JPH04213694A - Jacking method of buried pipe without earth removal - Google Patents

Jacking method of buried pipe without earth removal

Info

Publication number
JPH04213694A
JPH04213694A JP40171190A JP40171190A JPH04213694A JP H04213694 A JPH04213694 A JP H04213694A JP 40171190 A JP40171190 A JP 40171190A JP 40171190 A JP40171190 A JP 40171190A JP H04213694 A JPH04213694 A JP H04213694A
Authority
JP
Japan
Prior art keywords
excavator
earth
diameter
sand
buried
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP40171190A
Other languages
Japanese (ja)
Other versions
JPH0721280B2 (en
Inventor
Koichi Kimura
宏一 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kidoh Construction Co Ltd
Original Assignee
Kidoh Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kidoh Construction Co Ltd filed Critical Kidoh Construction Co Ltd
Priority to JP2401711A priority Critical patent/JPH0721280B2/en
Priority to US07/803,884 priority patent/US5211510A/en
Priority to AU88939/91A priority patent/AU634916B2/en
Priority to DE69117691T priority patent/DE69117691T2/en
Priority to EP91121388A priority patent/EP0490390B1/en
Publication of JPH04213694A publication Critical patent/JPH04213694A/en
Publication of JPH0721280B2 publication Critical patent/JPH0721280B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

PURPOSE:To enable favorable application of a jacking method without earth removal even if the outside diameter of a buried pipe is large. CONSTITUTION:The ground is excavated by an excavator 1 provided with a top end large diameter part 10 whose outside diameter is larger than that of a buried pipe, and a rear part 20 whose outside diameter is nearly the same as that of the buried pipe with a digging diameter larger than the outside diameter of the buried pipe, and removes, at least, a part of earth and sand ingathered in the excavator 1 to the outer circumference of the excavator 1 at a position rear than the top end large diameter part 10 of the excavator 1.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、埋設管の無排土推進
工法に関し、詳しくは、下水道等の地下埋設管を施工す
る際に、地盤を開削することなく、地中に埋設孔を掘削
形成しながら、形成された埋設孔に埋設管を順次推進さ
せて埋設していくとともに、掘削された土砂を外部に排
出することなく地盤内で処理する、いわゆる無排土推進
工法に関するものである。
[Industrial Application Field] This invention relates to a construction method for underground pipes without soil removal, and more specifically, when constructing underground pipes for sewerage, etc., a hole is drilled underground without excavating the ground. This relates to the so-called soil-free propulsion method, in which buried pipes are sequentially advanced and buried into the formed burial holes while being formed, and the excavated soil is disposed of within the ground without being discharged to the outside. .

【0002】0002

【従来の技術】地下埋設管の推進工法として、先端にオ
ーガー等の掘削機構を備えた掘進機で、地中に埋設孔を
掘削しながら、掘削機の掘削推進につづいて埋設管を推
進埋設していく方法があり、この工法は、一般にオーガ
ー工法などと呼ばれている。オーガー工法では、通常、
掘進機で掘削された土砂は、推進埋設される埋設管列の
内部を通して後方に搬送し、埋設管列の後端から立坑あ
るいは地表まで運搬されて廃棄処分される。しかし、こ
の方法では、掘進機から埋設管列の後端まで、狭い埋設
孔の内部に排土の搬送機構を設置する必要があり、装置
が複雑になり、設備コストおよび稼動コストが高くつく
ことや、排土の搬送容量に合わせて掘進機の推進速度を
設定しなければならず推進速度をあまり速くできないこ
と、掘削された土砂を廃棄物として処分する手間および
コストがかかること、などの問題があった。
[Prior art] As a method of promoting underground pipes, an underground hole is excavated underground using an excavator equipped with an auger or other excavating mechanism at the tip, and the underground pipe is propelled and buried as the excavator advances the excavation. There is a method to do this, and this method is generally called the auger method. In the auger method, usually
The earth and sand excavated by the excavator is transported backward through the interior of the buried pipe row, and is transported from the rear end of the buried pipe row to a shaft or the ground surface, where it is disposed of. However, with this method, it is necessary to install an earth transport mechanism inside the narrow buried hole from the excavator to the rear end of the buried pipe row, which makes the equipment complicated and increases equipment and operating costs. Problems include problems such as the propulsion speed of the excavator must be set according to the transport capacity of the excavated earth, making it impossible to increase the propulsion speed very much, and the time and cost required to dispose of the excavated earth and sand as waste. was there.

【0003】そこで、比較的小口径の埋設管の場合、掘
削された土砂を埋設孔内部で処理して、外部には排土を
出さない、無排土方式の推進工法が採用されている。具
体的には、円錐状等をなす先導体を地盤中に圧入して埋
設孔を形成する。先導体で外周側に排除された土砂は、
埋設孔の内壁すなわち地盤側に圧密されるので、排土を
外部に出すことなく埋設孔を形成することができる。具
体的な無排土推進工法としては、圧縮空気による衝撃圧
入方式あるいは油圧ジャッキによる圧入方式などが採用
されている。しかし、これらの無排土工法では、地盤に
先導体を圧入するのに非常に大きな抵抗があり、先導体
に極めて大きな推進力を加えなくてはならない。そのた
め、推進力を与える元押しジャッキ等の設備が大型化し
、稼動に必要な動力も増大するなどの問題が生じる。
[0003] Therefore, in the case of buried pipes of relatively small diameter, a no-earth removal type propulsion method is adopted in which excavated earth and sand are processed inside the buried hole and no earth is discharged to the outside. Specifically, a conical guide body is press-fitted into the ground to form a buried hole. Sediment removed to the outer circumference by the guide body is
Since the inner wall of the burial hole, that is, the ground side, is consolidated, the burial hole can be formed without discharging soil to the outside. Specific soil-less propulsion methods include impact press-in methods using compressed air and press-in methods using hydraulic jacks. However, in these earthless construction methods, there is a very large resistance to press-fitting the guide body into the ground, and an extremely large driving force must be applied to the guide body. As a result, equipment such as a main push jack that provides propulsion force becomes larger, and the power required for operation also increases.

