JPH04208416A - Molding method of fiber reinforced composite body and device therefor - Google Patents

Molding method of fiber reinforced composite body and device therefor

Info

Publication number
JPH04208416A
JPH04208416A JP2152164A JP15216490A JPH04208416A JP H04208416 A JPH04208416 A JP H04208416A JP 2152164 A JP2152164 A JP 2152164A JP 15216490 A JP15216490 A JP 15216490A JP H04208416 A JPH04208416 A JP H04208416A
Authority
JP
Japan
Prior art keywords
sample chamber
preform
resin
matrix resin
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2152164A
Other languages
Japanese (ja)
Inventor
Masao Nissei
日聖 昌夫
Yasumi Miyashita
康己 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Automatic Loom Works Ltd filed Critical Toyoda Automatic Loom Works Ltd
Priority to JP2152164A priority Critical patent/JPH04208416A/en
Publication of JPH04208416A publication Critical patent/JPH04208416A/en
Pending legal-status Critical Current

Links

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

PURPOSE:To suppress the development of wrinkle, unevenness, void, air bubble and the like and make the molding of composite body member with favorable quality possible by a method wherein proper pressure is applied on the surface of a body to be processed throughout the hardening process of resin. CONSTITUTION:A plenum chamber 7 is formed by inserting an airtight membrane 6 in the sample chamber 9 of a forming mold 1. Under the condition that preform 8 is set in the sample chamber 9 and the sample chamber 9 is evacuated through a vent hole 3, matrix resin is poured through an inlet 2 in the chamber so as to uniformly infiltrate the resin in the preform 8. After that, under condition that the inlet 2 and the vent hole 3 are hermetically closed, pressurizing gas is introduced through a pressurizing lead-in port 4 so as to apply pressure to the plenum chamber 7. Under the condition that a body to process consisting of the preform 8 and the matrix resin is pressurized, the whole system under the above-mentioned condition is heat-treated so as to harden resin. By keeping the above-mentioned pressurized condition throughout the hardening process of the matrix resin, the development of surface wrinkle, unevenness or void and air bubble within a molded article due to deformation under shrinkage at the hardening can be suppressed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 航空機・船舶・車両等の構造部材用として使用される繊
維強化複合体の新規な成形方法、およびこれを実行する
に適した成形用型装置を提供する。
[Detailed Description of the Invention] [Industrial Application Field] A novel method for molding fiber-reinforced composites used for structural members of aircraft, ships, vehicles, etc., and a molding device suitable for carrying out the method. I will provide a.

〔従来技術〕[Prior art]

高強度高弾性率の長繊維と熱硬化性のマトリックスレジ
ンからなる繊維強化複合体の成形方法のひとつとしてレ
ジンインジェクション(R1)と呼ばれる手法がある。
There is a method called resin injection (R1) as one of the methods for molding a fiber-reinforced composite consisting of long fibers with high strength and high modulus and a thermosetting matrix resin.

これは中空の成形型中に芯体となるプリフォームをセッ
トし、レジンを注入して含浸し加熱硬化させる方法であ
る。ここで[プリフォームJとは通常高強度高弾性率の
長繊維からなる織物基布を積層したもの、またはこれを
ステッチ糸により縫合一体化したもの、あるいは立体織
物・編組物など、三次元の繊維構造物を意味している。
This is a method in which a preform serving as a core is set in a hollow mold, injected with resin, impregnated, and heated to harden. [Preform J] is usually a layered fabric made of long fibers with high strength and high elasticity, or a three-dimensional fabric such as a three-dimensional fabric or a braided fabric, or a fabric that is sewn together with stitch thread. It means a fibrous structure.

