JPH04203795A - Heat transfer pipe and heat exchanger using this heat transfer pipe - Google Patents

Heat transfer pipe and heat exchanger using this heat transfer pipe

Info

Publication number
JPH04203795A
JPH04203795A JP33399190A JP33399190A JPH04203795A JP H04203795 A JPH04203795 A JP H04203795A JP 33399190 A JP33399190 A JP 33399190A JP 33399190 A JP33399190 A JP 33399190A JP H04203795 A JPH04203795 A JP H04203795A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
heat transfer
heat
transfer pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33399190A
Other languages
Japanese (ja)
Inventor
Takeji Watanabe
竹司 渡辺
Takashi Sawada
敬 澤田
Ryoichi Koga
良一 古閑
Toshimoto Kajitani
俊元 梶谷
Teruo Yamamoto
照夫 山本
Noriyuki Komeno
範幸 米野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP33399190A priority Critical patent/JPH04203795A/en
Publication of JPH04203795A publication Critical patent/JPH04203795A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve a safety characteristics and provide a small-sized equipment by a method wherein a spacing formed by an inner circumferential surface of the first heat transfer pipe and an outer circumferential surface of the second heat transfer pipe is provided with a spacing holder member. CONSTITUTION:Fins 5 and the first heat transfer pipes 1 heated by a combustion device 6 transfer heat to the second heat transfer pipes 2 through a helical coil 3 so as to heat refrigerant flowing in the second heat transfer pipe 2. The heated refrigerant evaporates and is gasified, flowed into a condenser 7, radiates heat, condenses and is liquefied. Heating is carried out with condensing heat generated at that time. In turn, the condensed and liquefied refrigerant is flowed again into the first heat transfer pipe 1 so as to complete one cycle. In this case, if the first heat transfer pipe 1 is made corrosive and broken with combustion gas of the combustion equipment 6 or the like, the combustion gas passes through a leakage sensing groove 4 and flows out to the surrounding air. In the case that the second heat transfer pipe 2 is broken by a thermal decomposition of the refrigerant or the like, the refrigerant similarly passes through the leakage sensing groove 4 and flows out of the device. Accordingly, the refrigerant is not directly contacted with the combustion gas of high temperature. Thus, no toxic gas is generated.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はフロン系冷媒と燃焼ガス、及び、フロン系冷媒
と水との熱交換に利用する伝熱管、及び熱交換器に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a heat transfer tube and a heat exchanger used for heat exchange between a fluorocarbon refrigerant and combustion gas, and between a fluorocarbon refrigerant and water.

従来の技術 従来のこの種に利用される伝熱管及び熱交換器として、
フロン系冷媒と燃焼ガスの熱交換に関しては、第5図、
第6図、第7図、第8図に、フロン系冷媒と水との熱交
換に関しては第9図、第10図に示した構成のものが知
られている。以下、図面に基づき説明する。第5図にお
いては、単管21にフィン25を挿入した後、単管21
を拡管したフィンチューブタイプであり、燃焼器の高温
の燃焼ガス26でフィン25を加熱し、前記フィン25
を介して単管21を加熱して冷媒を蒸発ガス化させる。
Conventional technology Heat exchanger tubes and heat exchangers used in this type of conventional technology include:
Regarding heat exchange between fluorocarbon refrigerant and combustion gas, see Figure 5.
As shown in FIGS. 6, 7, and 8, structures shown in FIGS. 9 and 10 for heat exchange between a fluorocarbon refrigerant and water are known. The explanation will be given below based on the drawings. In FIG. 5, after inserting the fin 25 into the single pipe 21, the single pipe 21
It is a fin tube type in which the fins 25 are expanded by heating the fins 25 with the high temperature combustion gas 26 of the combustor.
The single pipe 21 is heated through the refrigerant to evaporate and gasify the refrigerant.

しかし、単管21が腐食等で破れた場合に、冷媒が直接
に高温の燃焼ガス26に接触して熱分解して有毒ガスが
発生し、安全上、好ましくない。したがって第6図、第
7図、第8図に示したように燃焼ガスの通路とフロン系
冷媒の通路とを各々分離して、一方が破れても直接接触
しない構成となっている。
However, if the single tube 21 is torn due to corrosion or the like, the refrigerant will come into direct contact with the high-temperature combustion gas 26 and will be thermally decomposed to generate toxic gas, which is not desirable from a safety standpoint. Therefore, as shown in FIGS. 6, 7, and 8, the combustion gas passage and the fluorocarbon refrigerant passage are separated, so that even if one of them is torn, they will not come into direct contact with each other.

