JPH04204833A - Optical semiconductor device - Google Patents

Optical semiconductor device

Info

Publication number
JPH04204833A
JPH04204833A JP2338274A JP33827490A JPH04204833A JP H04204833 A JPH04204833 A JP H04204833A JP 2338274 A JP2338274 A JP 2338274A JP 33827490 A JP33827490 A JP 33827490A JP H04204833 A JPH04204833 A JP H04204833A
Authority
JP
Japan
Prior art keywords
parallel
optical waveguide
optical
light
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2338274A
Other languages
Japanese (ja)
Other versions
JP2841860B2 (en
Inventor
Yukio Toyoda
幸雄 豊田
Shinichi Wakabayashi
信一 若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP33827490A priority Critical patent/JP2841860B2/en
Publication of JPH04204833A publication Critical patent/JPH04204833A/en
Application granted granted Critical
Publication of JP2841860B2 publication Critical patent/JP2841860B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/0607Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature
    • H01S5/0608Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature controlled by light, e.g. optical switch
    • H01S5/0609Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature controlled by light, e.g. optical switch acting on an absorbing region, e.g. wavelength convertors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18341Intra-cavity contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/50Amplifier structures not provided for in groups H01S5/02 - H01S5/30

Landscapes

  • Semiconductor Memories (AREA)
  • Semiconductor Lasers (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Abstract

