JPH04206476A - Organic electrolyte battery - Google Patents

Organic electrolyte battery

Info

Publication number
JPH04206476A
JPH04206476A JP2339553A JP33955390A JPH04206476A JP H04206476 A JPH04206476 A JP H04206476A JP 2339553 A JP2339553 A JP 2339553A JP 33955390 A JP33955390 A JP 33955390A JP H04206476 A JPH04206476 A JP H04206476A
Authority
JP
Japan
Prior art keywords
electrolyte
battery
organic solvent
organic
acetonitrile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2339553A
Other languages
Japanese (ja)
Other versions
JP3049768B2 (en
Inventor
Hisashi Tsukamoto
寿 塚本
Hiroaki Yoshida
浩明 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2339553A priority Critical patent/JP3049768B2/en
Publication of JPH04206476A publication Critical patent/JPH04206476A/en
Application granted granted Critical
Publication of JP3049768B2 publication Critical patent/JP3049768B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE:To obtain excellent reduction resistance performance and oxidation resistance performance and high conductivity by using a mixture of 4-methyl dioxolane and acetonitrile for an organic solvent. CONSTITUTION:A mixture of 4-methyl dioxolane and acetonitrile is used for an organic solvent in an organic electrolyte battery using the organic solvent dissolved with lithium salt as an electrolyte. 4-methyl dioxolane (4Me-DOL) has excellent electrochemical stability, acetonitrile (AN) has high conductivity, both of them have excellent oxidation resistance performance, and acetonitrile is remarkably inferior in the reduction resistance performance. The electrolyte mixed with both of them is used to form the battery. An excellent cycle life with excellent stability is obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、有機電解液電池に関する。[Detailed description of the invention] Industrial applications The present invention relates to an organic electrolyte battery.

従来の技術とその課題 有機電解液電池は、電圧か高くエネルキー密度か高い点
て水溶液系電池より俊れている。
Conventional technology and its challenges Organic electrolyte batteries are superior to aqueous batteries in terms of higher voltage and energy density.

しかし、従来の有機電解液電池は、電解液が負極で還元
分解、または正極で酸化分解され易いという問題があっ
た。また、従来の有機電解液電池は、電解液の導電率が
著しく低いので放電率を高くてきないという問題もあっ
た。すなわちプロピレンカーボネート(pc)とエチレ
ンカーボネ−1−(EC)との混合物からなる従来の電
解??Z].5M L+CIOA/PC+EC(1:1
)では、5mS/cm程度の低い電導率しか得られなか
った。これは、水溶液電解液が数looms/cmの導
電率を示すのに比較してきわめて低い値である。
However, conventional organic electrolyte batteries have a problem in that the electrolyte tends to be reductively decomposed at the negative electrode or oxidatively decomposed at the positive electrode. In addition, conventional organic electrolyte batteries have the problem that the discharge rate cannot be increased because the electrolyte has extremely low conductivity. i.e. conventional electrolysis consisting of a mixture of propylene carbonate (PC) and ethylene carbonate-1-(EC)? ? Z]. 5M L+CIOA/PC+EC (1:1
), only a low conductivity of about 5 mS/cm was obtained. This is an extremely low value compared to the conductivity of aqueous electrolytes of several looms/cm.

したかっで、従来の有機電解液電池に代わって、耐還元
性能および耐酸化性能に優れしかも高い導電率を有する
有機電解液を備えた新しい有機電解7α電池が強く望ま
れていた。
Therefore, in place of conventional organic electrolyte batteries, there has been a strong desire for a new organic electrolyte 7α battery that is equipped with an organic electrolyte that has excellent reduction and oxidation resistance as well as high electrical conductivity.