すなわち、第6図においては、アルミニュームの型材3
1の燃焼ガスの通路32に冷媒の通路となる伝熱管33
を拡管して熱交換させている。第7図に第6図の断面を
示す。図において、実線は燃焼ガスの流れ、破線は冷媒
の流れを示す。又、第8図においては、燃焼ガスの通路
のアルミニュームの型材34と冷媒の通路35のアルミ
ニュームの型材とを接合して熱交換させている。
That is, in FIG. 6, the aluminum profile 3
A heat transfer tube 33 serving as a refrigerant passage is provided in the combustion gas passage 32 of No. 1.
The tube is expanded to exchange heat. FIG. 7 shows a cross section of FIG. 6. In the figure, solid lines indicate the flow of combustion gas, and dashed lines indicate the flow of refrigerant. Further, in FIG. 8, an aluminum profile 34 for the combustion gas passage and an aluminum profile for the refrigerant passage 35 are joined to exchange heat.

発明が解決しようとする課題 しかしながら、第7図、第8図に示すように、いづれも
燃焼ガスとアルミニュームの型材で形成されたフィンと
の熱交換は、平板上の層流域の対流熱伝達であり温度境
界層は大きくなるため熱伝達は悪い。そして、アルミニ
ュームの型材34で形成されたフィンと冷媒との熱交換
も熱伝導であるため伝熱面積が大きく必要となる。次に
、フロン系冷媒と水との熱交換に関して第9図に示す如
く冷媒管49を貯湯槽52に挿入して圧縮機48から流
出してきた高温ガスの冷媒で貯湯槽52の内部の水を加
熱して湯を作るシステムにおいて、冷媒管49が破れた
場合に貯湯槽52の内部に冷媒が流入する為、好ましく
ない。従って、これを解決する為、第10図に示す如(
冷媒管59と水通路管60を密着させてコイル状にした
熱交換器61を構成し、貯湯槽52の外に設置したもの
が考えられる。しかし、この場合には熱交換器61のス
ペースが必要となる。又、前記熱交換器61と貯湯槽5
2を循環させる水ポンプ63も必要となる為、機器が大
きくなるという課題がある。
Problems to be Solved by the Invention However, as shown in Figures 7 and 8, heat exchange between the combustion gas and the fins made of aluminum profiles is achieved by convective heat transfer in a laminar region on a flat plate. Therefore, the temperature boundary layer becomes large, so heat transfer is poor. Furthermore, since the heat exchange between the fins formed of the aluminum profile 34 and the refrigerant is also thermal conduction, a large heat transfer area is required. Next, regarding the heat exchange between the fluorocarbon-based refrigerant and water, as shown in FIG. In a system that produces hot water by heating, if the refrigerant pipe 49 breaks, the refrigerant will flow into the hot water storage tank 52, which is undesirable. Therefore, in order to solve this problem, as shown in Figure 10 (
It is conceivable that the heat exchanger 61 is formed by closely contacting the refrigerant pipe 59 and the water passage pipe 60 into a coil shape, and is installed outside the hot water storage tank 52. However, in this case, a space for the heat exchanger 61 is required. Moreover, the heat exchanger 61 and the hot water storage tank 5
Since a water pump 63 for circulating water is also required, there is a problem that the equipment becomes large.