PURPOSE:To enable fast response by controlling light which transmits through an optical resonator with light propagating in an optical waveguide. CONSTITUTION:By injecting light Pin into a vertical resonator 2 through a transparent electrode 24 on the upper surface of an element, transmission output Pout vs. laser current I1 by an optical waveguide 1 parallel to the substrate is obtd. This output Pout increases gradually over the threshold current (I1th100mA), drastically increases after saturation of absorption of the absorbing layer, and then maintains almost constant. In this state with low voltage, switching of light can be done without applying high voltage. The switching speed of the laser comprising the optical waveguide parallel to the substate is equal to that of usual semiconductor lasers. The switching speed of the transmitted light depends on the switching speed of the laser and same switching speed is confirmed. Thereby, fast response can be obtd. without requiring high vias voltage.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は 光情報処理等の分野に広く利用される光半導
体装置に関すム 従来の技術 より高度な光情報処理のために 光双安定現象等の非線
形特性を用いた素子の開発が従来からなされていも 代表的な例として、面型光ゲート素子即ち透過型光変調
素子について説明すム 第7図fL  A、T−omi
ta et at、 Appl、Phys Lett 
(アプライド フィジイクス レター) 551817
(1989)より引用した多重量子井戸を用いたエタロ
ン変調素子であム 3はn型InP基楓 5はn型In
Pil  8はn電極12は垂直共振器内InGaAs
P/InP多重量子井戸・吸収層23は亜鉛拡散1i、
  25はpIEK  41は工nGaASエツチング
ストップ凰 52.53はアンドープInP層であムこ
の素子は 量子閉込めシュタルク効果を用いかつ誘電体
多層膜22による高反射率の鏡面を共振器反射端面を構
成することによりエタロンファプリーペロー共振器を構
成し これにバイアス電圧印加して多重量子井戸・吸収
層12の吸収率の増加を図ってい、b  iavの逆バ
イアス電圧を印加した時、吸収率が増加し およそ出力
Poutは入力Pinの115に減少すム 節板 電圧
印加なる電気的制御により消光比5:1の光スイツチン
グ動作を実現していも また この例以外では 同様の
多重量子井戸層を用いた光電・安定現象による光電融合
素子(SEED)などがあム 発明が解決しようとする課題 従来の技術で述べた多重量子井戸を用いたエタロン光変
調素子でζ友 面透過型であり集積化に有利である万丈
 反匣 光スイッチングを行うため十分な消光比を得る
ためには16Vと非常に高い印加電圧が必要であム さ
らに応答スピードも遅(■ このよう凶 高電圧印加を
要するということ(表 素子の接合リークを極力なくす
必要があり、作製工程上非常に困難を持たらす土 高密
度に集積した場合、それぞれの素子分離も非常に高いも
のとする必要があも また 実際の動作をさせる上で特
別の電源を要すも このように高いバイアス電圧の印加
を要すること(よ 云うまでもなく、重大な課題であも さらく 第7図の素子は電気制御のみの光スイッチング
に限られ 光制御による光スイッチングは困難であム 
なぜなら信号光と制御光を同一共振器に同じ方向から同
時に入射させる構造のたべ出力光に制御光が混在し 出
力光から制御光を分離する必要かあも したがってスイ
ッチングの消光比を十分なものとするに(友 制御光の
パワーを太きくする必要があるが一方で消光比を大きく
するにはわずかの制御光をも出力光に混入しないようし
なければならないからであも 課題を解決するための手段 前述の課題を解決するため&へ 以下に示すように本発
明による手段により、光変調や光スイッチング等の動作
に高電圧を必要とせ慣 しかも変調効率もしくはスイッ
チングの消光比が十分大きく、応答スピードの速い面透
過型素子を提供するものであも このために 本発明が提供する手段とは 素子基板の主
面に対して垂直方向の共振器を用いた入出力光が透過型
である光半導体装置において、前記垂直共振器内に存在
する吸収層に対して、垂直共振器の方向とは直角の方向
即ち素子基板の主面に対して平行な方向から入力光の透
過率を変化させるための制御光を導入するため番へ  
内部に吸収層を有する素子基板の主面に対して垂直な方
向の垂直共振器と、前記吸収層を共有し それと交合せ
る素子基板に平行な光導波路とを有する構造を提供する
ことであム ざらく 制御効率を上げる手段として、望ましくは入力
光が出力光として透過するまでの閉込め共振状態を高め
るために前記垂直共振器の反射鏡の反射率を90%とす
ることであム また 前記素子基板の主面に対して平行な光導波路を伝
播する光が、前記垂直共振器内の吸収層へ効率より注入
され制御効果を上げるた数 光導波路の前記吸収層以外
の部分の有効屈折率が吸収層部分の有効屈折率より小さ
いことが有効となム然るに 制御光の効果を向上させる
ためく 前記光導波路の端面に反射鏡を導入し 制御入
力光を共振させることが有効であり、制御光の入力側で
は光導波路への注入効率を適切に確保するため剪開で得
られる値もしくはそれ以上の低反射率の反射線 他方で
は共振閉込め効果を上げるため98%以上の反射率を有
する反射鏡を導入して基板の主面に対して平行な平行共
振器とすることが有効な手段であム 一人  光制御ではなく、低電圧印加による電気的制御
を可能とするための手段として、前記の基板の主面に対
して平行な光導波路もしくはこれと結合せる他の光導波
路凶 電流注入による利得動作が可能となる構造と、前
記光導波路の両端面に98%以上の反射率と有する反射
鏡を導入した共振器構造が有効であも さらに 光双安定動作を可能とする手段として、基板主
面に対して平行な光導波路の一部を利得を有する活性層
として、また他の一部を吸収層として用いることが有効
であム 作用 本発明による課題解決のための具体的な手段は次のよう
な理由により、先制孤 光スイッチング等の素子特性の
向丘 動作機能拡丸 高速化及び集積化に効果的に作用
すム 節板 本発明による手段によれば 多重量子井戸等の吸
収層の吸収率を変化させるためく 直接吸収層に高いバ
イアス電圧を印加する必要がなく、多重量子井戸等の吸
収層の全ての部分へ有効に吸収層の吸収率を制御するた
めの光注入が実現できるからであム なぜな収 基板面
と垂直方向にある共振器中の基板面と平行な多重量子井
戸等の吸収層へ 基板面に平行に設けられ当該吸収層と
有効に詰合せる光導波路により、高い結合効率で制御光
が注入され 当該吸収層全域へ伝播するからであも し
かL 変調もしくはスイッチング等を行う信号光の入出
力方向は 制御光の進行方向と直角であるた敢 混入に
よる特性劣化が発生しなしち 切電 基板面に平行に設
けられ光導波路への制御光の導入に1友 高いバイアス
電圧が不要であることは明らかであム 実施例 実施例(1) 本発明による第1の実施例を第1図および第2図により
説明すも 第1図(a)、(b)4;L  作製した光
半導体装置の概略を示す平面図および断面図であり(c
)は基板の主面に平行な光導波路の断面図を示す。(b
)、 (c)は(a)におけるI−I’およびII−I
I’断面であム 作製手順を第2図とともに述べ&n型
InP基板3上に気相成長法により、n型InGaAs
Pエツチングストップ層(22〜1.1μm)  4、
 n型InPクラッド層5、アンドープI nGaAs
P/ InP多重量子井戸層(量子井戸層とバリア層は
IOK  λg〜1.3μm)11、p型InPクラッ
ド層6、およびp型InGaAsPキャップ層(22〜
1.1μm)  7を順次成長すムこのようにして作製
した光半導体装置用ウェーハの断面図を第2図(a)に
示す。
[Detailed Description of the Invention] Industrial Field of Application The present invention relates to optical semiconductor devices that are widely used in fields such as optical information processing. Although devices using nonlinear characteristics have been developed in the past, a planar light gate device, that is, a transmission light modulation device, will be explained as a typical example.
ta et at, Appl, Phys Lett
(Applied Physics Letter) 551817
(1989). 3 is an n-type InP base. 5 is an n-type InP base.
In Pil 8, the n-electrode 12 is InGaAs in the vertical cavity.
P/InP multiple quantum well/absorption layer 23 is zinc diffused 1i,
25 is pIEK, 41 is an engineered nGaAS etching stopper, and 52.53 is an undoped InP layer. This element uses the quantum confinement Stark effect and uses a mirror surface with high reflectance by the dielectric multilayer film 22 to constitute the resonator reflective end face. By doing this, an etalon Fabry-Perot resonator is constructed, and a bias voltage is applied to this to increase the absorption rate of the multiple quantum well/absorption layer 12. When a reverse bias voltage of biav is applied, the absorption rate increases. The output Pout is approximately reduced to 115 of the input Pin.・The problem that Amu's invention aims to solve is the use of electro-optical devices (SEEDs) based on stability phenomena. To perform optical switching, a very high applied voltage of 16V is required to obtain a sufficient extinction ratio, and the response speed is also slow (■ This means that a high voltage application is required (Table 1). It is necessary to eliminate junction leakage as much as possible, which makes the fabrication process extremely difficult.When integrated at high density, it is also necessary to have a very high isolation between each element, which also makes it difficult for actual operation. Although it requires a special power source, the application of such a high bias voltage (needless to say, this is a serious problem). optical switching is difficult.
This is because the control light is mixed in the output light of the structure in which the signal light and control light are simultaneously incident on the same resonator from the same direction, and it may be necessary to separate the control light from the output light. (Friend) It is necessary to increase the power of the control light, but on the other hand, in order to increase the extinction ratio, it is necessary to prevent even a small amount of control light from being mixed into the output light. In order to solve the above-mentioned problems, as shown below, the means according to the present invention eliminates the need for high voltage for operations such as optical modulation and optical switching.Moreover, the modulation efficiency or extinction ratio of switching is sufficiently large, and the response To provide a surface transmission type element with high speed, the means provided by the present invention is to provide an optical device in which the input and output light is of the transmission type using a resonator in a direction perpendicular to the main surface of the element substrate. In a semiconductor device, for changing the transmittance of input light from a direction perpendicular to the direction of the vertical resonator, that is, a direction parallel to the main surface of the element substrate, with respect to the absorption layer existing in the vertical resonator. Now it's time to introduce the control light.
By providing a structure having a vertical resonator having an absorption layer therein and extending in a direction perpendicular to the main surface of an element substrate, and an optical waveguide parallel to the element substrate sharing the absorption layer and intersecting with it. As a means to increase control efficiency, it is desirable to set the reflectance of the reflector of the vertical resonator to 90% in order to enhance the confinement resonance state until the input light is transmitted as the output light. The effective refractive index of the portion of the optical waveguide other than the absorption layer, where the light propagating in the optical waveguide parallel to the main surface of the element substrate is efficiently injected into the absorption layer in the vertical resonator to increase the control effect. It is effective that the refractive index is smaller than the effective refractive index of the absorption layer portion.In order to improve the effect of the control light, it is effective to introduce a reflecting mirror at the end face of the optical waveguide and cause the control input light to resonate. On the input side of the light, a reflection line with a low reflectance equal to or higher than that obtained by shearing is used to ensure appropriate injection efficiency into the optical waveguide.On the other hand, a reflection line with a reflectance of 98% or more is used to increase the resonance confinement effect. An effective method is to introduce a reflecting mirror to form a parallel resonator parallel to the main surface of the substrate. An optical waveguide parallel to the main surface of the substrate or another optical waveguide coupled thereto, having a structure that enables gain operation by current injection, and a reflectance of 98% or more on both end faces of the optical waveguide. Although a resonator structure incorporating a reflecting mirror is effective, as a means to enable optical bistable operation, a part of the optical waveguide parallel to the main surface of the substrate can be used as an active layer having a gain, and another part can be used as an active layer with gain. The specific means for solving the problem by the present invention is to improve device characteristics such as preemptive optical switching, expand operating functions, increase speed, Mutual plate that effectively acts on integration According to the means according to the present invention, there is no need to directly apply a high bias voltage to the absorption layer such as a multi-quantum well, and there is no need to directly apply a high bias voltage to the absorption layer such as a multi-quantum well. This is because light can be injected into all parts of the absorption layer to effectively control the absorption rate of the absorption layer. This is because the control light is injected with high coupling efficiency into the absorption layer such as a quantum well by an optical waveguide that is provided parallel to the substrate surface and effectively packed with the absorption layer, and propagates throughout the absorption layer. The input/output direction of the signal light for switching etc. is perpendicular to the traveling direction of the control light, so that characteristic deterioration due to contamination may occur. Friend: It is clear that a high bias voltage is unnecessary. Embodiment Embodiment (1) A first embodiment according to the present invention will be explained with reference to FIGS. 1 and 2. )4;L is a plan view and a cross-sectional view schematically showing the manufactured optical semiconductor device (c
) shows a cross-sectional view of the optical waveguide parallel to the main surface of the substrate. (b
), (c) is I-I' and II-I in (a)
The fabrication procedure will be described with reference to FIG.
P etching stop layer (22-1.1 μm) 4.
N-type InP cladding layer 5, undoped InGaAs
P/InP multiple quantum well layer (quantum well layer and barrier layer are IOK λg ~ 1.3 μm) 11, p-type InP cladding layer 6, and p-type InGaAsP cap layer (22 ~
A cross-sectional view of a wafer for an optical semiconductor device manufactured in this manner is shown in FIG. 2(a).