課題を解決するための方法 本発明は、リチウム塩が溶解した有機溶媒を電解液とし
て備えた有機電解液電池であって、該有機溶媒は4メチ
ルジオキソランとアセトニトリルとの混合物であること
を特徴とする有機電解液電池を用いて課題の解決を図る
ものである。また、6フッ化ヒ酸リチウム以外のリチウ
ム塩が溶解した有機溶媒を電解液として備えた有機電解
液電池であって、該有機溶媒は4メチルジオキソランと
アセトニトリルとジオキソランよりなることを特徴とす
る有機電解)後電池を用いて課題の解決をさらに容易に
せんとするものである。また、リチウム塩が溶解した有
機溶媒を電解液として備えた有機電解7夜電池であって
、該有機溶媒は4メチルジオキソランとアセI・ニトリ
ルとエチレンカーホイ、−トとの混合物であることを特
徴とずろ有機電解iα電池を用いて課題の解決をいっそ
う容易にするものである。さらに、リチウム塩が溶解し
た有機溶媒を電解液として備えた有機電解液電池であり
で、該有機溶媒は4メチルジオキソランとアセトニトリ
ルとジオキソランとエチレンカーホS、 −1・どの混
合物であることを特徴とずろ有機電解液電池を用いて課
題の解決を容易にするものである。
Method for Solving the Problems The present invention is an organic electrolyte battery comprising an organic solvent in which a lithium salt is dissolved as an electrolyte, the organic solvent being a mixture of 4-methyldioxolane and acetonitrile. The aim is to solve this problem using an organic electrolyte battery. Also, an organic electrolyte battery comprising an organic solvent in which a lithium salt other than lithium hexafluoroarsenate is dissolved as an electrolyte, wherein the organic solvent is composed of 4-methyl dioxolane, acetonitrile, and dioxolane. The aim is to further facilitate the solution of the problem by using a post-electrolytic battery. In addition, it is an organic electrolytic 7-day battery equipped with an organic solvent in which a lithium salt is dissolved as an electrolyte, and the organic solvent is a mixture of 4-methyl dioxolane, acetal nitrile, and ethylene carbonate. This feature makes it easier to solve problems using organic electrolytic iα batteries. Furthermore, it is an organic electrolyte battery comprising an organic solvent in which a lithium salt is dissolved as an electrolyte, and the organic solvent is a mixture of 4-methyldioxolane, acetonitrile, dioxolane, ethylene carho-S, -1, etc. This makes it easier to solve the problem using organic electrolyte batteries.

作用 種々の有機電解液について電気化学的な安定性および導
電率を検討した。その結果、4メチルジオキソラン(4
Me−DOL)が優れた電気化学的安定性を有すること
、およびアセトニI・リル(AN)が高い導電率を有す
ることがわかった。これら両者は、耐酸化性能において
はいずれも優れているか、耐還元性能はアセトニトリル
において著しく劣っていた。
The electrochemical stability and conductivity of various organic electrolytes were investigated. As a result, 4 methyldioxolane (4
It was found that Me-DOL) has excellent electrochemical stability and that acetonyl-lyl (AN) has high electrical conductivity. Both of these were excellent in oxidation resistance, but acetonitrile was significantly inferior in reduction resistance.

この両者を混合した電解液を用いて電池を作成したとこ
ろところ、あとの実施例に示すように電解)後の優れた
安定性を示唆する優れたサイクル寿命か得られた。また
、1.5M LiCl0a/4Me−DOL+AN(1
:1)においては、16m5/cmというきわめて高い
導電率か得られた。すなわち、混合することによってで
両者の短所をお互いに補償しあい長所か有効に生かされ
ることがわかった。
When a battery was made using an electrolyte containing both of these, an excellent cycle life was obtained, indicating excellent stability after electrolysis, as shown in the Examples below. In addition, 1.5M LiCl0a/4Me-DOL+AN (1
:1), an extremely high conductivity of 16 m5/cm was obtained. In other words, it has been found that by mixing the two, the disadvantages of both can be compensated for and the advantages can be effectively utilized.

また、この新しい混合電解液についてさらに検討したと
ころ、あとの実施例に示すようにジオキソラン(DOL
)を添加すると耐還元性能がざらに向上することかわか
った。この原因は明確ではないか次のように考えている
。すなわち、添加したジオキソランが還元分解されて負
極表面に被膜を形成しこの被膜が以後の電解液の分解を
抑制するものと思われる。なお、ジオキソランを添加混
合する場合には、電解質に6フッ化ヒ酸リチウムを用い
ることはできない。それは、ジオキソランと6フッ化ヒ
酸リチウムとが重合反応するためである。
In addition, when we further investigated this new mixed electrolyte, we found that dioxolane (DOL
) was found to significantly improve reduction resistance. The reason for this is not clear, but I think it is as follows. That is, it seems that the added dioxolane is reductively decomposed to form a film on the surface of the negative electrode, and this film suppresses the subsequent decomposition of the electrolyte. Note that when dioxolane is added and mixed, lithium hexafluoroarsenate cannot be used as the electrolyte. This is because dioxolane and lithium hexafluoroarsenate undergo a polymerization reaction.