【0004】上記問題を解消する無排土工法として、以
下に説明する工法が提案されている。その工法は、まず
、先導体の先端に前記オーガー工法のような掘削機構を
備えておき、この先導体すなわち掘進機で、掘進機前面
の地盤を掘削して掘削機の外径に相当する埋設孔を形成
し、掘削された土砂を一旦掘進機の内部に取り込み、取
り込まれた土砂を掘進機の後方で、掘進機の外周面に開
口する排土口から放射方向に押し出して、埋設孔の内壁
から地盤側に圧密する。この工法では、掘進機で地盤を
掘削してから外周の地盤に圧密するので、先導体をむり
やり地盤に圧入するのに比べて、軸方向の抵抗が少なく
、比較的小さな推進力でも推進させることができるとい
うものである。また、上記工法において、掘進機の内部
に、偏心回転する円錐状のコーンロータを設け、このコ
ーンロータの偏心回転に伴う半径方向の力で土砂を排土
口から放射方向に押し出すようにしておくことによって
、土砂の地盤側への圧密を効率的に行う方法も提案され
ている。
[0004] As a construction method without soil removal to solve the above problem, the construction method described below has been proposed. In this construction method, first, an excavation mechanism like the auger method described above is provided at the tip of a guide body, and this guide body, that is, an excavator, excavates the ground in front of the excavator to create a buried hole corresponding to the outside diameter of the excavator. The excavated earth and sand are once taken into the inside of the excavation machine, and the taken-in earth and sand is pushed out in a radial direction from the earth discharge port that opens on the outer circumferential surface of the excavation machine at the rear of the excavation machine, and is removed from the inner wall of the burial hole. Consolidate from the ground to the ground side. In this construction method, the ground is excavated with an excavator and then consolidated into the ground around the periphery, so compared to forcing the guide body into the ground, there is less axial resistance and it can be propelled with a relatively small driving force. This means that it can be done. In addition, in the above construction method, a conical cone rotor that rotates eccentrically is installed inside the excavator, and the earth and sand is pushed out in a radial direction from the earth discharge port by the radial force accompanying the eccentric rotation of the cone rotor. A method has also been proposed for efficiently consolidating earth and sand onto the ground side.

【0005】上記の改良された無排土工法によれば、よ
り低コストで効率的に埋設管の推進埋設施工が行えると
されている。
[0005] According to the above-mentioned improved earth removal construction method, it is said that the propulsion and burying of buried pipes can be carried out more efficiently and at lower cost.

【0006】[0006]

【発明が解決しようとする課題】ところが、上記の改良
された無排土工法でも、埋設管の口径が大きくなるのに
つれて掘進機および埋設管列の推進が困難になり、口径
の大きな埋設管には適用できないという問題がある。す
なわち、無排土工法では、埋設管の口径が大きくなるの
に伴って、掘進機で掘削する地盤の掘削径が大きくなり
、大きな掘削径分の大量の土砂を、掘進機外周の地盤に
圧密しなければならないが、この土砂の圧密量が増えれ
ば、推進時の抵抗が増え、大きな推進力が要求されるこ
とになり、地盤の土質によって決まる圧密の許容量を超
えれば、それ以上は圧密が出来なくなり、推進が不可能
になってしまう。
[Problems to be Solved by the Invention] However, even with the above-mentioned improved earth removal construction method, as the diameter of the buried pipe becomes larger, it becomes difficult to propel the excavator and the buried pipe row, and The problem is that it cannot be applied. In other words, with the earth removal method, as the diameter of the buried pipe increases, the diameter of the ground excavated by the excavation machine increases, and a large amount of earth and sand corresponding to the large excavation diameter is compacted into the ground around the circumference of the excavation machine. However, if the amount of consolidation of this earth and sand increases, the resistance during propulsion will increase and a greater propulsion force will be required. This makes it impossible to move forward.

【0007】上記問題を詳しく説明する。図4に示すよ
うに、外径Dの埋設管を埋設する場合、断面積πD2 
/4に相当する範囲の土砂を完全に地盤側に圧密排土し
なければならない。地盤の土質条件と掘進機の有する側
方圧縮能力から、地盤の断面において、埋設孔の内壁を
外周側に圧縮して拡げることのできる距離、すなわち圧
密可能深さをtとすると、 π(D+2t)2 /4−πD2 /4が、側方圧縮に
よって形成可能な空隙、すなわち土砂を収容できる空間
の断面積となり、この断面積の中に埋設管の外径断面積
に相当する範囲の土砂が排土されなければならないこと
になる。この場合、掘削土砂の圧密による体積減少率を
αと仮定すれば、 (1−α)πD2 /4 の断面積に相当する範囲の土砂が、前記した空隙断面積
の中に完全に取り込まれなければならない。そのため、
埋設孔の内径、すなわち推進埋設する埋設管の外径Dに
は、下式の制限が付されることになる。
The above problem will be explained in detail. As shown in Fig. 4, when burying a buried pipe with an outer diameter of D, the cross-sectional area πD2
The earth and sand in an area equivalent to 1/4 must be completely consolidated and discharged to the ground side. Based on the soil conditions of the ground and the lateral compression ability of the excavator, if t is the distance over which the inner wall of the burial hole can be compressed and expanded toward the outer circumference in the cross section of the ground, that is, the possible consolidation depth, then π(D+2t) )2 /4 - πD2 /4 is the cross-sectional area of the void that can be formed by lateral compression, that is, the space that can accommodate earth and sand, and within this cross-sectional area there is earth and sand in an area equivalent to the outside cross-sectional area of the buried pipe. The soil will have to be removed. In this case, assuming that the volume reduction rate due to consolidation of the excavated soil is α, the earth and sand in the range equivalent to the cross-sectional area of (1-α)πD2/4 must be completely incorporated into the above-mentioned void cross-sectional area. Must be. Therefore,
The inner diameter of the buried hole, that is, the outer diameter D of the buried pipe to be propelled and buried, is limited by the following formula.

【0008】         (1−α)πD2 /4≦π(D+2
t)2 /4−πD2 /4すなわち、D≦{2/〔(
2−α)0.5 −1〕}t言い換えると、無排土推進
が可能な埋設管の外径Dは、側方圧縮深さをt、掘削土
砂の圧密による体積減少率をαとしたときには、{2/
〔(2−α)0.5 −1〕}tまでと言うことになる
(1-α)πD2 /4≦π(D+2
t)2/4-πD2/4, that is, D≦{2/[(
2-α)0.5-1]}t In other words, the outer diameter D of a buried pipe that can be propagated without soil removal is given by t, the lateral compression depth, and α, the volume reduction rate due to consolidation of excavated soil. Sometimes {2/
[(2-α)0.5-1]}t.