次く 幅10μmのストライプ状の5iOaマスク10
0をフォトリソグラフィにより形成し ストップ層4ま
でエツチングして基板の主面に平行な光導波路1を形成
すム 節板 この幅1oμコのストライプパターンによ
り形成されたリッジ状部分の多重量子井戸層11とn型
およびp型のクラッド層6より構成される構造は後述の
工程によりInP層により埋込まれることにより基板の
主面に平行な光導波路1が作製されるのであa 但し 
ストライブ状マスク10ffl  ストライブ方向に2
00μm間隔で直径20μmの円状の層部分(ストライ
ブが途切れている)を形成しておく。これより、エツチ
ング後のリッジ性200μm間隔で長さ20μmの切断
部分が存在すム エツチング後 再びリッジが途切れて
いる部分に直径20μmφのSighマスク101をっ
けも このようにしたものの1本のリッジ部分の斜視図
を第2図(b)に示す。
Next 5iOa mask 10 in a stripe shape with a width of 10 μm
0 is formed by photolithography and etched up to the stop layer 4 to form an optical waveguide 1 parallel to the main surface of the substrate.A multi-quantum well layer 11 in a ridge-like portion formed by this stripe pattern with a width of 1 μm. The structure composed of the n-type and p-type cladding layers 6 is filled with an InP layer in the process described later to fabricate the optical waveguide 1 parallel to the main surface of the substrate.
Striped mask 10ffl 2 in stripe direction
Circular layer portions (with interrupted stripes) having a diameter of 20 μm are formed at intervals of 0.00 μm. From this, it can be seen that the ridge after etching has cut portions of 20 μm in length at 200 μm intervals.After etching, a Sigh mask 101 with a diameter of 20 μmφ is placed on the part where the ridges are interrupted again. A perspective view of the portion is shown in FIG. 2(b).

然る後番二 5iOaマスク100.101を付着した
まま結晶成長を行うことにより、5in2マスク部分1
00.101表面に↓戴 結晶が成長されず選択成長を
行うことが出来も 結果として第一2図(e)に示すよ
うに基板主面に平行な光導波路lが埋込まれ その光導
波路1は直径20μmφの穴20によって切断されてい
る状態となム (c)は 5iOaマスク100.10
1を剥離後のものであも 埋込み層は(c)に示すよう
E、  p型InP層61、n型InP層51、p型I
nGaAsPキャップ層(28〜1.1μm)を順次成
長し リッジ部と表面が完全に平坦になるように膜厚調
整して作製すム なk  (e)でI−I’は第1図(
a)のI−I’に対応するもので断面図の断面位置を示
す。
By performing crystal growth with the second 5iOa mask 100 and 101 attached, the 5in2 mask portion 1
As a result, an optical waveguide 1 parallel to the main surface of the substrate is embedded as shown in Figure 12(e). (c) is a 5iOa mask 100.10 cut by a hole 20 with a diameter of 20μmφ.
As shown in (c), the buried layers are E, p-type InP layer 61, n-type InP layer 51, p-type I
The nGaAsP cap layer (28 to 1.1 μm) is grown sequentially and the film thickness is adjusted so that the ridge and surface are completely flat.
It corresponds to II' in a) and shows the cross-sectional position of the cross-sectional view.