第2図は一般的なR1成形法の実施態様をしめず概念図
である。図のようにプリフォーム8を成形型1の試料室
9にセットしたのちベントロ3を介して型内を減圧とし
、注入口2からマトリックスレジンを注入しプリフォー
ム8に均等に含浸せしめる。このあと注入口2、ベント
ロ3を密閉し、系全体を電熱ヒータなとの加熱手段(図
示されていない)により所定の温度・時間条件により加
熱処理してレジンを硬化させるのである。この時、レジ
ンの硬化時収縮特性により成形品表面にシワ・凹凸を生
じ、あるいは成形品内部にボイド・気泡を生じて製品の
表面品位が低下することがあり、これが従来技術の課題
のひとつとなっていた。
FIG. 2 is a conceptual diagram showing an embodiment of the general R1 molding method. After the preform 8 is set in the sample chamber 9 of the mold 1 as shown in the figure, the pressure inside the mold is reduced through the vent 3, and matrix resin is injected from the injection port 2 to evenly impregnate the preform 8. Thereafter, the injection port 2 and the vent 3 are sealed, and the entire system is heated under predetermined temperature and time conditions using a heating means (not shown) such as an electric heater to harden the resin. At this time, the shrinkage characteristics of the resin during curing can cause wrinkles and unevenness on the surface of the molded product, or voids and bubbles can occur inside the molded product, reducing the surface quality of the product. This is one of the problems with conventional technology. It had become.

R1法においてはできるだけ硬化時のこのような体積変
化の小さいレジンを選択すべく配慮しているが、この分
野で多く使用される例えばエポキシ系レジンては硬化前
後で5%前後の体積変化が一般的であり、被加工体か成
形型内で型離れすることにより表面の平滑性が失われや
すく、はなはだしいときは表面にシワ・凹凸を生じる結
果となる。
In the R1 method, consideration is given to selecting a resin with as little volume change as possible during curing, but for example, epoxy resins, which are often used in this field, generally have a volume change of around 5% before and after curing. The surface smoothness is likely to be lost due to the workpiece being separated from the mold within the mold, and if this is severe, wrinkles and unevenness may occur on the surface.

これを防止するため、[法において被加工体を加圧状態
とし、この状態を維持しつつ系全体を加熱処理してレジ
ンを硬化させる手法として、試料室に注入したマトリッ
クスレジンに、油圧シリンダ等を介して直接に加圧する
ことか提案されている。しかしこの方法では、レジンの
硬化か進行して流動性か失われてくると(とくにレジン
注入口付近での硬化か進むと)、被加圧体の全体に均等
な加圧かなされにくくなる難点かある。
In order to prevent this, in order to prevent this, the matrix resin injected into the sample chamber is heated using a hydraulic cylinder, etc. as a method in which the workpiece is pressurized and the entire system is heated while maintaining this state to harden the resin. It has been proposed to apply pressure directly through the However, the problem with this method is that as the resin hardens and loses its fluidity (especially when hardening near the resin injection port progresses), it becomes difficult to apply pressure evenly to the entire pressurized body. There is.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明はR1法のこのような問題点を改良するために、
レジンの硬化過程の始終にわたって被加工体の表面に適
当な圧力を付加することによって、シワ・凹凸・ボイド
・空泡などの生成を抑制し、品位良好な複合体部材の成
形を可能にする成形方法を提供することを意図したちの
である。
In order to improve these problems of the R1 method, the present invention
By applying appropriate pressure to the surface of the workpiece throughout the resin curing process, the formation of wrinkles, unevenness, voids, air bubbles, etc. is suppressed, making it possible to mold composite parts with good quality. Our intention is to provide a method.

〔課題を解決するための手段〕[Means to solve the problem]

上記のような問題点を解決するために、■高強度高弾性
率繊維からなるプリフォームを、成形型内の実質的に密
閉された試料室中に置き、熱硬化性のマトリックスレジ
ンを試料室に注入してプリフォームに含浸せしめたのち
、あらかじめ該試料室内側に挿着された気密性膜により
試料室と隣接して形成される気室に加圧気体を導入して
、前記プリフォームおよびマトリックスレジンからなる
被加工体を加圧状態とし、この状態を保持しつつ成形型
を所定温度に加熱してマトリックスレジンを硬化させる
ことを特徴とする繊維強化複合体の成形方法 を提案する。また上記の方法を効果的に実施するために
、 ■マトリックスレジンの注入口およびベント口を有し実
質的に密閉された試料室と、該試料室の内側に挿着され
た気密性膜により試料室と隣接して形成される気室、お
よび該気室と連通ずる加圧気体の導入口を必須の構成要
件とする繊維強化複合体の成形用型装置 を提案する。
In order to solve the above problems, ■ A preform made of high-strength, high-modulus fibers is placed in a substantially sealed sample chamber in a mold, and a thermosetting matrix resin is placed inside the sample chamber. After injecting the gas into the preform and impregnating it, pressurized gas is introduced into the air chamber formed adjacent to the sample chamber by an airtight membrane inserted in advance inside the sample chamber, and the preform and We propose a method for molding a fiber-reinforced composite material, which is characterized in that a workpiece made of matrix resin is brought into a pressurized state, and while this state is maintained, a mold is heated to a predetermined temperature to harden the matrix resin. In addition, in order to effectively carry out the above method, the sample chamber is equipped with a substantially sealed sample chamber that has a matrix resin injection port and a vent port, and an airtight membrane inserted inside the sample chamber. We propose a mold device for molding a fiber-reinforced composite, which includes an air chamber formed adjacent to the chamber and an inlet for pressurized gas communicating with the air chamber.