【0009】例えば、従来の無排土推進工法における一
般的な条件であるt=5cm、α=0.1(10%)の
時には、外径D=26.4cmまでの埋設管なら無排土
推進が可能であるが、それ以上の外径を有する埋設管で
は無排土推進が不可能であると言うことになる。なお、
前記した偏心回転コーンロータを使用して圧密能力を高
めたりして、t=5cm、α=0.15になったとして
も、前式からD=44.6cmまでの埋設管にしか適用
できない。すなわち、掘削土量が多く、その運搬処分の
コストが施工コスト全体に大きな比重を占め、無排土工
法によるメリットが大きいと考えられる、中口径管や大
口径管の場合には、ほとんど無排土推進工法が適用でき
ないということになってしまう。
For example, when t = 5 cm and α = 0.1 (10%), which are the general conditions in the conventional soil-free propulsion method, a buried pipe with an outer diameter of up to D = 26.4 cm can be buried without soil removal. Although propulsion is possible, it is impossible to carry out propulsion without soil removal with buried pipes that have a larger outer diameter. In addition,
Even if t=5 cm and α=0.15 are achieved by increasing the compaction ability by using the above-mentioned eccentric rotating cone rotor, it can only be applied to buried pipes up to D=44.6 cm from the previous formula. In other words, in the case of medium-diameter pipes and large-diameter pipes, where the amount of excavated soil is large and the cost of transporting and disposing of the excavated soil accounts for a large proportion of the overall construction cost, the benefits of the soil-free construction method are considered to be large. This means that the soil propulsion method cannot be applied.

【0010】そこで、この発明の課題は、上記のような
従来の無排土工法における適用管径の限界に関する問題
点を解消し、中・大口径管にも良好に適用できる埋設管
の無排土工法を提供することにある。
[0010] Therefore, an object of the present invention is to solve the above-mentioned problems regarding the limit of applicable pipe diameter in the conventional earth removal construction method, and to create a method for underground pipes without drainage, which can be well applied to medium- and large-diameter pipes. Our goal is to provide earthwork methods.

【0011】[0011]

【課題を解決するための手段】上記課題を解決する、こ
の発明にかかる埋設管の無排土推進工法は、地盤内を推
進する掘進機の先端で地盤を掘削し、掘削された土砂を
掘進機内に取り込み、取り込まれた土砂を掘進機の外周
で地盤側に圧密排土し、掘進機の後方に形成される埋設
孔に埋設管を推進埋設していく埋設管の無排土推進工法
において、埋設管よりも外径の大きな先端大径部と、埋
設管とほぼ同じ外径の後方部とを備えた掘進機で、埋設
管の外径よりも大きな掘削径で地盤を掘削し、掘進機内
に取り込まれた土砂の少なくとも一部を、掘進機の先端
大径部よりも後方位置で掘進機の外周に排土する。
[Means for Solving the Problems] A buried pipe excavation-free propulsion method according to the present invention which solves the above-mentioned problems excavates the ground with the tip of an excavator that propels the ground, and excavates the excavated earth and sand. In the soil-free propulsion method for buried pipes, the earth and sand taken into the machine are consolidated and removed to the ground side using the outer periphery of the excavator, and the buried pipe is propelled and buried in the burial hole formed at the rear of the excavator. , an excavator equipped with a large-diameter tip part with a larger outer diameter than the buried pipe and a rear part with approximately the same outer diameter as the buried pipe, excavates the ground with an excavation diameter larger than the outside diameter of the buried pipe. At least a part of the earth and sand taken into the machine is discharged to the outer periphery of the machine at a position rearward of the large diameter portion at the tip of the machine.

【0012】掘進機の基本的な構造は、前記した従来に
おける、地盤の掘削を伴う無排土推進工法と同様のもの
が用いられる。掘進機の先端には、地盤を掘削するビッ
トもしくは掘削刃などを備えた掘削機構が設けられてい
る。掘削機構には、電気モータや油空圧モータなどの駆
動機構が取り付けられている。掘削機構の掘削径は、掘
進機の前方部分を構成する先端大径部の外径とほぼ同じ
か、これより小さく設定されている。掘進機の先端大径
部の外径および掘削機構の掘削径は、推進埋設しようと
する埋設管の外径よりも大きく設定されている。先端大
径部の外径および掘削径は、地盤の土質、掘進機の圧密
能力、あるいは、埋設管の外径などの施工条件によって
決定される。掘削機構で地盤から掘削された土砂は、掘
進機の内部に取り込まれて後方に送られる。
[0012] The basic structure of the excavator is the same as that used in the conventional excavation method that involves excavating the ground. At the tip of the excavator, an excavation mechanism including a bit or excavation blade for excavating the ground is provided. A drive mechanism such as an electric motor or a hydraulic/pneumatic motor is attached to the excavation mechanism. The excavation diameter of the excavation mechanism is set to be approximately the same as or smaller than the outer diameter of the large diameter portion of the tip that constitutes the front portion of the excavation machine. The outer diameter of the large-diameter tip portion of the excavator and the excavation diameter of the excavation mechanism are set larger than the outer diameter of the buried pipe to be propelled and buried. The outer diameter of the large-diameter tip and the excavation diameter are determined by construction conditions such as the soil quality of the ground, the consolidation ability of the excavator, or the outer diameter of the buried pipe. Earth and sand excavated from the ground by the excavation mechanism is taken into the excavator and sent to the rear.