さらに電解液の安定性を向上させる方法について検討し
たところ、上記の電解液にエチレンカーホネ−1・を添
加すると電解液がざらに安定化することがわかった。こ
の原因は、現在のところ明確てないか、エチレンカーホ
ネ−1・自体のきわめて優れた電気化学的安定性に起因
しているものと考えられる。
Furthermore, we investigated methods for improving the stability of the electrolytic solution and found that adding ethylene carbonate-1 to the electrolytic solution roughly stabilized the electrolytic solution. The cause of this is not clear at present, or it is thought to be due to the extremely excellent electrochemical stability of ethylene carbonate-1 itself.

実施例 繊維径か0.8μmで、長さか4071mで、グラファ
イト屡の層間距離を示すd。。2面の平均面間距離が3
.45Aで、Lcの平均値か30Aの炭素繊維を0.1
2g採集し、325 m e s bの5US316金
網に包み込んで半径10m1nで厚さが2 m mの円
板状に加圧成形し炭素電極(1)を得た。この炭素電極
は、約20 m A hの充放電容量を有している。
Example fiber diameter is 0.8 μm, length is 4071 m, and d indicates the interlayer distance of graphite. . The average distance between the two surfaces is 3
.. At 45A, the average value of Lc or 30A carbon fiber is 0.1
2 g was collected, wrapped in a 5US316 wire mesh of 325 m e s b, and press-molded into a disk shape with a radius of 10 ml and a thickness of 2 mm to obtain a carbon electrode (1). This carbon electrode has a charge/discharge capacity of about 20 mAh.

70 w t%のL i にo02.20 w t%の
アセチレンブラックおよび10wt%のポリテトラフル
オロエチレン(、PTFE)を混合して正極合剤としこ
の正極合剤を0.5g採集して325 m e s h
のステンレス製金網に包み込んで径か12mmで厚さが
2mmの正極板ペレット(2)を試作した。この正極板
ペレットの放電容量は、0.5モルのりチラムか吸蔵放
出されろとした場合に約501TI A bである。し
たかつて、上記の負極および正極の乳合せては、負極制
限の電池となる。
A positive electrode mixture was prepared by mixing 02.20 wt% of acetylene black and 10 wt% of polytetrafluoroethylene (PTFE) with 70 wt% of Li. e s h
A positive electrode plate pellet (2) having a diameter of 12 mm and a thickness of 2 mm was produced by wrapping it in a stainless steel wire mesh. The discharge capacity of this positive electrode plate pellet is about 501 TI A b when 0.5 mole of thiram is occluded and released. However, the combination of the above-mentioned negative electrode and positive electrode results in a negative electrode limited battery.

葉脈状の無孔部および孔か3次元的に配列した有孔部を
有する平均厚さか23ミクロンのポリエチレン製iM孔
膜を直径14mmjこ打ち抜いて微孔性セパレーター(
3)を試作した。また、ポリプロピレンの不織布を12
m、mに打ち抜いて平均厚さか0.2mmの不縁布セパ
レーター(4)を試作した。
A microporous separator (
3) was prototyped. In addition, 12% polypropylene nonwoven fabric was used.
A non-woven fabric separator (4) with an average thickness of about 0.2 mm was made by punching it into pieces of m and m.

上記の電池構成材料に1.5M LiAsF6/4Me
−DOL+AN(1:l)または1.5M LiClO
4/4Me−DOL+AN(1:1)有機電解液を含浸
した。他の好適な電解質としては6フッ化リン酸リチウ
ム、4フッ化ホウ酸リチウムまたはトリフロロメタスル
フォン酸リチウムのそれぞれ単体または混合物等かある
1.5M LiAsF6/4Me as the above battery constituent material
-DOL+AN (1:l) or 1.5M LiClO
It was impregnated with a 4/4Me-DOL+AN (1:1) organic electrolyte. Other suitable electrolytes include lithium hexafluorophosphate, lithium tetrafluoroborate, or lithium trifluorometasulfonate, each singly or as a mixture.