〔作用〕[Effect]

RI成形法において、マトリックスレジンの注入口2を
有する実質的に密閉された試料室9と、この試料室中に
セットされる通常高強度高弾性率の補強繊維からなるプ
リフォーム8、および上記注入口2から注入されるマト
リックスレジンは基本的な要素である。
In the RI molding method, a substantially sealed sample chamber 9 having a matrix resin injection port 2, a preform 8 usually made of high-strength and high-modulus reinforcing fibers set in this sample chamber, and the above-mentioned The matrix resin injected through the inlet 2 is the basic element.

第1図は本発明の実施態様を示す概略図である。成形型
1の試料室9に挿着された気密性II!6と、これによ
り形成される気室7およびこれに連通した加圧導入口4
が本発明の特徴を構成する。すなわち図のようにプリフ
ォーム8をセットし、ベントロ3を介して試料室内を減
圧とし、注入口2からマトリックスレジンを注入し、プ
リフォーム8に均等に含浸せしめた後、注入口2、ベン
トロ3を密閉し、加圧導入口4がら加圧気体を導入して
気室7に圧力を付与し、これによってプリフォーム8と
マトリックスレジンからなる被加工体を加圧状態とし、
この状態を維持しつつ系全体を加熱処理してレジンを硬
化させる。このようにマトリックスレジンの硬化過程の
始終にわたり加圧状態をたもっことにより硬化時収縮変
形に起因する表面シワ・凹凸、あるいは成形品内部のボ
イド・空泡の形成を抑制することができる。
FIG. 1 is a schematic diagram showing an embodiment of the invention. Airtightness II inserted into sample chamber 9 of mold 1! 6, an air chamber 7 formed thereby, and a pressurization inlet 4 communicating therewith.
constitute a feature of the present invention. That is, set the preform 8 as shown in the figure, reduce the pressure in the sample chamber through the vent 3, inject the matrix resin from the injection port 2, and evenly impregnate the preform 8. is sealed, pressurized gas is introduced through the pressurization inlet 4 to apply pressure to the air chamber 7, and thereby the workpiece consisting of the preform 8 and the matrix resin is put in a pressurized state,
While maintaining this state, the entire system is heat-treated to harden the resin. By maintaining the pressurized state throughout the curing process of the matrix resin in this way, it is possible to suppress the formation of surface wrinkles and irregularities due to shrinkage deformation during curing, or the formation of voids and air bubbles inside the molded product.

ここで、気密性膜6の作用は、プリフォーム8に含浸さ
れたマトリックスレジンか熱処理によりゲル化/硬化す
る過程で高粘稠化しつつ体積収縮する際に、所定の気圧
により被加工体表面と密接したまま追随し、その状態を
徐冷・型出しに至るまで継続することであり、このこと
によって被加工体表面の平滑性を保持することか出来る
Here, the action of the airtight film 6 is that when the matrix resin impregnated into the preform 8 becomes highly viscous and shrinks in volume during the process of gelling/hardening through heat treatment, the preform 8 is bonded to the surface of the workpiece by a predetermined atmospheric pressure. The method is to follow the workpiece in close contact and continue in that state until it is slowly cooled and molded, and by this it is possible to maintain the smoothness of the surface of the workpiece.

[実施例] ・実施例1 炭素繊維織物(東し■トレカ■クロス#C06644B
)を縦350mm横120mmに裁断したもの14枚を
重ね合わせ、KEVLAR@アラミド紡績糸で周囲をロ
ックステッチして厚さ約5.5mmの積層体をつくり、
これをプリフォーム供試体8とした。
[Example] ・Example 1 Carbon fiber fabric (Toshi Trading Card Cloth #C06644B
) was cut to 350mm long and 120mm wide, stacked together, and lock-stitched around the periphery with KEVLAR@aramid spun yarn to create a laminate with a thickness of about 5.5mm.
This was designated as preform specimen 8.