本発明は上記課題を解決するもので冷媒管、水通路管、
燃焼ガスの通路のいづれが破れても有毒ガスが発生した
り、あるいは冷媒が貯湯槽の内部の水に混入するといっ
たことを防止して、安全性の向上をはかるとともに機器
の小型化をはかることを目的とするものである。
The present invention solves the above problems, and includes a refrigerant pipe, a water passage pipe,
To improve safety and reduce the size of equipment by preventing toxic gas from being generated or refrigerant from mixing with the water inside the hot water storage tank even if any of the combustion gas passages is ruptured. The purpose is to

課題を解決するための手段 この課題を解決するために本発明は、第1の伝熱管と、
第1の伝熱管より管径の小さい第2の伝熱管とを有し第
2の伝熱管を第1の伝熱管に挿入するとともに、第1の
伝熱管の内周面と第2の伝熱管の外周面とで形成される
空間部に空間保持部材を設けたものである。
Means for Solving the Problem In order to solve this problem, the present invention provides a first heat exchanger tube;
a second heat exchanger tube having a smaller pipe diameter than the first heat exchanger tube, the second heat exchanger tube is inserted into the first heat exchanger tube, and the inner circumferential surface of the first heat exchanger tube and the second heat exchanger tube A space holding member is provided in the space formed by the outer peripheral surface of the spacer.

作用 この構成により、第1の伝熱管と第2の伝熱管との熱交
換は空間保持部材を介して行なわれると共に、第1の伝
熱管あるいは第2の伝熱管のいづれかが破れた場合には
燃焼ガス、水又は冷媒は前記第1の伝熱管と前記第2の
伝熱管と空間保持部材とで形成された空間部から流出す
る。
Function: With this configuration, heat exchange between the first heat exchanger tube and the second heat exchanger tube is performed via the space retaining member, and if either the first heat exchanger tube or the second heat exchanger tube breaks, Combustion gas, water, or refrigerant flows out from the space formed by the first heat exchanger tube, the second heat exchanger tube, and the space holding member.

実施例 以下、本発明の一実施例について、図面に基づいて説明
する。第1図は本発明の伝熱管である漏洩検知溝付き管
の断面図である。1は第1の伝熱管、2は第2の伝熱管
であり、第1の伝熱管1の管径より小さい。3は螺旋コ
イルであり、第2の伝熱管の外周面に巻装されて第2の
伝熱管を拡管し、第1の伝熱管の内周面及び前記第2の
伝熱管の外周面と熱交換関係を有するようになっている
EXAMPLE Hereinafter, an example of the present invention will be described based on the drawings. FIG. 1 is a sectional view of a leak detection grooved tube which is a heat transfer tube of the present invention. 1 is a first heat exchanger tube, 2 is a second heat exchanger tube, and the tube diameter is smaller than that of the first heat exchanger tube 1. 3 is a helical coil, which is wound around the outer circumferential surface of the second heat exchanger tube to expand the second heat exchanger tube, and to connect the inner circumferential surface of the first heat exchanger tube and the outer circumferential surface of the second heat exchanger tube with heat. They have come to have an exchange relationship.

4は空間部の漏洩検知溝であり、第1の伝熱管lと第2
の伝熱管2と空間保持部材である螺旋コイル3とで囲ま
れ、第1の伝熱管1あるいは第2の伝熱管2が破れた場
合に冷媒が外部に流出する通路となる。第2図は第1図
に示した漏洩検知溝付き管を利用したフィンチューブ熱
交換器である。
4 is a leakage detection groove in the space, which connects the first heat exchanger tube l and the second
It is surrounded by the heat exchanger tube 2 and the spiral coil 3 which is a space holding member, and becomes a passage through which the refrigerant flows outside when the first heat exchanger tube 1 or the second heat exchanger tube 2 is ruptured. FIG. 2 shows a fin tube heat exchanger using the leak detection grooved tube shown in FIG.

図において5はフィンであり、第1の伝熱管1が拡管さ
れて密着されている。第3図は第2図に示したフィンチ
ューブ熱交換器を利用した暖房システムである。6は燃
焼器、7は凝縮器であり、冷媒の凝縮作用を行う。次ぎ
にこの暖房システムの作用を説明する。燃焼器6で加熱
されたフィン5及び第1の伝熱管1は螺旋コイル3を介
して第2の伝熱管2に熱を伝え、第2の伝熱管2の内部
を流れる冷媒を加熱する。そして、加熱された冷媒は蒸
発ガス化して凝縮器マに流入し、ここで放熱し凝縮液化
する。そして、その際に発生する凝縮熱で暖房する。一
方、凝縮液化した冷媒は再度、第1の伝熱管1に流入し
、1サイクルを完了する。
In the figure, 5 is a fin, and the first heat exchanger tube 1 is expanded and closely attached. FIG. 3 shows a heating system using the fin-tube heat exchanger shown in FIG. 2. 6 is a combustor, and 7 is a condenser, which performs a refrigerant condensing action. Next, the operation of this heating system will be explained. The fins 5 and the first heat exchanger tube 1 heated by the combustor 6 transfer heat to the second heat exchanger tube 2 via the spiral coil 3, thereby heating the refrigerant flowing inside the second heat exchanger tube 2. Then, the heated refrigerant evaporates into gas and flows into the condenser, where it radiates heat and condenses and liquefies. The condensation heat generated during this process is then used to heat the room. On the other hand, the condensed and liquefied refrigerant flows into the first heat exchanger tube 1 again, completing one cycle.