上記の電池構成物を耐食性ステンレス鋼板製の正極缶(
5)、負極缶(6)、およびポリプロピレン製の絶縁カ
スケラ1=(7)からなる電池ケースに収納して第1図
に示したような径か15.4m 111で厚さか4.8
Inmの本発明の非水電解質電池を試作した。
The above battery components are combined into a positive electrode can made of corrosion-resistant stainless steel plate (
5), a negative electrode can (6), and a polypropylene insulating case 1 = (7) are housed in a battery case with a diameter of 15.4 m and a thickness of 4.8 m as shown in Figure 1.
A prototype non-aqueous electrolyte battery of the present invention was manufactured by Inm.

ここで電解質に1.5M LiAsF6(Gフッ化ヒ酸
リチウム)を用いた場合を本発明の電池(A)、モして
]、5M LiClO4(過塩素酸リチウム)を用いた
場合を本発明の電池(B)とする。本発明の電池(A)
、(B)では、負極に炭素繊維からなる炭素電極を用い
ているか、炭素繊維の径と長さの比(D/L)か10以
下であるようなほぼ粒子状の炭素繊維や粒状炭素材ある
いは不定形の炭素材を用いて□もよい。また、炭素繊維
にN1、Cu、FeもしくはCoまたはこれらの合金を
用いて被覆してもよい。さらに金属被覆を施した炭素電
極を焼結してもよい。
Here, the case where 1.5M LiAsF6 (G lithium arsenate fluoride) is used as the electrolyte is the battery (A) of the present invention, and the case where 5M LiClO4 (lithium perchlorate) is used is the battery (A) of the present invention. Let it be a battery (B). Battery of the present invention (A)
In (B), a carbon electrode made of carbon fiber is used as the negative electrode, or a carbon fiber or granular carbon material in the form of almost particulates whose diameter-to-length ratio (D/L) of the carbon fiber is 10 or less is used. Alternatively, □ may be used using an irregularly shaped carbon material. Further, carbon fibers may be coated with N1, Cu, Fe, Co, or an alloy thereof. Furthermore, the metal-coated carbon electrode may be sintered.

平均粒径20ミクロンのAL(90wt%)−B i 
(5) −Mll (3) −N i、 (2)合金粉
末にβ−L i A 1合金粉末5wt%およびlNC
o社製Type255Ni粉末5 w t%を添加した
ものを0.25g採集して325 m e s bの5
US316金網に包み込んで半径10mmで厚さが2I
n Inの円板状に加圧成形してリチウム合金電極を得
た。このリチウム合金電極を負極ここ用いた以外は、電
池(A)および電池(B)と同様の本発明の電池をそれ
ぞれ<C>および(D)とする。
AL (90wt%) with an average particle size of 20 microns - B i
(5) -Mll (3) -N i, (2) 5 wt% β-L i A 1 alloy powder and lNC in the alloy powder
0.25g of Type 255Ni powder manufactured by Company O to which 5 wt% was added was collected and 5% of 325 m e s b.
Wrapped in US316 wire mesh with a radius of 10mm and a thickness of 2I
A lithium alloy electrode was obtained by pressure molding nIn into a disk shape. Batteries of the present invention which are similar to battery (A) and battery (B) except that this lithium alloy electrode was used here as a negative electrode are designated as <C> and (D), respectively.

また、電解)夜に1.5M LiClO4/4Me−D
OL+AN+DOL(1:l:0.5)、1.5M L
iClO4/4Me−DOL+AN+EC(1:l:l
)または]、55MLIC104/4ト1e−DOL+
AN+DOL+EC(]:l:0.5:l)を用いた以
外は電池(A)と同様の構成を有する電池を本発明の電
池(E)、  (F)または(C)とする。
Also, electrolysis) 1.5M LiClO4/4Me-D at night
OL+AN+DOL (1:l:0.5), 1.5M L
iClO4/4Me-DOL+AN+EC (1:l:l
) or ], 55MLIC104/4t1e-DOL+
A battery having the same configuration as battery (A) except that AN+DOL+EC (]:l:0.5:l) was used is referred to as battery (E), (F) or (C) of the present invention.

゛・ また、1.5M Li(、lOa/PC+EC(
1:l)を用いたこと以外は前記(A)、(B)、(C
)および(D)と同様の構成を有する電池を比較のため
の有機電解)α電池(a)、(+))、(C)および(
d)を試作した。
゛・ Also, 1.5M Li(, lOa/PC+EC(
The above (A), (B), (C
) and (D) and organic electrolyte for comparison) α batteries (a), (+)), (C) and (
d) was prototyped.