【0013】掘進機の後方部は、前記先端大径部よりも
外径が小さく、埋設管の外径とほぼ同じ外径になってお
り、掘進機の先端大径部と後方部の間には段差がついて
いる。掘進機の後方部に、順次埋設管が連結されて、掘
進機の推進とともに埋設管が推進埋設されていく。前記
掘削機構で掘削され、掘進機の後方に送られた土砂は、
先端大径部よりも後方位置で掘進機の外周に排土される
。すなわち、掘進機の先端大径部と後方部との外径の違
いによって生じる段差の垂直壁部分に、掘進機の軸方向
で後方に向かって開口する軸方向排土口、あるいは、掘
進機の後方部外周に開口する後方部排土口などから、土
砂が排土されるようになっている。軸方向排土口は、掘
進機の軸方向と正確に同じ方向を向いているもののほか
、斜め外側を向いて軸方向に対して傾斜していてもよい
。後方部排土口は、掘進機の半径方向を向いていてもよ
いし、斜め後方に向かって傾斜していてもよい。軸方向
および後方部排土口は、掘進機の全周にわたって連続す
る環状をなすものでもよいし、円周方向に間隔をあけて
分割された複数個の排土口が並んでいてもよい。なお、
掘進機には、従来の掘進機と同様に、掘進機の最外周と
なる先端大径部の外周面に放射方向に向かって開口する
最外周排土口を、前記軸方向排土口や後方部排土口とと
もに設けておくこともできる。
[0013] The rear part of the excavator has a smaller outer diameter than the large diameter part at the tip, and has an outer diameter that is approximately the same as the outer diameter of the buried pipe, and there is a gap between the large diameter part at the tip and the rear part of the excavator. has steps. Buried pipes are successively connected to the rear part of the excavator, and as the excavator advances, the underground pipes are propelled and buried. The earth and sand excavated by the excavation mechanism and sent to the rear of the excavator is
The earth is discharged around the outer periphery of the excavator at a position behind the large diameter part of the tip. In other words, an axial earth removal port that opens rearward in the axial direction of the excavator is installed in the vertical wall portion of the step caused by the difference in the outer diameter between the large diameter part of the tip and the rear part of the excavator. Earth and sand are discharged from the rear soil discharge port that opens on the outer periphery of the rear section. The axial soil discharge port may face in exactly the same direction as the axial direction of the excavator, or may face diagonally outward and be inclined with respect to the axial direction. The rear earth discharge port may face in the radial direction of the excavator, or may be inclined diagonally rearward. The axial and rear earth discharge ports may be continuous annular around the entire circumference of the excavator, or may be a plurality of divided earth discharge ports lined up at intervals in the circumferential direction. In addition,
Similar to conventional excavators, the excavator has an outermost earth discharge port that opens in the radial direction on the outer circumferential surface of the large diameter portion of the tip, which is the outermost periphery of the excavator. It can also be provided along with the soil discharge port.

【0014】掘進機の先端大径部よりも後方位置で排土
された土砂は、地盤側に圧密されて埋設孔の内壁を構成
し、この埋設孔に埋設管が推進されていく。掘進機の内
部で土砂の通過部分に、偏心回転するコーンロータを設
けておくことができる。コーンロータは、掘削機構の後
方に位置する先端側が尖った概略円錐形をなし、後方の
外周先端が排土口の近くに配置される。コーンロータは
、前記掘削機構と同様にモータなどの駆動機構で回転さ
れるとともに、コーンロータの中心軸が駆動機構の回転
軸に対して少し偏心して取り付けられる。コーンロータ
が偏心回転すると、土砂を攪拌粉砕しながら、コーンロ
ータの円錐外形に沿って後方外周側へと送り、排土口か
ら地盤側に強い圧力を加えながら土砂を排土することが
できる。すなわち、コーンロータには優れた圧密作用が
ある。コーンロータの外壁構造は、土砂あるいは礫石な
どの衝撃に耐える材料で構成し、礫石などを粉砕できる
ような突起や凹凸形状を設けておくことができる。
The earth and sand discharged at a position behind the large-diameter tip of the excavator is consolidated on the ground side and forms the inner wall of the burial hole, into which the buried pipe is propelled. A cone rotor that rotates eccentrically can be provided inside the excavator in a portion through which earth and sand passes. The cone rotor has a generally conical shape with a pointed end located at the rear of the excavation mechanism, and the rear outer peripheral end is disposed near the soil discharge port. The cone rotor is rotated by a drive mechanism such as a motor in the same way as the excavation mechanism, and the center axis of the cone rotor is attached with a slight eccentricity with respect to the rotation axis of the drive mechanism. When the cone rotor rotates eccentrically, the earth and sand can be agitated and pulverized while being sent to the rear outer circumferential side along the conical outer shape of the cone rotor, and the earth and sand can be discharged from the earth discharge port while applying strong pressure to the ground side. In other words, the cone rotor has an excellent compaction effect. The outer wall structure of the cone rotor is made of a material that can withstand the impact of earth and sand, gravel, etc., and can be provided with protrusions and uneven shapes that can crush gravel and the like.

【0015】上記コーンロータの代わりに、油圧シリン
ダなどで作動する圧密板を、土砂の通過経路で円周上に
並べて設置しておき、各圧密板を半径方向に作動させて
、土砂を外周側に押しやり、地盤側への圧密作用を高め
ることもできる。その他にも、土砂を地盤側へと効率的
に圧密できる機構を備えておけば、好ましい。掘進機に
は、上記構造のほかに、掘進機の推進方向を制御する方
向制御機構や、掘進機の推進方向を測量する測量機構、
掘進機に電源や油圧を供給するための配線ケーブルや配
管、掘進機に埋設管を連結支持するための連結機構など
、通常の掘進機と同様の各種機構を設けておくことがで
きる。
Instead of the above-mentioned cone rotor, consolidation plates operated by hydraulic cylinders or the like are installed in parallel on the circumference along the passage of earth and sand, and each consolidation plate is operated in the radial direction to move the earth and sand to the outer circumferential side. It is also possible to increase the compaction effect on the ground side. In addition, it would be preferable to have a mechanism that can efficiently consolidate earth and sand into the ground. In addition to the above structure, the excavator has a direction control mechanism that controls the direction of propulsion of the excavator, a surveying mechanism that measures the direction of propulsion of the excavator,
Various mechanisms similar to those of a normal excavator can be provided, such as wiring cables and piping for supplying power and hydraulic pressure to the excavator, and a connecting mechanism for connecting and supporting buried pipes to the excavator.