さらに 直径20μmの穴の部分をのぞいた部分全面に
再び5i(hマスクをつけた徽 3回目の成長を行う。
Furthermore, a third growth with a 5i (h mask) is performed on the entire surface of the film except for the hole with a diameter of 20 μm.

光導波路1の切断部分である直径20μmφの穴の部分
20が選択成長により、n型InP5Q、  アンドー
プInGaAsP/ InP多重量子井戸層(量子井戸
)層とバリア層は20蕉 (28〜1.3μm) 12
.  アンドープInP層2Q、  InGaAsP/
InP多層膜(反射ピーク波長1゜3μm) 21を順
次成長すa 但Ln型InP層50の厚さは第1回の成
長で作製したn型InP層5と同一にして、アンドープ
InGaAsP/InP多重量子井戸層12が同じく第
1回目の成長で作製したアンドープInGaAsP/ 
InP多重量子井戸層11と平坦に接続されるようにす
ム アンドープInP層20のキャリア濃度は10’J
 / c m 2以下となるように成長す4 次!二 
基板の裏面のこの直径20μmの円形層部分の同一の位
置に深さがストップ層4に達する直径20μのφの穴を
エツチングで形成した直 この穴に誘電体多層膜22を
形成すも 反射率のピーク波長は1.3μmとすムこの
様子(よ 第1図(b)、 (c)で示されていも 第
1図(b ) +;L  第2図(c)に示すI−I’
の位置に対応した位置での断面図であム 第1図(b)
は素子の完成図を示すものであるが前述の工程による作
製結果について(戴 中央上部を詳細に見ることにより
説明されも このようにして、直径20μmφの垂直共振器2が形成
できも この垂直共振器2は 共振器内部に多重量子井
戸層よりなる吸収層12を有しており、強い光注入によ
り吸収飽和を容易に引き起すことができも 同時にこの
吸収層12を共有し 垂直共振器2と直角交叉せる光導
波路1により効率的に吸収率を制御する制御光注入がで
きる構造となっていも さらにこの垂直共振器の中心部
分を第1図(b)に示すようへ 直径15μmφの亜鉛
拡散を行う。これによりp型拡散層23が形成されa 
   ′次く n電極13.14Sn電極8を形成し 
チップ状に勇開すれは 本発明による光半導体装置の作
製が完了すも 但し 垂直共振器部分のn電極24(上
 図に示すように直径15μmの亜鉛拡散領域23に一
致させ、透明電極により形成すも なinn電極良友平
行光導波路用のものと共用とすム次へ 素子の特性およ
び光変調スイッチング動作について述べも 基板に平行
な光導波路はその両端面91.92は襞間で作製され 
反射率が約0.3の平行反射鏡を有して共振器を構成し
ているので電流励起によりレーザ発振すム この場合第
1図(b)の左右両方のpIE&13.14を結線して
おく。しきい値電流を約100m入 また 垂直共振器
2のpおよびn電極24,8の間に逆バイアス電圧■を
印加して、波長1.3μmの光の透過率の変化をみると
、印加しない時(V−0)に対する透過光の強度はV−
20Vで〜115であも このような静特性の素子に第
1図(b)に示すようにシングルモードファイバを用い
て、第1図(b)に示すように素子上面の透明電極24
を通して垂直共振器2に波長1.3μmの光Pinを注
入すると、基板に平行な光導波路1によるレーザへの電
流11に対する透過出力Poutは第3図のようになム
Pouti&  しきい値電流(It th−1001
11A)以上で除々に増加し 吸収層の吸収が飽和する
と急激に増加しその後はほぼ一定であム この時電圧は
2■以下と低く、従来例のような高い電圧を印加しなく
ても光のスイッチングが可能であa また 基板に平行
な光導波路よりなるレーザのスイッチングI−!。
The hole portion 20 with a diameter of 20 μmφ, which is the cut portion of the optical waveguide 1, is selectively grown to form an n-type InP5Q, an undoped InGaAsP/InP multiple quantum well layer (quantum well) layer, and a barrier layer of 20 μm (28 to 1.3 μm). 12
.. Undoped InP layer 2Q, InGaAsP/
An InP multilayer film (reflection peak wavelength 1°3 μm) 21 is grown one after another, but the thickness of the Ln-type InP layer 50 is the same as that of the n-type InP layer 5 produced in the first growth, and an undoped InGaAsP/InP multilayer film is grown. The quantum well layer 12 is made of undoped InGaAsP/
The carrier concentration of the undoped InP layer 20 is 10'J so as to be flatly connected to the InP multiple quantum well layer 11.
4th order that grows to be less than / cm 2! two
A hole with a diameter of 20 μm and a diameter of φ reaching the stop layer 4 is formed at the same position on the back side of the substrate at the same position in this circular layer portion with a diameter of 20 μm.The dielectric multilayer film 22 is then formed in this hole. The peak wavelength of is 1.3 μm.
Figure 1(b) is a cross-sectional view at a position corresponding to the position of
2 shows a completed diagram of the element, and the fabrication result by the above-mentioned process (Dai) will be explained by looking at the upper center part in detail. The resonator 2 has an absorption layer 12 made of a multiple quantum well layer inside the resonator, and absorption saturation can be easily caused by strong light injection. Even though the structure is such that control light can be injected to efficiently control the absorption rate using the optical waveguides 1 that intersect at right angles, the central part of this vertical resonator is further expanded to have a zinc diffusion with a diameter of 15 μmφ as shown in Figure 1(b). As a result, a p-type diffusion layer 23 is formed.
'Next, form the n electrodes 13 and 14 Sn electrodes 8.
Although the fabrication of the optical semiconductor device according to the present invention is completed when the chip-shaped opening is completed, the n-electrode 24 in the vertical resonator portion (as shown in the upper figure, corresponds to the zinc diffusion region 23 with a diameter of 15 μm, and is formed by a transparent electrode) Next, we will discuss the characteristics of the device and the optical modulation switching operation.The optical waveguide parallel to the substrate is made with both end faces 91 and 92 between the folds.
Since the resonator is composed of parallel reflecting mirrors with a reflectance of about 0.3, the laser oscillates by current excitation.In this case, both the left and right pIE & 13.14 in Figure 1(b) are connected. . Input a threshold current of about 100 m. Also, apply a reverse bias voltage ■ between the p and n electrodes 24 and 8 of the vertical resonator 2, and observe the change in the transmittance of light with a wavelength of 1.3 μm. The intensity of transmitted light with respect to time (V-0) is V-
Even at 20 V and ~115 V, a single mode fiber is used as shown in Fig. 1(b) for an element with such static characteristics, and a transparent electrode 24
When light Pin with a wavelength of 1.3 μm is injected into the vertical resonator 2 through the optical waveguide 1 parallel to the substrate, the transmitted output Pout for the current 11 to the laser through the optical waveguide 1 parallel to the substrate becomes as shown in FIG. th-1001
11 A) and above, it increases rapidly when the absorption of the absorption layer is saturated, and then remains almost constant. At this time, the voltage is low, less than 2 µm, and it is not necessary to apply a high voltage as in the conventional example. It is possible to switch a and the switching of a laser consisting of an optical waveguide parallel to the substrate I-! .