5S41鋼材により図2の構造の成形型1をつくった。A mold 1 having the structure shown in FIG. 2 was made of 5S41 steel.

試料室9の内寸法は縦355mm横125mm幅5mm
である。内側面には3°の開きテーバをつけ、クロムメ
ツキ平滑仕上げしである。成形型1の密閉は0リング5
と、本体1aと本体1bに係合する計16本のM12ボ
ルト・ナツト (図示されていない)によりおこなわれ
る。
The internal dimensions of the sample chamber 9 are 355 mm long, 125 mm wide, and 5 mm wide.
It is. The inner surface has a 3° opening taper and is finished with smooth chrome plating. The mold 1 is sealed with 0 ring 5.
This is done by a total of 16 M12 bolts and nuts (not shown) that engage the main bodies 1a and 1b.

型内をフロン系離型材で処理したのち上記のプリフォー
ム8をセットした。
After treating the inside of the mold with a fluorocarbon-based mold release agent, the above preform 8 was set.

オートクレーブ用の加圧バッグフィルム(AIRTEC
HINTERNATIONAL INC,、WRITR
ON@$7400 ) 2m1l厚を400mmX 1
70mmに裁断したものを上記のプリフォーム8を覆う
かたちで試料室9上面に挿着し、この状態で成形型lを
密閉した。この成形型1を温度調節できる恒温室中に置
きベントロ3を真空ポンプ減圧系に、加圧気導入口4を
コンプレッサ圧空系にそれぞれ連結した。
Pressure bag film for autoclaves (AIRTEC
HINTERNATIONAL INC,,WRITR
ON@$7400) 2ml 1l thickness 400mm x 1
A piece cut to 70 mm was inserted into the upper surface of the sample chamber 9 so as to cover the preform 8, and the mold 1 was sealed in this state. The mold 1 was placed in a constant temperature room where the temperature could be controlled, and the vent 3 was connected to a vacuum pump decompression system, and the pressurized air inlet 4 was connected to a compressor air system.

エポキシレジンを表1の処方により配合し、真空ポンプ
減圧下に25分間攪拌して充分に脱気したのちレジン注
入口2から試料室へ注入した。注入はベントロ3による
減圧(−50〜−100mmHg)とレジンタンク液面
高さによる静圧差を利用し、内部の気泡残留を避けるた
め10cc/min以下の注入速度となるよう調節を行
った。
Epoxy resin was mixed according to the recipe shown in Table 1, stirred for 25 minutes under reduced pressure with a vacuum pump to sufficiently degas it, and then injected into the sample chamber through the resin injection port 2. Injection was carried out using the reduced pressure (-50 to -100 mmHg) by the vent 3 and the static pressure difference due to the liquid level height of the resin tank, and the injection rate was adjusted to 10 cc/min or less to avoid residual air bubbles inside.

ベントロ3からのレジン温圧により試料室9内がレジン
で充満したことを確認したのち注入口2およびベントロ
3を再び密閉し、加圧気導入口4から圧空を導入してバ
ッグフィルム6と成形型lとにより形成される気室7に
ゲージ圧5kg/cm2の加圧をかけ、この状態のまま
表2のプログラムにしたがって恒温室の温度を変化させ
ることによってレジンを硬化させた。
After confirming that the sample chamber 9 is filled with resin due to resin temperature and pressure from the vent 3, the injection port 2 and the vent 3 are sealed again, and compressed air is introduced from the pressurized air inlet 4 to remove the bag film 6 and the mold. Pressurization of 5 kg/cm 2 gauge pressure was applied to the air chamber 7 formed by 1 and 1, and the resin was cured by changing the temperature of the thermostatic chamber in accordance with the program shown in Table 2 in this state.

硬化処理終了後−30℃/hrて徐冷して成形型を開き
成形品を取出し試料■とした。
After the curing process was completed, the mold was slowly cooled at -30° C./hr, and the mold was opened to take out the molded product, which was designated as sample (2).