ここで、燃焼器6の燃焼ガス等で第1の伝熱管1が腐食
されて破れた場合には、漏洩検知溝4を通って燃焼ガス
は外に流出する。又、第2の伝熱管2が冷媒の熱分解等
で破れた場合には、同様に漏洩検知溝4を通って冷媒は
外に流出する。従って、冷媒は直接に高温の燃焼ガスと
接触することがない。よって、有毒ガスを発生すること
がなく、安全性にすくれたものである。又、燃焼ガスは
フィン5の間を流れるが、熱交換器はフィンチューブ型
であるため燃焼ガスの側の伝熱面積が大きくとれ小型化
となる。
Here, if the first heat exchanger tube 1 is corroded and torn by the combustion gas of the combustor 6, the combustion gas flows out through the leakage detection groove 4. Furthermore, if the second heat transfer tube 2 is torn due to thermal decomposition of the refrigerant, the refrigerant similarly flows out through the leak detection groove 4. Therefore, the refrigerant does not come into direct contact with the hot combustion gas. Therefore, it does not generate toxic gas and is extremely safe. Further, the combustion gas flows between the fins 5, and since the heat exchanger is of the fin-tube type, the heat transfer area on the combustion gas side is large, resulting in miniaturization.

次ぎに本発明の漏洩検知溝付き管を利用してヒートポン
プの冷媒凝縮熱で湯をつくるヒートポンプ給湯機を第4
図にもとづいて説明する。図において8は圧縮機、9は
漏洩検知溝付き管であり、冷媒の凝縮作用を行う。10
は減圧装置、11は室外熱交換器であり、大気から熱を
吸熱して冷媒の蒸発作用を行う。12は貯湯槽であり、
漏洩検知溝付き管9が内部に収納されている。次に作用
について述べる。圧縮機8で圧縮された高温高圧のガス
冷媒は漏洩検知溝付き管9に流入し、ここで放熱して凝
縮液化する。そして、その際に貯湯槽12の水を加熱し
て湯をつくる。一方、凝縮液化した冷媒は減圧装置10
で減圧され、室外熱交換器11に流入し、ここで大気熱
を吸熱して蒸発ガス化して圧縮機8に戻る。ここで、漏
洩検知溝付き管9の冷媒が流れる第2の伝熱管2が破れ
ても、冷媒は漏洩検知溝空間4を通って貯湯槽12の外
に流れる。
Next, we will introduce a fourth heat pump water heater that uses the leak detection grooved pipe of the present invention to produce hot water using the heat pump's refrigerant condensation heat.
This will be explained based on the diagram. In the figure, 8 is a compressor, and 9 is a leak detection grooved tube, which performs the function of condensing the refrigerant. 10
1 is a pressure reducing device, and 11 is an outdoor heat exchanger, which absorbs heat from the atmosphere and evaporates the refrigerant. 12 is a hot water tank;
A leak detection grooved tube 9 is housed inside. Next, we will discuss the effect. The high-temperature, high-pressure gas refrigerant compressed by the compressor 8 flows into the leakage detection grooved pipe 9, where it radiates heat and condenses and liquefies. At that time, the water in the hot water storage tank 12 is heated to produce hot water. On the other hand, the condensed and liquefied refrigerant is transferred to the pressure reducing device 10.
It is depressurized and flows into the outdoor heat exchanger 11, where it absorbs atmospheric heat, evaporates into gas, and returns to the compressor 8. Here, even if the second heat transfer tube 2 of the leak detection grooved tube 9 through which the refrigerant flows is broken, the refrigerant flows through the leak detection groove space 4 to the outside of the hot water storage tank 12.