通常の半導体レーザと同様の速度であり、〜200ps
eeであり、透過光のスイッチング速度L これによっ
て決っており、同じ速度で行われることが確認できも 
ここて 垂直共振器部分の多重量子井戸層の層数を平行
な光導波路のそれの倍にした理由ζ上 垂直共振器モー
ドの光万丈 平行な光導波路へもれにくくするたべ 有
効屈折率を大きくする目的のためであム 実施例(2) 本発明による第2の実施例を第4図により説明すも 実
施例(1)で示したチップをそのまま用いも 即ち実施
例(1)で作製したチップの基板に平行な光導波路の襞
間による両端面(第1図(b)に示す91.92)に5
ift膜93をコートし 然る後にその上から金を蒸着
により〜3000A程度付着する94、但し チップの
電極13.14に接触しない様にすム このようにした
素子の断面図を第4図(a)に示す。切電 金の蒸着の
方法では電極のショートが発生しやすいので、Si/5
iOa等の多層膜により高反射率を実現できも 層数を
増やして制御性よく形成することで反射率を98%以上
できも この場合この平行な光導波路よりなるレーザの
発振光は外部に取出すことは出来ない万丈 垂直共振器
内の吸収層へ光注入は非常に効率よく行われもレーザへ
の注入電流11に対する垂直共振器の透過出力特性は第
4図(b)の通りであム これから基板に平行な光導波
路よりなるレーザのしきい値は〜70mAであることが
分も このレーザの出力は取れないためモニター出来な
い万丈 実施例(1)より、 2倍以上の効率向上があ
ることが分ム実施例(3) 本発明による第3の実施例を第5図で説明すも実施例(
1)で示したチップをそのまま用いも即ち実施例(1)
で作製したチップの基板−に平行な光導波路の襞間によ
る2つの端面の一方に(i実施例(2)と同様の方法で
反射率100%の鏡面を作製すム 端面のもう一方It
  Si/SiO2多層膜95をコートする方法で反射
率を〜5%にすム 作製した素子の断面図を第5図(a
)に示す。このように作製した基板に平行な光導波路に
よる共振器のレーザ発振のしきい値電流は〜100mA
であムこの素子の動作特性を第5図(b)に示す。実施
例(1)、(2)で(よ 電流即ち電気制御により光ス
イッチングの動作であったが、ここで4友 光制御によ
る光スイッチングが実現できも < b > It  
バイアス電流としてしきい値より若干低い電流を通電し
てお献 図(a)に示すように低反射率端面側から光を
注入し 透過光出力の変化を測定すると(b)のように
なも この(b)は平行光導波路への光入力依存性を示
す。これにより光制御による光スイッチングが容易に行
われることが分も また 応答速度も〜200psec
と十分に速しも この実施例で(友 光を注入する側の
基板に平行な光導波路の端面の反射率を多層膜のコーテ
ィングにより低下させ入射効率の向上をはかった万丈 
特にコーティングせず凶臂開面のままでも光制御による
光スイッチングが可能であも 実施例(4) 本発明による第4の実施例を第6図により説明すも 第
6図の(a)で示す様へ 素子(よ 基板に平行な光導
波路1に対する垂直共振器の位置が、実施例(1)の場
合と異なり、中心よりずらして作製すa この点以外は
全〈実施例(1)と同様であも 垂直共振器2の位置(
瓜 平行光導波路1の片方1−1が130μ臥 他方1
−2が50μmとなるように定めも 交叉部分である垂
直共振器内の吸収層12を含めると平行光導波路即ち共
振器を構成した場合の共振器長ζ戴 実施例(1)の場
合と同様200μのであa 平行光導波路のうち50μ
mの方には電流を印加せず、130μmの方1−1のみ
に電流を通電していくと、多重量子井戸層が可飽和吸収
現像を示す吸収層として作用するため電流−光出力特性
にヒステレシス現像が生ずム 垂直共振器2へ入射する
入力光が余り強くない場合、入力光自身による吸収飽和
が生じないた臥 前述の電流−光出力特性に対応して、
垂直共振器内の吸収層へ制御光が注入されることになり
、第6図(b)に示すような 透過光出力特性が得られ
も 図より、明らかなように 制御電流に対する透過出力が
実施例(1)〜(3)の場合と異なり、明白なしきい値
特咀 さらに光双安定現象を示す。
The speed is similar to that of a normal semiconductor laser, ~200 ps
ee, and the switching speed of transmitted light L is determined by this, and it can be confirmed that switching is performed at the same speed.
Here, the reason why the number of layers of the multi-quantum well layer in the vertical resonator part is twice that of the parallel optical waveguide is ζ.To ensure that the light in the vertical resonator mode is less likely to leak into the parallel optical waveguide.To increase the effective refractive index. Embodiment (2) A second embodiment according to the present invention will be explained with reference to FIG. 5 on both end faces (91.92 shown in Figure 1(b)) between the folds of the optical waveguide parallel to the substrate of the chip.
After coating the ift film 93, gold is deposited on it to a thickness of about 3,000 A by vapor deposition 94, taking care not to contact the electrodes 13 and 14 of the chip. Shown in a). Electrical cutting The gold vapor deposition method tends to cause electrode short-circuits, so Si/5
Although it is possible to achieve high reflectance with a multilayer film such as iOa, it is possible to increase the reflectance to 98% or more by increasing the number of layers and forming them with good controllability. Although light is injected into the absorption layer inside the vertical resonator very efficiently, the transmission output characteristics of the vertical resonator with respect to the injection current 11 to the laser are as shown in Figure 4 (b). It is also known that the threshold value of the laser consisting of an optical waveguide parallel to the substrate is ~70 mA.The output of this laser cannot be measured, so it cannot be monitored.The efficiency is more than double that of Example (1). Embodiment (3) The third embodiment of the present invention will be explained with reference to FIG.
The chip shown in 1) can be used as is, that is, Example (1).
A mirror surface with a reflectance of 100% is fabricated on one of the two end faces between the folds of the optical waveguide parallel to the substrate of the chip fabricated in (i) by the same method as in Example (2).
The reflectance can be reduced to ~5% by coating the Si/SiO2 multilayer film 95. A cross-sectional view of the fabricated device is shown in Figure 5 (a).
). The threshold current for laser oscillation of the resonator using the optical waveguide parallel to the substrate fabricated in this way is ~100 mA.
The operating characteristics of this device are shown in FIG. 5(b). In Examples (1) and (2), optical switching was performed using electric current, that is, electrical control, but here it is possible to realize optical switching using optical control.
When a bias current slightly lower than the threshold is applied, light is injected from the low reflectance end face side as shown in figure (a), and the change in transmitted light output is measured, as shown in figure (b). This (b) shows the dependence of light input to the parallel optical waveguide. This makes it easy to perform optical switching using optical control, and the response speed is ~200 psec.
However, in this example, the reflectance of the end face of the optical waveguide parallel to the substrate on the side into which light is injected is reduced by a multilayer coating, and the incidence efficiency is improved.
Embodiment (4) A fourth embodiment of the present invention is explained with reference to FIG. 6. In FIG. The device is fabricated as shown in Example (1), except that the position of the vertical resonator with respect to the optical waveguide 1 parallel to the substrate is shifted from the center, unlike in Example (1). Similarly, the position of vertical resonator 2 (
One side 1-1 of the parallel optical waveguide 1 is 130 μm long, and the other side 1
-2 is set to 50 μm.Including the absorption layer 12 in the vertical resonator, which is the intersection part, the resonator length ζ is the same as in Example (1) when a parallel optical waveguide or resonator is constructed. 200μ a 50μ of the parallel optical waveguide
When no current is applied to the 130 μm side 1-1 and a current is applied only to the 130 μm side 1-1, the multi-quantum well layer acts as an absorption layer that exhibits saturable absorption development, so the current-light output characteristics change. Hysteresis development does not occur. If the input light incident on the vertical resonator 2 is not very strong, absorption saturation due to the input light itself does not occur. Corresponding to the above-mentioned current-light output characteristics,
The control light is injected into the absorption layer within the vertical cavity, and the transmitted light output characteristics shown in Figure 6(b) are obtained.As is clear from the figure, the transmitted light output for the control current is Unlike the cases of examples (1) to (3), it exhibits clear threshold characteristics and also exhibits an optical bistability phenomenon.