これら11種類の電池を20°Cの環境温度のもとて2
mA/cm2て4,0■まて充電したのち3゜0■まで
放電する容量確認試、験を最大50サイクルおこなった
。その結果を第2図に示す。
These 11 types of batteries were tested at an environmental temperature of 20°C.
A capacity confirmation test was conducted in which the battery was charged at 4.0 mm at mA/cm2 and then discharged to 3.0 mm for a maximum of 50 cycles. The results are shown in FIG.

本発明の電池(A)、(B)、(CL  (D)。Batteries (A), (B), (CL (D) of the present invention.

(E)、(F)および(G)は、従来の電池(a)、(
b)、  (C)および(d)に比較して長いサイクル
寿命を有する。
(E), (F) and (G) are conventional batteries (a), (
b) has a long cycle life compared to (C) and (d).

また、6フッ化ヒ酸リチウムを電解質塩に用いた本発明
の電池(A)、(C)は、過塩素酸リチウムを電解質に
用いた本発明の電池(B)、  (D)に比較して容量
の低下か少ない。これは、従来報告されているように6
フッ化ヒ酸リチウムが負極表面に保護被膜を形成し電解
液の安定性を向上させることに起因しているものと思わ
れる。
Furthermore, the batteries (A) and (C) of the present invention using lithium hexafluoroarsenate as the electrolyte salt are better than the batteries (B) and (D) of the present invention using lithium perchlorate as the electrolyte. capacity decreases or decreases. This is due to the fact that 6
This is thought to be due to the fact that lithium fluoroarsenate forms a protective film on the surface of the negative electrode, improving the stability of the electrolyte.

また、DOLを追加混合した電解液を用いた電池(E)
は、電池(A)よりもさらに優れたサイクル寿命を示し
ている。これは、作用の項で述へたようにDOLの分解
生成物が電解液の分解を抑止する効果によるものと考え
られる。
In addition, a battery (E) using an electrolyte solution additionally mixed with DOL
shows an even better cycle life than battery (A). This is thought to be due to the effect of the decomposition products of DOL in suppressing the decomposition of the electrolyte solution, as described in the section on action.

また、ECを追加混合した電解液を用いた(F)。Further, an electrolyte solution additionally mixed with EC was used (F).

(G)の電池も、(A)および(E)よりもさらに優れ
たサイクル性能を示す。この原因も作用の項で述べたよ
うにECの優れた安定性に起因するものと考えられる。
Battery (G) also exhibits even better cycle performance than (A) and (E). The reason for this is also considered to be due to the excellent stability of EC, as described in the section of action.

なお、前記の実施例に係る電池はいずれもボタン形電池
であるか、円筒形、角形またはベーパー形電池に本発明
を適用しても同様の効果か得られる。
Note that the same effects can be obtained even if the batteries according to the above embodiments are all button-shaped batteries, or the present invention is applied to cylindrical, prismatic, or vapor-shaped batteries.

発明の効果 本発明により従来の電池に比較して電解液に起因する内
部抵抗か低くて、かつ優れたサイクル寿命性能を有する
有機電解液電池を提供することかできるものである。
Effects of the Invention According to the present invention, it is possible to provide an organic electrolyte battery which has a lower internal resistance due to the electrolyte and excellent cycle life performance than conventional batteries.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の非水電解質電池の一例であるボタン
電池の内部構造を示した図。第2図(′i、本発明の電
池および従来の電池のサイクル寿命性能を示した図であ
る。
FIG. 1 is a diagram showing the internal structure of a button battery, which is an example of the nonaqueous electrolyte battery of the present invention. FIG. 2 ('i) is a diagram showing the cycle life performance of the battery of the present invention and the conventional battery.

Claims (1)

【特許請求の範囲】 1、リチウム塩が溶解した有機溶媒を電解液として備え
た有機電解液電池であって、 該有機溶媒は4メチルジオキソランとアセトニトリルと
の混合物であることを特徴とする有機電解液電池。 2、6フッ化ヒ酸リチウム以外のリチウム塩が溶解した
有機溶媒を電解液として備えた有機電解液電池であつて
、 該有機溶媒は4メチルジオキソランとアセトニトリルと
ジオキソランよりなることを特徴とする有機電解液電池
。 3、リチウム塩が溶解した有機溶媒を電解液として備え
た有機電解液電池であって、 該有機溶媒は4メチルジオキソランとアセトニトリルと
エチレンカーボネートとの混合物であることを特徴とす
る有機電解液電池。 4、リチウム塩が溶解した有機溶媒を電解液として備え
た有機電解液電池であつて、 該有機溶媒は4メチルジオキソランとアセトニトリルと
ジオキソランとエチレンカーボネートとの混合物である
ことを特徴とする有機電解液電池。
[Scope of Claims] 1. An organic electrolyte battery comprising an organic solvent in which a lithium salt is dissolved as an electrolyte, characterized in that the organic solvent is a mixture of 4-methyldioxolane and acetonitrile. liquid battery. An organic electrolyte battery comprising, as an electrolyte, an organic solvent in which a lithium salt other than lithium hexafluoroarsenate is dissolved, wherein the organic solvent is composed of 4-methyl dioxolane, acetonitrile, and dioxolane. electrolyte battery. 3. An organic electrolyte battery comprising an organic solvent in which a lithium salt is dissolved as an electrolyte, the organic solvent being a mixture of 4-methyldioxolane, acetonitrile, and ethylene carbonate. 4. An organic electrolyte battery comprising an organic solvent in which a lithium salt is dissolved as an electrolyte, wherein the organic solvent is a mixture of 4-methyldioxolane, acetonitrile, dioxolane, and ethylene carbonate. battery.
JP2339553A 1990-11-30 1990-11-30 Organic electrolyte battery Expired - Lifetime JP3049768B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2339553A JP3049768B2 (en) 1990-11-30 1990-11-30 Organic electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2339553A JP3049768B2 (en) 1990-11-30 1990-11-30 Organic electrolyte battery

Publications (2)

Publication Number Publication Date
JPH04206476A true JPH04206476A (en) 1992-07-28
JP3049768B2 JP3049768B2 (en) 2000-06-05

Family

ID=18328561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2339553A Expired - Lifetime JP3049768B2 (en) 1990-11-30 1990-11-30 Organic electrolyte battery

Country Status (1)

Country Link
JP (1) JP3049768B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012109048A (en) * 2010-11-15 2012-06-07 Toyota Motor Corp Regeneration method of nonaqueous electrolyte secondary battery
JP2017054822A (en) * 2011-10-28 2017-03-16 旭化成株式会社 Non-aqueous secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012109048A (en) * 2010-11-15 2012-06-07 Toyota Motor Corp Regeneration method of nonaqueous electrolyte secondary battery
JP2017054822A (en) * 2011-10-28 2017-03-16 旭化成株式会社 Non-aqueous secondary battery

Also Published As

Publication number Publication date
JP3049768B2 (en) 2000-06-05

Similar Documents

Publication Publication Date Title
KR20140039022A (en) Battery
EP2424012A2 (en) Electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2013077424A (en) Lithium ion secondary battery
JP2012227106A (en) Nickel-metal hydride battery
JP2001345100A (en) Carbonaceous particles for negative electrode of lithium secondary cell, preparation process thereof, negative electrode for lithium secondary cell and lithium secondary cell
JP3133318B2 (en) Rechargeable battery
JP4168241B2 (en) Non-aqueous electrolyte battery
CN109411706B (en) Modified working electrode and preparation method thereof
CN111554977A (en) Method for manufacturing lithium secondary battery
JP3786273B2 (en) Negative electrode material and battery using the same
JPH06111818A (en) Carbon negative electrode for nonaqueous electrolyte secondary battery
JP2002042812A (en) Positive electrode active material for lithium secondary battery and lithium secondary battery using the same
JP3547575B2 (en) Lithium iron oxide, method for producing the same, and lithium battery
CN114709398B (en) Sulfur-containing fast ion conductor coated graphite composite material and preparation method thereof
JP2000203817A (en) Composite carbon particle, its production, negative pole material, negative pole for lithium secondary battery or cell and lithium secondary battery or cell
JP6668848B2 (en) Lithium ion secondary battery
JP5272810B2 (en) Capacitors
CN108963198A (en) Anode, cathode, preparation method and the lithium ion battery including it
JPH04206476A (en) Organic electrolyte battery
JP2004071244A (en) Nonaqueous electrolyte battery
JPH08293324A (en) Nonaqueous electrolyte and lithium secondary battery using it
JPS6231962A (en) Secondary battery
JPH02239572A (en) Polyaniline battery
JPH06163078A (en) Nonaqueous electrolytic secondary battery
JP4143354B2 (en) Carbon material for negative electrode of lithium ion secondary battery and lithium ion secondary battery