【0016】掘進機に推進力を与えるには、掘進機の後
方に連結した埋設管列の最後尾を、立坑内に設置された
元押しジャッキなどで押圧してもよいし、掘進機の後方
で、埋設管列の内部に鋼管などからなる推進軸体を順次
連結しておき、推進軸体の最後尾を、前記元押しジャッ
キなどで押圧してもよい。この場合、埋設管列は、推進
軸体とは別個に元押しジャッキで押圧してもよいし、埋
設管列の最先端を掘進機に固定しておき、掘進機の推進
に伴って埋設管列を牽引するようにしてよい。さらに、
埋設管列を、その内部に通された推進軸体に保持固定さ
せておき、推進軸体の推進とともに埋設管列を推進させ
ることもできる。このように埋設管列を推進軸体に保持
固定させる方法およびその具体的構造は、本願出願人が
先に特許出願している、特願昭63−298619号、
特願平1−183271号等に詳しく開示されている。
[0016] In order to provide propulsion to the excavator, the last end of the buried pipe array connected to the rear of the excavator may be pushed by a jack installed in the shaft, or the rear end of the underground pipe connected to the rear of the excavator Then, propulsion shafts made of steel pipes or the like may be successively connected inside the buried pipe array, and the rear end of the propulsion shafts may be pressed by the above-mentioned push jack or the like. In this case, the buried pipe row may be pressed with a push jack separately from the propulsion shaft, or the leading edge of the buried pipe row may be fixed to the excavator, and the buried pipe row may be pressed as the excavator advances. You may try to lead the line. moreover,
It is also possible to hold and fix the buried pipe array to a propulsion shaft passed through the interior thereof, and to propel the buried pipe array along with the propulsion of the propulsion shaft. The method of holding and fixing the buried pipe array to the propulsion shaft body and its specific structure are disclosed in Japanese Patent Application No. 63-298619, which the applicant has previously filed for patent.
This is disclosed in detail in Japanese Patent Application No. 1-183271.

【0017】埋設管の材料は、ヒューム管、鋼管、強化
プラスチック管、塩ビ管その他、通常の推進工法で利用
されている各種の管材料が使用でき、埋設管の用途も、
下水管、ガス管、電線管その他の任意の地中埋設管に適
用できる。
[0017] The material for the buried pipe can be Hume pipe, steel pipe, reinforced plastic pipe, PVC pipe, and various other pipe materials used in normal propulsion methods.
Applicable to sewer pipes, gas pipes, electrical conduit pipes, and any other underground pipes.

【0018】[0018]

【作用】掘進機により、埋設管の外径よりも大きな掘削
径で地盤を掘削し、掘進機の先端大径部が推進されてい
くと、先端大径部の外径は、掘進機の後方部および埋設
管の外径よりも大きいので、先端大径部の外径と埋設管
の外径の間に段差すなわち空隙が生じる。この先端大径
部よりも後方位置に形成される空隙部分に土砂を排土す
れば、土砂には地盤側から大きな抵抗が加わらず、極め
てスムーズに排土されて埋設管列の外周を覆うことにな
り、推進に必要な推進力を削減することができる。
[Operation] When the excavation machine excavates the ground with a diameter larger than the outside diameter of the buried pipe, and the large diameter part of the tip of the excavation machine is propelled, the outside diameter of the large diameter part of the tip will be Since the outer diameter of the large-diameter tip portion is larger than the outer diameter of the large-diameter portion and the outer diameter of the buried pipe, a step or gap is created between the outer diameter of the large-diameter tip portion and the outer diameter of the buried pipe. If the earth and sand are discharged into the gap formed at the rear of the large diameter part of the tip, there will be no large resistance applied to the earth and sand from the ground side, and the earth will be discharged extremely smoothly, covering the outer periphery of the buried pipe array. This makes it possible to reduce the propulsive force required for propulsion.

【0019】また、掘進機の先端大径部の外径と埋設管
の外径との間に出来る空隙が圧密空間として利用できる
ので、掘進機の推進力もしくは圧密能力が小さくても、
必要とする外径の埋設孔が確実に形成でき、前記した従
来方法のように、適用可能な埋設管の外径に制限を受け
ることがない。このことを、図3にしたがって詳しく説
明する。掘進機の前方部外径すなわち掘削径をD1 、
埋設管の外径すなわち埋設孔の内径をD、前記地盤の圧
密可能深さをt、圧密による掘削土砂の体積減少率をα
とすると、 π(D1 +2t)2 /4−πD2 /4が、掘削土
砂を圧密排土できる空隙の断面積である。この空隙に対
して、圧密排土しなければならない土砂の量は、体積減
少率を考慮して、 (1−α)πD1 2 /4となる。
[0019] Furthermore, since the gap created between the outer diameter of the large-diameter tip of the excavator and the outer diameter of the buried pipe can be used as a consolidation space, even if the propulsive force or consolidation capacity of the excavator is small,
A buried hole with the required outer diameter can be reliably formed, and unlike the conventional method described above, there is no restriction on the outer diameter of the applicable buried pipe. This will be explained in detail with reference to FIG. The front outer diameter of the excavator, that is, the excavation diameter, is D1,
The outer diameter of the buried pipe, that is, the inner diameter of the buried hole is D, the possible consolidation depth of the ground is t, and the volume reduction rate of excavated soil due to consolidation is α.
Then, π(D1 +2t)2/4−πD2/4 is the cross-sectional area of the void that can consolidate and discharge the excavated earth and sand. The amount of earth and sand that must be compacted and removed from this void is (1-α)πD1 2 /4, taking into account the volume reduction rate.

【0020】そこで、下記の条件が成立する必要がある
。       (1−α)πD1 2 /4≦π(D1 
+2t)2 /4−πD2 /4ここで、D1 =βD
、t/D=γとおくと、上式は、(1−α)β2 ≦(
β+2γ)−1 と書き替えることができる。
[0020] Therefore, the following conditions must be satisfied. (1-α)πD1 2 /4≦π(D1
+2t)2/4-πD2/4where, D1 = βD
, t/D=γ, the above equation becomes (1-α)β2 ≦(
It can be rewritten as β+2γ)-1.

【0021】さらに、上式を整理して、物理的意味を考
慮すれば、β≧{〔4γ2 +α(1−4γ2 )〕0
.5 −2γ}/αという条件のもとで、完全な無排土
推進が可能になる。具体的には、例えば、埋設管の外径
D=65cm、圧縮深さt=5cm、体積減少率α=0
.1とすれば、β≧1.944となり、掘進機の掘削径
D1 をD1 =126.4cm以上に設定しておけば
よいことになる。 同様に、t=8cm、α=0.15、D=100cmの
場合には、β=1.696で、掘削径D1 を約170
cmに設定しておけばよいことになる。
Furthermore, if we rearrange the above equation and consider the physical meaning, β≧{[4γ2 +α(1-4γ2)]0
.. 5 -2γ}/α, complete soil-free propulsion becomes possible. Specifically, for example, the outer diameter D of the buried pipe is 65 cm, the compression depth t is 5 cm, and the volume reduction rate α is 0.
.. 1, then β≧1.944, and the excavation diameter D1 of the excavator should be set to D1 = 126.4 cm or more. Similarly, when t = 8 cm, α = 0.15, and D = 100 cm, β = 1.696 and the excavation diameter D1 is approximately 170 cm.
All you have to do is set it to cm.

【0022】何れにしても、埋設管の外径Dと地盤条件
などに合わせて、掘進機の掘削径D1 を適当に設定す
れば、確実に無排土推進が可能になるのであり、従来の
無排土推進工法のように、埋設管の適用外径に理論的な
限界が生じることはない。また、埋設管の外径が同じで
あれば、従来の方法に比べて掘削土砂の圧密度合が少な
くて済むので、圧密に要するエネルギーすなわち推進力
やコーンロータの駆動力などが小さくて済み、推進機構
や駆動機構の装置コストおよび稼動コストを低減するこ
とができる。
In any case, if the excavation diameter D1 of the excavation machine is appropriately set according to the outside diameter D of the buried pipe and the ground conditions, it is possible to reliably advance the earth without removing soil, which is different from the conventional method. Unlike the soilless propulsion method, there is no theoretical limit to the applicable outer diameter of the buried pipe. In addition, if the outside diameter of the buried pipe is the same, the consolidation of excavated soil will be less than in the conventional method, so the energy required for consolidation, such as the propulsion force and the driving force of the cone rotor, will be small, and the propulsion The device cost and operating cost of the mechanism and drive mechanism can be reduced.

【0023】[0023]

【実施例】ついで、この発明の実施例を、図面を参照し
ながら以下に説明する。
Embodiments Next, embodiments of the present invention will be described below with reference to the drawings.

【0024】図1は、施工状態における掘進機部分の構
造を示しており、地盤E内を推進する掘進機1は、先端
大径部10と、先端大径部10よりも外径の小さな後方
部20とからなる。先端大径部10の先端には、多数の
ビット31を備えた掘削機構30が取り付けられている
。掘削機構30は後方に設置されたモータ40によって
回転駆動される。掘削機構30には土砂取込口32が開
口しており、掘削された土砂を掘進機1内部に取り込む
FIG. 1 shows the structure of the excavator part in the construction state. It consists of part 20. An excavation mechanism 30 including a large number of bits 31 is attached to the tip of the large diameter tip portion 10 . The excavation mechanism 30 is rotationally driven by a motor 40 installed at the rear. An earth and sand intake port 32 is opened in the excavation mechanism 30, and the excavated earth and sand is taken into the inside of the excavator 1.

【0025】掘削機構30の後方にはコーンロータ50
が取り付けられ、掘削機構30と同様にモータ40で回
転駆動される。コーンロータ50は、先端が尖った円錐
形をなしている。掘削機構30およびコーンロータ50
の外周を覆う、掘進機1の先端大径部10の内周面12
は、コーンロータ50とは逆に、後方側に向かって狭ま
る円錐形をなしている。したがって、掘削機構30の後
方に送りこまれた土砂は、先端大径部10の内周面12
とコーンロータ50で挟まれたテーパー状の空間を、よ
り狭い後方側へと移動する。コーンロータ50はモータ
40の回転軸に対して少し偏心して取り付けられており
、コーンロータ50全体が偏心回転するようになってい
る。そのため、コーンロータ50の外周に沿って後方へ
と送られる土砂は、コーンロータ50の偏心回転に伴う
半径方向の力を受ける。このような過程を経て、土砂も
しくは礫石が細かく砕かれたり、圧密作用を受ける。
A cone rotor 50 is located behind the excavation mechanism 30.
is attached and rotated by a motor 40 in the same way as the excavation mechanism 30. The cone rotor 50 has a conical shape with a pointed tip. Excavation mechanism 30 and cone rotor 50
The inner peripheral surface 12 of the large-diameter tip portion 10 of the excavator 1 covers the outer periphery of the
Contrary to the cone rotor 50, it has a conical shape that narrows toward the rear side. Therefore, the earth and sand sent to the rear of the excavation mechanism 30 is removed from the inner circumferential surface 12 of the large diameter portion 10.
The tapered space between the cone rotor 50 and the cone rotor 50 is moved to the narrower rear side. The cone rotor 50 is mounted slightly eccentrically with respect to the rotating shaft of the motor 40, so that the entire cone rotor 50 rotates eccentrically. Therefore, the earth and sand sent backward along the outer periphery of the cone rotor 50 is subjected to a radial force due to the eccentric rotation of the cone rotor 50. Through this process, the earth and sand or gravel are crushed into small pieces and subjected to a compaction effect.

【0026】掘進機1の先端大径部10と後方部20と
の段差部分の直ぐ後方で、後方部20の外周に後方部排
土口60が開口している。コーンロータ50に沿って後
方に移動した土砂は、後方部排土口60から地盤側へと
排土される。排土された土砂は、先端大径部10の外径
と後方部20の外周との間に生じる空隙に収容され他状
態で圧密され、後方部20の後方に連結される埋設管(
図示せず)の外径に相当する埋設孔が形成される。
A rear earth discharge port 60 is opened on the outer periphery of the rear part 20 immediately behind the step between the large diameter tip part 10 and the rear part 20 of the excavator 1 . The earth and sand that has moved backward along the cone rotor 50 is discharged toward the ground through the rear earth discharge port 60. The discharged earth and sand is accommodated in the gap created between the outer diameter of the large diameter tip portion 10 and the outer periphery of the rear portion 20 and is consolidated in another state, and is then placed in a buried pipe (
A buried hole corresponding to the outer diameter of (not shown) is formed.