表1 レジンの配合 表2 硬化温度プログラム ・比較例1 上記(1)において、a)成形型1中にオートクレーブ
用バッグフィルムを挿着しない、b)レジン注入後に圧
空の導入を行わない 以外は全く同じ操作を行って得た
成形品を試料■とした。
Table 1 Resin formulation table 2 Curing temperature program/comparative example 1 In (1) above, all the following are true except that a) autoclave bag film is not inserted into mold 1, and b) compressed air is not introduced after resin injection. A molded product obtained by performing the same operation was designated as sample (■).

試料工および■についてそれぞれn=5回の成形試行を
行い、得られた成形品について光沢・ひけ・ボイドによ
る表面品位の目視評価を行った結果表3の知見かえられ
た。すなわち本発明の装置および方法により成形された
試料工は、 R1法において通常行われる手法による試
料■より表面の仕上がり状態が良好であり、ボイドの生
成も抑止されていることが確認された。
Molding trials were carried out n = 5 times for each of sample work and ■, and the surface quality of the obtained molded products was visually evaluated in terms of gloss, sink marks, and voids, and the results shown in Table 3 were changed. In other words, it was confirmed that the sample molded by the apparatus and method of the present invention had a better surface finish than the sample (2) formed by the method normally performed in the R1 method, and the generation of voids was also suppressed.

表3 成形品の評価 〔効果〕 以上の様に、本発明の方法においては、マトリックスレ
ジンを加熱して硬化させる際に、気密性膜か被加工体と
密接したまま追随するため、マトリックスレジンか体積
変化しても、成形型と被加工体の型離れを防止でき、光
沢か高くボイド、ひけのない繊維強化複合体を生産でき
る。
Table 3 Evaluation of molded products [Effects] As described above, in the method of the present invention, when the matrix resin is heated and cured, the airtight film closely follows the workpiece, so the matrix resin Even if the volume changes, separation between the mold and the workpiece can be prevented, and fiber-reinforced composites with high gloss and no voids or sink marks can be produced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本願発明の概略図、第2図は従来技術の概略図
である。 l 成形型  1a 本体  lb 本体2 注入口 
  3 ベントロ 4 加圧導入口    50リング 6 気密性膜     7 気室 8 プリフォーム   9 試料室 第1図 第2図 手続補正書(方式) %式% 1、事件の表示 平成2年特許願第152164号 、20発明の名称 繊維強化複合体の成形方法および装置 3、補正をする者 事件との関係特許出願人 恒 知的財産部(0566)24−3305.3306
4、補正命令の日付(発送日) 平成4年1月28日(発送日) 5、補正の対象 明細書:特許請求の範囲の欄
FIG. 1 is a schematic diagram of the present invention, and FIG. 2 is a schematic diagram of the prior art. l Molding mold 1a Main body lb Main body 2 Inlet
3 Ventograph 4 Pressure inlet 50 ring 6 Airtight membrane 7 Air chamber 8 Preform 9 Sample chamber Figure 1 Figure 2 Procedural amendment (method) % formula % 1. Indication of the incident 1990 Patent Application No. 152164 , 20 Name of invention Method and device for forming fiber reinforced composite 3. Person making the amendment Relationship to the case Patent applicant Heng Intellectual Property Department (0566) 24-3305.3306
4. Date of amendment order (shipment date) January 28, 1992 (shipment date) 5. Specification subject to amendment: Claims column

Claims (1)