このこと(友 光論理演算へ適用する場合、特性上大き
な向上が見られ ざら?Q  光メモリへの適用も可能
であることは明白であム また この実施例の場合で(よ 電流制御の場合のみ示
したが、しきい値直前あるいは光双安定状態の中心の電
流値に電流をバイアスして、平行光導波路に制御光を注
入することで、透過光を制御することが可能であa また 全ての実施例で、垂直共振器上の電極に通電した
結果について省略した万丈 適当な逆バイアスを印加す
ることにより、特性が改善されも実施例ではInGaA
sP/ InP系材料による説明を述べたが、他のAl
GaAs/GaAs系等他の半導体レーザ材料を用いて
も同様の効果を生ずることは明白であ本発明の効果 光変調および光スィッチ等の光情報処理を行う素子に対
して、電気制御の場合従来技術の如く高いバイアス電圧
の印加が不要となるばかりではなく、高速応答を可能に
する効果があム さらに第3の実施例でも見られるよう
に従来技術では困難であった光制御による蛮風 スイッ
チングをも容易に可能と味 か2 制御光が信号 出力
光に混入しない等集積化にとって重要な利点を生ずる効
果があム
It is clear that this can be applied to optical memory, and in the case of this example (only in the case of current control). As shown above, it is possible to control transmitted light by biasing the current to a current value just before the threshold value or at the center of the optical bistable state and injecting control light into the parallel optical waveguide. In this example, we omitted the results of applying current to the electrodes on the vertical resonator. Although the characteristics were improved by applying an appropriate reverse bias,
Although the explanation was given using sP/InP-based materials, other Al
It is clear that similar effects can be produced using other semiconductor laser materials such as GaAs/GaAs. This technology not only eliminates the need to apply a high bias voltage, but also has the effect of enabling high-speed response.Furthermore, as seen in the third embodiment, it is possible to perform sophisticated switching using optical control, which was difficult with conventional technology. (2) It has the effect of producing important advantages for integration, such as preventing the control light from mixing with the signal output light.