従って、貯湯槽12の内部に流入することもなく、安全
である。又、貯湯槽の12内部に漏洩検知溝付き管9と
いう熱交換器を挿入することができる為、機器の小型化
がはかれる。
Therefore, the hot water does not flow into the hot water storage tank 12 and is safe. Furthermore, since a heat exchanger called a leak detection grooved tube 9 can be inserted inside the hot water tank 12, the equipment can be made smaller.

発明の効果 以上のように本発明によれば次の効果が得られる。Effect of the invention As described above, according to the present invention, the following effects can be obtained.

第1の伝熱管あるいは第2の伝熱管のどちらかが万−破
れた場合、第1の伝熱管の外部に接触する媒体と第2の
伝熱管の内部を流れる媒体とは第1の伝熱管と第2の伝
熱管とで形成される空間部へそれぞれ流入する為、これ
ら二種類の媒体は直接接触することがなくなる。従って
、本発明の伝熱管を応用した機器の安全性が一層向上す
る。また、燃焼器の燃焼ガスで冷媒を加熱する際には燃
焼ガス側の伝熱面積が大きくとれるフィンチューブ型に
構成した熱交換器の実現が可能であり、さらに、第2の
伝熱管に冷媒を循環させこの冷媒で水を加熱する際には
、熱交換器として安心して貯湯槽の内部に設置できる。
If either the first heat exchanger tube or the second heat exchanger tube breaks, the medium in contact with the outside of the first heat exchanger tube and the medium flowing inside the second heat exchanger tube will be different from each other in the first heat exchanger tube. Since these two types of media flow into the space formed by the heat transfer tube and the second heat transfer tube, these two types of media no longer come into direct contact with each other. Therefore, the safety of equipment to which the heat exchanger tube of the present invention is applied is further improved. In addition, when heating the refrigerant with the combustion gas of the combustor, it is possible to realize a heat exchanger configured in a fin-tube type that has a large heat transfer area on the combustion gas side. When circulating refrigerant and heating water with this refrigerant, it can be safely installed inside a hot water tank as a heat exchanger.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における伝熱管の断面図、第
2図は同管を利用したフィンチューブ型の熱交換器の外
観斜視図、第3図は同管を利用した°暖房システムの構
成図、第4図は同管を利用したヒートポンプ給湯機の構
成図、第5図は従来のフィンチューブ型の熱交換器の外
観斜視図、第6図は従来の冷媒加熱に用いられる熱交換
器の外観斜視図、第7図は第6図の同熱交換器の燃焼ガ
スの流れと冷媒の流れを示した断面図、第8図は従来の
他の実施例における冷媒加熱に用いられる熱交換器の断
面図、第9図は従来のヒートポンプ給湯機のシステム構
成図、第10図は同給湯機の他のシステム構成図である
。 ■・・・・・・第1の伝熱管、2・・・・・・第2の伝
熱管、3・・・・・・螺旋コイル、4・・・・・・漏洩
検知溝空間、5・・・・・・フィン。 l −・  −6l の イt 凱 1旨4−漏洩検知
1墾間 第1図 第 2 図                    
         5− フィン+   −@r  の
 イツー雫−シ1≧2−1i!!2の4Hp、営 a−1!F、表コイル 4−A洩積酊1【開 第 3 図          6゛フインγ 114  図 1I5図 第6図 第7日 32   .33 第 8!!I
Fig. 1 is a cross-sectional view of a heat exchanger tube according to an embodiment of the present invention, Fig. 2 is an external perspective view of a fin-tube heat exchanger using the same tube, and Fig. 3 is a heating system using the same tube. Fig. 4 is a block diagram of a heat pump water heater using the same tube, Fig. 5 is an external perspective view of a conventional fin-tube heat exchanger, and Fig. 6 shows the heat used in conventional refrigerant heating. An external perspective view of the exchanger, FIG. 7 is a sectional view showing the flow of combustion gas and refrigerant in the same heat exchanger of FIG. 6, and FIG. 8 is used for refrigerant heating in other conventional embodiments. A sectional view of a heat exchanger, FIG. 9 is a system configuration diagram of a conventional heat pump water heater, and FIG. 10 is another system configuration diagram of the same water heater. ■...First heat exchanger tube, 2...Second heat exchanger tube, 3...Spiral coil, 4...Leakage detection groove space, 5... ·····fin. 1 - Leak detection 1 Figure 1 Figure 2
5- Fin + -@r's Itsu Shizuku-shi1≧2-1i! ! 2 of 4 Hp, sales a-1! F, front coil 4-A leakage 1 [Open Fig. 3 6゛fin γ 114 Fig. 1 I5 Fig. 6 Fig. 7 Day 32. 33 8th! ! I