【特許請求の範囲】 1、高強度高弾性率繊維からなるプリフォームを、成形
型内の実質的に密閉された試料室中に置き、熱硬化性の
マトリックスレジンを試料室に注入してプリフォームに
含浸せしめたのち、あらかじめ該試料室内側に挿着され
た気密性膜により試料室と隣接して形成される気室に加
圧気体を導入して、前記プリフォームおよびマトリック
スレジンからなる被加工体を加圧状態とし、この状態を
保持しつつ成形型を所定温度に加熱してマトリックスレ
ジンを硬化させることを特徴とする繊維強化複合体の成
形方法。 2、マトリックスレジンの注入口およびベント口を有し
実質的に密閉された試料室と、該試料室の内側に挿着さ
れた気密性膜により試料室と隣接して形成される気室、
および該気室と連通する加圧気体の導入口を有する、繊
維強化複合体の成形用型装置。
[Claims] 1. A preform made of high-strength, high-modulus fibers is placed in a substantially sealed sample chamber in a mold, and a thermosetting matrix resin is injected into the sample chamber. After the preform is impregnated, pressurized gas is introduced into the air chamber formed adjacent to the sample chamber by an airtight membrane inserted in advance inside the sample chamber to cover the preform and matrix resin. A method for molding a fiber-reinforced composite, which comprises placing a processed body in a pressurized state and heating a mold to a predetermined temperature while maintaining this state to harden a matrix resin. 2. A substantially sealed sample chamber having a matrix resin injection port and a vent port, and an air chamber formed adjacent to the sample chamber by an airtight membrane inserted inside the sample chamber;
and a mold device for molding a fiber-reinforced composite, having a pressurized gas inlet communicating with the air chamber.
JP2152164A 1990-06-11 1990-06-11 Molding method of fiber reinforced composite body and device therefor Pending JPH04208416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2152164A JPH04208416A (en) 1990-06-11 1990-06-11 Molding method of fiber reinforced composite body and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2152164A JPH04208416A (en) 1990-06-11 1990-06-11 Molding method of fiber reinforced composite body and device therefor

Publications (1)

Publication Number Publication Date
JPH04208416A true JPH04208416A (en) 1992-07-30

Family

ID=15534427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2152164A Pending JPH04208416A (en) 1990-06-11 1990-06-11 Molding method of fiber reinforced composite body and device therefor

Country Status (1)

Country Link
JP (1) JPH04208416A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002307463A (en) * 2001-04-17 2002-10-23 Toray Ind Inc Method for producing fiber-reinforced resin
JP2006150614A (en) * 2004-11-25 2006-06-15 Toho Tenax Co Ltd Resin transfer molding method of hollow member made of frp
JP2008501543A (en) * 2004-06-04 2008-01-24 ビーエーエスエフ アクチェンゲゼルシャフト Composite element manufacturing method and composite element
JP2014517779A (en) * 2011-05-06 2014-07-24 スネクマ Injection molding method for composite material parts

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002307463A (en) * 2001-04-17 2002-10-23 Toray Ind Inc Method for producing fiber-reinforced resin
JP2008501543A (en) * 2004-06-04 2008-01-24 ビーエーエスエフ アクチェンゲゼルシャフト Composite element manufacturing method and composite element
JP2006150614A (en) * 2004-11-25 2006-06-15 Toho Tenax Co Ltd Resin transfer molding method of hollow member made of frp
JP2014517779A (en) * 2011-05-06 2014-07-24 スネクマ Injection molding method for composite material parts

Similar Documents

Publication Publication Date Title
CA2484174C (en) Controlled atmospheric pressure resin infusion process
JP2593772B2 (en) Manufacturing method for composite products
US5134002A (en) Mold liners for resin transfer molding
US3140325A (en) Manufacture of molded bodies
CN104589669B (en) A kind of composite liquid pressure forming method
US11052573B2 (en) Method of fabricating both a woven fiber preform and a composite material part
US6036900A (en) Resin transfer imidization of polyimide matrix composites
JP3121070B2 (en) Molding method of fiber reinforced composite
JPH04208416A (en) Molding method of fiber reinforced composite body and device therefor
US4842787A (en) High speed process for production of oriented structural yarn/polymer matrix composite structural parts
US20150014898A1 (en) Device and method for producing a moulded part from a composite material
WO2011128453A2 (en) Method and apparatus for moulding parts made from composite materials
JPH08118381A (en) Manufacture of cfrp molded product
JP3885848B2 (en) Composite material molding method and molding die therefor
JP3513718B2 (en) Structure reaction injection molding apparatus and structure reaction injection molding method
JP4824462B2 (en) Manufacturing method of fiber reinforced composite material
WO1996022871A1 (en) Method of resin transfer molding
JP5457561B2 (en) Process for extending the processing window of thermosetting resins
JP5240754B2 (en) Method for producing fiber reinforced composite
JPS62135349A (en) Manufacture of fiber reinforced plastic
KR20180134571A (en) High pressure-resin transfer molding using a single lower mold
JPH0321412A (en) Reaction injection molding method
JP2001009861A (en) Production of thermosetting synthetic resin molded article
JPH08336890A (en) Manufacture of fiber-reinforced resin molding
JPS6016332B2 (en) Thick-walled cylindrical molding method for composite materials