【図面の簡単な説明】[Brief explanation of the drawing]

第2図(a)、 (b) 、 (c)は第1図の装置の
作製工程医第3図は第1図の装置の垂直共振器の透過光
出力の平行光導波路によるレーザの駆動電流11に対す
る依存性を示す@ 第4@ 第5匁 第6図(a)は導
波路によるレーザの駆動電流依存性を示す皿第7図は従
来の装置の断面図であム ト・・・基板に平行な光導波区 2・・・・垂直共振器
 3 ・・・n型InP基板、4=n型1nGaAsP
(2μm1.1μm)エツチングストップ# 5・・・
・n型I n P A6 ・−・・p型InPML  
7・・・・p型InGaAsP(2μm1.1μm)キ
ャップ# 8・・・・nt&  tt・・・・平行光導
波路用InGaAsP/ InF’多重量子井戸豚12
・・・・垂直共振器内InGaAsP/ InP多重量
子井戸・吸収!  13.14−・・・plEK20・
・・・アンドープInPML  21・・・・InGa
AsP/InP多層膜反射砥22・・・・誘電体多層膜
反射眠23・・・・亜鉛拡散服24・・・・透明p電極
51・・・・n型ITIPI!、  61” 1)型I
nP服91.92−努開端献93・・・・SiO2絶縁
罠94・・・・全反射[95・・・・SiO2/Si多
層膜・低反射瓦 代理人の氏名 弁理士 小鍜治 明 ほか2名!−・X
wt、+=平廿rJ光辱儂語 Z−−1直喪振塁 第1図 (α) ■ lll1図cb) 5−一代艷工へrクラッド1 6−−− P S!LmPり?ッhJ N−xqLaaAt!’/x−hr i tlJ叶戸1
11M、10/−3bθ2マスク 第2図 奄) ゲ l −幕株主閲1:平打rJ平訂梵傳壌語υ−,1星2
0)L6戸の尺 61− fLt l外り1込Jf3 乙/−F引I炸Pす¥込虜1 第 2T!1 第3図 ′   ″”  °”’  1+(mA)94  會反
射頃 第4図 ぴン 第5 図       ((L) 5−Y−J  L−□コーーーーー′
Figures 2 (a), (b), and (c) show the manufacturing process of the device in Figure 1. Figure 3 shows the driving current of the laser by the parallel optical waveguide of the transmitted light output of the vertical resonator of the device in Figure 1. Figure 6 (a) shows the dependence on the driving current of the laser by the waveguide. Figure 7 is a cross-sectional view of a conventional device. Parallel optical waveguide sections 2... Vertical resonator 3... n-type InP substrate, 4 = n-type 1nGaAsP
(2μm 1.1μm) Etching stop #5...
・n-type I n P A6 ・-・p-type InPML
7...p-type InGaAsP (2μm 1.1μm) cap #8...nt&tt...InGaAsP/InF' multiple quantum well pig 12 for parallel optical waveguide
...InGaAsP/InP multiple quantum well absorption in vertical cavity! 13.14-...plEK20・
...Undoped InPML 21...InGa
AsP/InP multilayer reflector 22...Dielectric multilayer reflector 23...Zinc diffusion clothing 24...Transparent p electrode 51...N-type ITIPI! , 61” 1) Type I
nP clothes 91. 92 - Tsutomu opening reference 93... SiO2 insulation trap 94... Total reflection [95... Name of SiO2/Si multilayer film/low reflection tile agent Patent attorney Akira Okaji et al. 2 given name! -・X
wt, + = Heiren rJ Koshui Migo Z--1 Nakumouri base Fig. 1 (α) ■ lll1 Fig. cb) 5-Ichidai Kenkohe r Clad 1 6--- P S! LmPri? hJ N-xqLaaAt! '/x-hr i tlJ Kanoto 1
11M, 10/-3bθ2 mask 2nd figure 奄) Ge l - Maku shareholder review 1: Heiuchi rJ Hei revision Sanskrit yang language υ-, 1 star 2
0) L6 door length 61-fLt l outside 1 included Jf3 Otsu/-F pull I explosion P Su¥ included prisoner 1 2nd T! 1 Fig. 3' ″” °”' 1+(mA)94 Around the reflection Fig. 4 Pin Fig. 5 ((L) 5-Y-J L-

Claims (6)