Claims (4)

【特許請求の範囲】[Claims] (1)第1の伝熱管と、前記第1の伝熱管の内径より小
さい外径を有し前記第1の伝熱管に挿入された第2の伝
熱管と、前記第1の伝熱管の内周面と前記第2の伝熱管
の外周面とで形成された空間部と、この空間部に設けら
れた空間保持部材とを備えた伝熱管。
(1) A first heat exchanger tube, a second heat exchanger tube having an outer diameter smaller than the inner diameter of the first heat exchanger tube and inserted into the first heat exchanger tube, and an inner side of the first heat exchanger tube. A heat exchanger tube comprising a space formed by a peripheral surface and an outer peripheral surface of the second heat exchanger tube, and a space holding member provided in this space.
(2)空間保持部材を螺旋コイルにした請求項1記載の
伝熱管。
(2) The heat exchanger tube according to claim 1, wherein the space holding member is a spiral coil.
(3)空間保持部材を第1の伝熱管または第2の伝熱管
と一体に形成した請求項1記載の伝熱管。
(3) The heat exchanger tube according to claim 1, wherein the space holding member is integrally formed with the first heat exchanger tube or the second heat exchanger tube.
(4)請求項1記載の第1の伝熱管の周囲に複数のフィ
ンを設けたフィンチューブ型熱交換器。
(4) A fin tube type heat exchanger comprising a plurality of fins provided around the first heat exchanger tube according to claim 1.
JP33399190A 1990-11-29 1990-11-29 Heat transfer pipe and heat exchanger using this heat transfer pipe Pending JPH04203795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33399190A JPH04203795A (en) 1990-11-29 1990-11-29 Heat transfer pipe and heat exchanger using this heat transfer pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33399190A JPH04203795A (en) 1990-11-29 1990-11-29 Heat transfer pipe and heat exchanger using this heat transfer pipe

Publications (1)

Publication Number Publication Date
JPH04203795A true JPH04203795A (en) 1992-07-24

Family

ID=18272275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33399190A Pending JPH04203795A (en) 1990-11-29 1990-11-29 Heat transfer pipe and heat exchanger using this heat transfer pipe

Country Status (1)

Country Link
JP (1) JPH04203795A (en)

Similar Documents

Publication Publication Date Title
JPH05164482A (en) Liquefied natural gas vaporizer
KR20150004177A (en) Shell and tube type heat exchanger and Manufacturing method of the same
US20170299274A1 (en) Heat exchanger
JP2009121758A (en) Heat exchanger and cryogenic system
US20080053646A1 (en) Thermal expansion feature for an exhaust gas cooler
US20060108107A1 (en) Wound layered tube heat exchanger
JP3757166B2 (en) Heat exchanger and method of forming the same
US10495383B2 (en) Wound layered tube heat exchanger
JP3508465B2 (en) Heat exchanger
JP4627254B2 (en) Heat pipe equipment
JPH04203795A (en) Heat transfer pipe and heat exchanger using this heat transfer pipe
JP2000356419A5 (en)
JP2004125340A (en) Heat exchanger
JPS5952195A (en) Heat exchanger
JP2005024109A (en) Heat exchanger
JPH04292790A (en) Heat transfer tube and heat exchanger using the same
JP2003240457A (en) Heat exchanger for hot-water supply
JPS6252238B2 (en)
JPH0625796Y2 (en) Heat exchanger for instant hot water heater
JP2007247950A (en) Tube type heat exchanger
JPS5864488A (en) Heat exchanger
JP4216422B2 (en) Heat exchanger and manufacturing method thereof
JPH0415525Y2 (en)
JP2016044893A (en) Heat exchanger
KR100574869B1 (en) Liquid-to-suction heat exchanger