【0027】掘進機1の後方部20は、先端大径部10
に固定された前筒部22と、埋設管列を連結する後筒部
24が、方向制御ジャッキ26で屈曲自在に連結されて
おり、前筒部22すなわち先端大径部10および掘削機
構30が自由に首を振れるようになっていて、推進方向
の修正が容易に行える。上記のような構造を有する掘進
機1を用いて埋設管の推進埋設を行うと、掘削機構30
で先端大径部10の外径に相当する範囲の地盤を掘削し
、掘削された土砂は、掘削機構30の土砂取込口32か
ら掘進機1内部に取り込まれる。土砂はコーンロータ5
0に沿って後方に送られるとともに、コーンロータ50
の偏心回転により外周方向へと押しやられる。後方部排
土口60まで送られた土砂は、先端大径部10と後方部
20の間の段差によって形成された空隙部分に送り出さ
れる。排土された土砂および地盤の内壁部分の一定厚み
までが圧密されることによって、掘削された土砂の全体
が、埋設管の外周部分に完全に圧密される。このように
して、掘進機1が推進されるとともに、推進機1の後方
に形成される埋設孔に埋設管が推進埋設されていき、掘
進機1で掘削された土砂は埋設管の外周部分に完全に埋
め戻される。
The rear portion 20 of the excavator 1 has a large diameter portion 10 at the tip.
The front cylinder part 22 fixed to the front cylinder part 22 and the rear cylinder part 24 which connects the buried pipe array are connected in a flexible manner by a direction control jack 26. It can swing its head freely, making it easy to adjust the direction of propulsion. When a buried pipe is propelled and buried using the excavator 1 having the structure as described above, the excavation mechanism 30
The ground is excavated in a range corresponding to the outer diameter of the large diameter tip portion 10, and the excavated earth and sand is taken into the excavation machine 1 through the earth and sand intake port 32 of the excavation mechanism 30. Cone rotor 5 for earth and sand
0 along the cone rotor 50.
is pushed toward the outer periphery due to eccentric rotation. The earth and sand sent to the rear earth discharge port 60 is sent into the gap formed by the step between the large diameter tip part 10 and the rear part 20. By consolidating the excavated earth and sand and the inner wall portion of the ground up to a certain thickness, the entire excavated earth and sand is completely consolidated into the outer peripheral portion of the buried pipe. In this way, as the excavator 1 is propelled, the buried pipe is propelled and buried in the burial hole formed behind the propulsion machine 1, and the earth and sand excavated by the excavator 1 is deposited on the outer periphery of the buried pipe. completely backfilled.

【0028】つぎに、図2に示す実施例では、前記実施
例と排土口の構造が異なっている。すなわち、この実施
例では、先端大径部10と後方部20の段差部分に存在
する垂直壁部分に、掘進機1の軸方向で後方を向いて開
口した軸方向排土口64を備えている。軸方向排土口6
4から後方に向かって送り出される土砂は、地盤からの
抵抗力が小さくなるので、排土がスムーズに行える。ま
た、この実施例では、先端大径部10の外周、すなわち
掘進機1の最外周面に開口する最外周排土口62を備え
ている。したがって、掘削機構30で掘削された土砂の
うち、一部は軸方向排土口64から排土され、残りの一
部は最外周排土口62から排土されることになる。
Next, the embodiment shown in FIG. 2 differs from the previous embodiment in the structure of the soil discharge port. That is, in this embodiment, an axial soil discharge port 64 that opens rearward in the axial direction of the excavator 1 is provided in a vertical wall portion existing at a step portion between the large diameter tip portion 10 and the rear portion 20. . Axial soil discharge port 6
The earth and sand sent out backward from 4 has less resistance from the ground, so it can be discharged smoothly. Further, in this embodiment, an outermost soil discharge port 62 is provided that opens on the outer periphery of the large-diameter tip portion 10, that is, on the outermost surface of the excavator 1. Therefore, part of the earth and sand excavated by the excavation mechanism 30 is discharged from the axial earth discharge port 64, and the remaining part is discharged from the outermost earth discharge port 62.

【0029】[0029]

【発明の効果】以上の述べた、この発明にかかる埋設管
の無排土推進工法によれば、埋設管の外径よりも大きな
掘削径で地盤を掘削し、掘削された土砂を、掘進機の先
端大径部と埋設管の外径との間に構成される空隙を利用
して、地盤側に圧密して排土するようにしているので、
土砂の圧密排土が非常にスムーズに行える。特に、埋設
管の外径に合わせて、掘進機の先端大径部と掘削径を適
当に選択するだけで、いかなる口径の埋設管でも容易に
推進埋設することが出来るので、従来の無排土推進工法
では適用困難であった、中口径あるいは大口径の埋設管
に対しても無排土で推進埋設することが可能になる。
[Effects of the Invention] According to the soil-free propulsion method for buried pipes according to the present invention described above, the ground is excavated with an excavation diameter larger than the outer diameter of the buried pipe, and the excavated earth and sand is transported by an excavator. The gap created between the large diameter part of the tip of the pipe and the outside diameter of the buried pipe is used to compact and discharge soil to the ground side.
Consolidation and removal of earth and sand can be carried out very smoothly. In particular, by simply selecting the large-diameter tip of the excavator and the excavation diameter to suit the outside diameter of the buried pipe, it is possible to easily propel and bury buried pipes of any diameter. It becomes possible to propulsion bury medium-diameter or large-diameter buried pipes without soil removal, which was difficult to apply with the propulsion method.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明の実施例を示す施工状態の断面図であ
る。
FIG. 1 is a sectional view of an embodiment of the present invention in a construction state.

【図2】別の実施例を示す施工状態の断面図である。FIG. 2 is a cross-sectional view of another embodiment in a construction state.

【図3】この発明における土砂の圧密状態を説明する埋
設孔の断面図である。
FIG. 3 is a cross-sectional view of a buried hole illustrating the consolidation state of earth and sand in the present invention.

【図4】従来の方法における土砂の圧密状態を説明する
埋設孔の断面図である。
FIG. 4 is a cross-sectional view of a buried hole illustrating the consolidation state of earth and sand in a conventional method.