【特許請求の範囲】[Claims] (1)化合物半導体基板主面と平行な方向に一対の平行
反射鏡を有し、前記の一対の反射鏡の間に光吸収層を有
する構造よりなる前記基板主面に対して垂直方向に形成
された垂直光共振器と、前記光吸収層の少なくとも一部
を共有し前記光共振器と交合せる前記基板主面に平行な
光導波路とを具備し、前記光共振器を透過せる光を前記
光導波路中を伝播せる光により制御可能にしたことを特
徴とする光半導体装置。
(1) Formed in a direction perpendicular to the main surface of the substrate, having a structure including a pair of parallel reflecting mirrors in a direction parallel to the main surface of the compound semiconductor substrate, and a light absorption layer between the pair of reflecting mirrors. and an optical waveguide parallel to the main surface of the substrate that shares at least a portion of the optical absorption layer and intersects with the optical resonator, the light passing through the optical resonator is An optical semiconductor device characterized in that it can be controlled by light propagated through an optical waveguide.
(2)垂直光共振器を構成せる一対の平行反射鏡の反射
率が共に90%以上であることを特徴とした請求項1記
載の光半導体装置。
(2) The optical semiconductor device according to claim 1, wherein the pair of parallel reflecting mirrors constituting the vertical optical resonator both have reflectances of 90% or more.
(3)垂直光共振器と基板主面に平行な光導波路が共有
せる部分の光吸収層の有効屈折率が、前記光導波路の前
記共有せる部分以外の部分の有効屈折率より大きいこと
を特徴とした請求項1記載の光半導体装置。
(3) The effective refractive index of the light absorption layer in the portion shared by the vertical optical resonator and the optical waveguide parallel to the main surface of the substrate is larger than the effective refractive index of the portion of the optical waveguide other than the shared portion. The optical semiconductor device according to claim 1.
(4)基板主面に平行な光導波路の少なくとも一部へ電
流注入が可能な構造を有し、前記光導波路の少なくとも
一部が利得するものであり、かつ前記光導波路の両端面
に反射率が98%以上の一対の平行反射鏡を形成して前
記基板主面に対し平行な方向に形成された平行光共振器
を構造体として有することを特徴とした請求項1記載の
光半導体装置。
(4) It has a structure that allows current to be injected into at least a part of the optical waveguide parallel to the main surface of the substrate, at least a part of the optical waveguide has a gain, and both end faces of the optical waveguide have a reflectance. 2. The optical semiconductor device according to claim 1, further comprising, as a structure, a parallel optical resonator formed in a direction parallel to the principal surface of the substrate by forming a pair of parallel reflecting mirrors having a polarity of 98% or more.
(5)基板主面に平行な光導波路の両端面のうち一方の
端面に反射率98%以上の反射鏡を形成し、他方の端面
に対しては劈開によって得られる反射鏡もしくは前記反
射鏡の反射率の値より小さい反射率を有する反射鏡を形
成して前記基板主面に対して平行な方向に形成された平
行光共振器を構造体として有することを特徴とした請求
項1記載の光半導体装置。
(5) A reflecting mirror with a reflectance of 98% or more is formed on one of both end faces of the optical waveguide parallel to the main surface of the substrate, and a reflecting mirror obtained by cleavage or the above-mentioned reflecting mirror is formed on the other end face. The light according to claim 1, characterized in that the structure includes a parallel light resonator formed in a direction parallel to the main surface of the substrate by forming a reflecting mirror having a reflectance smaller than a reflectance value. Semiconductor equipment.
(6)基板主面に対して平行な光導波路の一部を利得を
有する活性層として、また他の一部を吸収層として用い
ることを特徴とする請求項1記載の光半導体装置。
(6) The optical semiconductor device according to claim 1, wherein a part of the optical waveguide parallel to the main surface of the substrate is used as an active layer having a gain, and another part is used as an absorption layer.
JP33827490A 1990-11-30 1990-11-30 Optical semiconductor device Expired - Fee Related JP2841860B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33827490A JP2841860B2 (en) 1990-11-30 1990-11-30 Optical semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33827490A JP2841860B2 (en) 1990-11-30 1990-11-30 Optical semiconductor device

Publications (2)

Publication Number Publication Date
JPH04204833A true JPH04204833A (en) 1992-07-27
JP2841860B2 JP2841860B2 (en) 1998-12-24

Family

ID=18316585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33827490A Expired - Fee Related JP2841860B2 (en) 1990-11-30 1990-11-30 Optical semiconductor device

Country Status (1)

Country Link
JP (1) JP2841860B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006113475A (en) * 2004-10-18 2006-04-27 Ricoh Co Ltd Optical switch and printer using same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006113475A (en) * 2004-10-18 2006-04-27 Ricoh Co Ltd Optical switch and printer using same

Also Published As

Publication number Publication date
JP2841860B2 (en) 1998-12-24

Similar Documents

Publication Publication Date Title
US4840446A (en) Photo semiconductor device having a multi-quantum well structure
JPS60134219A (en) Optical switch
JPH0398016A (en) Optical integrated device and method of manufacturing the same
US5012474A (en) Polarization switching in active devices
JPH04204833A (en) Optical semiconductor device
JPH05158085A (en) Optical modulation device and its manufacture
JPS61212823A (en) Optical modulator
JP3484053B2 (en) Semiconductor laser type optical amplifier
JPH0827446B2 (en) Quantum well type optical modulator and manufacturing method thereof
JPS62286017A (en) Optical switch
JPH04291780A (en) Semiconductor light emitting apparatus
JPH07202316A (en) Selectively grown waveguide optical control element
Sun et al. Novel large cross-section single-mode AlGaAs/GaAs asymmetric optical switch based on carrier injection effect
JP2641296B2 (en) Semiconductor laser with optical isolator
JPH025028A (en) Non-linear optical directional coupler
JPH023024A (en) Semiconductor optical switch
JPH04194825A (en) Photo semiconductor device
JPH09105959A (en) Optical switch
JPH02177585A (en) Optical semiconductor device
JPH09179081A (en) Optical modulator and optical semiconductor switch
JPH06148699A (en) Optical confinement modulation semiconductor optical switch device and manufacture of the same
JPH03192788A (en) Integrated optical modulator
JPH02300716A (en) Optical waveguide type phase modulator
Song et al. InGaAsP/InP Compact Monolithic SOA-Integrated Mach-Zehnder Interferometer All-Optical Switches by Single-Step Selective-Area MOVPE and their Switching Performance
JPH02137385A (en) Semiconductor optical amplifier

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees