semiconductor wafer
JP2012119636A (en) * 2010-12-03 2012-06-21 Fujitsu Ltd Compound semiconductor device and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP2581268B2 (en) Semiconductor substrate processing method
US6513538B2 (en) Method of removing contaminants from integrated circuit substrates using cleaning solutions
US4468285A (en) Plasma etch process for single-crystal silicon with improved selectivity to silicon dioxide
US4456501A (en) Process for dislocation-free slot isolations in device fabrication
JPH0574751A (en) Manufacture of semiconductor device
US20020106898A1 (en) Methods for removing silicon-oxy-nitride layer and wafer surface cleaning
US6218085B1 (en) Process for photoresist rework to avoid sodium incorporation
JPH04213825A (en) Manufacture of compound semiconductor device
JP3492196B2 (en) Method for manufacturing semiconductor device
JPH03120719A (en) Processing solution for semiconductor substrate and method for processing
JP3109083B2 (en) Etching solution for silicon oxide film and method for etching silicon oxide film
US6723578B2 (en) Method for the sulphidation treatment of III-V compound semiconductor surfaces
JPH05166777A (en) Washing of semiconductor wafer
JPH05182925A (en) Manufacturing method and device of semiconductor device
KR920005392B1 (en) Substrate treating method after plasma etching process
JPH07240394A (en) Surface cleaning method of semiconductor wafer
KR0171983B1 (en) Wafer cleaning method
JPH0684865A (en) Dry cleaning of semiconductor device
JPH0410739B2 (en)
JP2662453B2 (en) GaAs wafer, method of manufacturing the same, and method of ion implantation into GaAs wafer
JPH0497517A (en) Manufacture of semiconductor device
RU2097871C1 (en) Method for producing semiconductor device matrices on substrate
KR100235944B1 (en) Cleaning method for semiconductor device
JPH0218579B2 (en)
Kugimiya et al. H2-Enhanced epitaxial regrowth of polycrystalline silicon through natural oxide layers on silicon substrates