【符号の説明】[Explanation of symbols]

1    掘進機 10  先端大径部 20  後方部 30  掘削機構 60  後方部排土口 62  最外周排土口 64  軸方向排土口 E    地盤 1. Excavation machine 10 Tip large diameter part 20 Rear part 30 Excavation mechanism 60 Rear soil discharge port 62 Outermost soil discharge port 64 Axial soil discharge port E Ground

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  地盤内を推進する掘進機の先端で地盤
を掘削し、掘削された土砂を掘進機内に取り込み、取り
込まれた土砂を掘進機の外周で地盤側に圧密排土し、掘
進機の後方に形成される埋設孔に埋設管を推進埋設して
いく埋設管の無排土推進工法において、埋設管よりも外
径の大きな先端大径部と、埋設管とほぼ同じ外径の後方
部とを備えた掘進機で、埋設管の外径よりも大きな掘削
径で地盤を掘削し、掘進機内に取り込まれた土砂の少な
くとも一部を、掘進機の先端大径部よりも後方位置で掘
進機の外周に排土することを特徴とする埋設管の無排土
推進工法。
[Claim 1] The ground is excavated with the tip of an excavator that propels the ground, the excavated earth and sand are taken into the excavator, and the taken-in earth and sand is compacted and discharged to the ground side using the outer periphery of the excavator. In the soil-free propulsion method for buried pipes, in which the buried pipes are propelled and buried in buried holes formed at the rear of excavate the ground with an excavation diameter larger than the outside diameter of the buried pipe, and remove at least a portion of the earth and sand taken into the excavator at a position rearward of the large diameter section at the tip of the excavator. A soil-free propulsion method for buried pipes, which is characterized by discharging soil around the outer periphery of the excavator.
JP2401711A 1990-12-12 1990-12-12 Non-removal soil promotion method for buried pipes Expired - Fee Related JPH0721280B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2401711A JPH0721280B2 (en) 1990-12-12 1990-12-12 Non-removal soil promotion method for buried pipes
US07/803,884 US5211510A (en) 1990-12-12 1991-12-09 Propulsion method of pipe to be buried without soil discharge and an excavator
AU88939/91A AU634916B2 (en) 1990-12-12 1991-12-10 Propulsion method of pipe to be buried without soil discharge and an excavator
DE69117691T DE69117691T2 (en) 1990-12-12 1991-12-12 Process for driving a pipe to be excavated without excavation and digging device
EP91121388A EP0490390B1 (en) 1990-12-12 1991-12-12 Propulsion method of pipe to be buried without soil discharge and an excavator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2401711A JPH0721280B2 (en) 1990-12-12 1990-12-12 Non-removal soil promotion method for buried pipes

Publications (2)

Publication Number Publication Date
JPH04213694A true JPH04213694A (en) 1992-08-04
JPH0721280B2 JPH0721280B2 (en) 1995-03-08

Family

ID=18511548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2401711A Expired - Fee Related JPH0721280B2 (en) 1990-12-12 1990-12-12 Non-removal soil promotion method for buried pipes

Country Status (1)

Country Link
JP (1) JPH0721280B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0711890A (en) * 1993-06-25 1995-01-13 Kajima Corp Shielding machine
JPH0711884A (en) * 1993-06-25 1995-01-13 Kajima Corp Shielding machine
JPH0711888A (en) * 1993-06-25 1995-01-13 Kajima Corp Shielding machine
JPH0711885A (en) * 1993-06-25 1995-01-13 Kajima Corp Shielding machine
JPH0711883A (en) * 1993-06-25 1995-01-13 Kajima Corp Shielding machine
KR100449002B1 (en) * 2002-02-08 2004-09-18 조복래 A tunnelling method for the small sized tunnel and its apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5625596A (en) * 1979-08-04 1981-03-11 Hazama Gumi Method of construction of covering tunnel
JPS5729797A (en) * 1980-07-24 1982-02-17 Hitachi Construction Machinery Tunnel excavator
JPS60181490A (en) * 1984-02-24 1985-09-17 日本電信電話株式会社 Pipe embedding apparatus
JPH01322091A (en) * 1988-06-22 1989-12-27 Iseki Tory Tech Inc Drilling method and device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5625596A (en) * 1979-08-04 1981-03-11 Hazama Gumi Method of construction of covering tunnel
JPS5729797A (en) * 1980-07-24 1982-02-17 Hitachi Construction Machinery Tunnel excavator
JPS60181490A (en) * 1984-02-24 1985-09-17 日本電信電話株式会社 Pipe embedding apparatus
JPH01322091A (en) * 1988-06-22 1989-12-27 Iseki Tory Tech Inc Drilling method and device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0711890A (en) * 1993-06-25 1995-01-13 Kajima Corp Shielding machine
JPH0711884A (en) * 1993-06-25 1995-01-13 Kajima Corp Shielding machine
JPH0711888A (en) * 1993-06-25 1995-01-13 Kajima Corp Shielding machine
JPH0711885A (en) * 1993-06-25 1995-01-13 Kajima Corp Shielding machine
JPH0711883A (en) * 1993-06-25 1995-01-13 Kajima Corp Shielding machine
KR100449002B1 (en) * 2002-02-08 2004-09-18 조복래 A tunnelling method for the small sized tunnel and its apparatus

Also Published As

Publication number Publication date
JPH0721280B2 (en) 1995-03-08

Similar Documents

Publication Publication Date Title
EP0490390A1 (en) Propulsion method of pipe to be buried without soil discharge and an excavator
JPH04213694A (en) Jacking method of buried pipe without earth removal
JP3084212B2 (en) Rectangular shield machine
JP3874095B2 (en) Wellhead formation method and shield machine when reaching shield machine
JP2647692B2 (en) Underground pipe laying replacement method and equipment
JPH10220173A (en) Buried pipe construction combined muddy water pressure pipe jacking method and device thereof
JP3940681B2 (en) Rectangular cross-section excavator
JP3616898B2 (en) Method for joining underground structures using propulsion device
JP2652513B2 (en) Shield construction method for removal of existing pipes and construction of new pipes
JP3568844B2 (en) Excavator and buried pipe
JP7290621B2 (en) rock excavator
JP4136902B2 (en) Small-diameter pipe excavation equipment
JP6400151B1 (en) Excavation equipment for both earth removal and no earth removal
JPH042160B2 (en)
JPH0696949B2 (en) Construction method of rectangular section tunnel and shield machine used for it
JP2010071056A (en) Tunnel excavator
JP3776815B2 (en) Shield machine
JP3137731B2 (en) Existing tunnel removal shield machine
KR200361243Y1 (en) Horizontal excavating devidce for pushing steel pipe
JP3137743B2 (en) Existing tunnel removal shield machine
JP3473915B2 (en) Small diameter pipe burial method
JP3253544B2 (en) Bent tube propulsion machine
JP3108735B2 (en) Reconstruction method of large diameter sewer
JPH0774586B2 (en) Tunnel branching method by shield excavator and excavator cutter plate
JPH0438279B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees