JPH04203320A - Air intake device of engine - Google Patents

Air intake device of engine

Info

Publication number
JPH04203320A
JPH04203320A JP2334838A JP33483890A JPH04203320A JP H04203320 A JPH04203320 A JP H04203320A JP 2334838 A JP2334838 A JP 2334838A JP 33483890 A JP33483890 A JP 33483890A JP H04203320 A JPH04203320 A JP H04203320A
Authority
JP
Japan
Prior art keywords
intake
closing
cylinder
delayed closing
air intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2334838A
Other languages
Japanese (ja)
Inventor
Yuji Akagi
赤木 裕治
Toshiki Okazaki
俊基 岡崎
Ryoji Kagawa
良二 香川
Kazuyasu Dosono
一保 堂園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2334838A priority Critical patent/JPH04203320A/en
Publication of JPH04203320A publication Critical patent/JPH04203320A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • F02B53/04Charge admission or combustion-gas discharge
    • F02B53/06Valve control therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • F02B2053/005Wankel engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Characterised By The Charging Evacuation (AREA)

Abstract

PURPOSE:To prevent mixture temperature from lowering at the top of compression by means of intake delayed closing, by providing a control valve at the air intake delayed closing passage, and making a space between the control valve and a delayed closing circulation flow port into an accumulator of prescribed volume. CONSTITUTION:There are provided two delayed closing circulation flow ports 25a, 25b, 26a, 26b which close later than air intake ports 11a, 11b at respective cylinders 3, 4 in a rotary piston engine 1. In this constitution, there are provided air intake delayed closing passages 27a, 27b which communicate the delayed closing circulation flow ports 25a, 26a of the cylinder 3 with the delayed closing circulation flow ports 25b, 26b of the cylinder 4 respectively. Besides, lead valves 29a, 29b which open from one cylinder side to the other cylinder side if pressure in the one cylinder side is higher than the other cylinder side by more than a prescribed value, and accumulators 28a, 28b of prescribed volume are provided in air intake delayed closing passages 27a, 27b. It is thus possible to raise mixture temperature in a combustion chamber with the heat of the mixture which is adiabatic-compressed in the air intake delayed closing passages 27a, 27b.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は吸気遅閉じシステムを採用したエンジンの吸気
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an intake system for an engine that employs an intake late closing system.

(従来の技術) エンジンの各気筒にメイン吸気ポートと該メイン吸気ポ
ートより遅れて閉じられる吸気遅閉じポートを設けると
ともに、各気筒の吸気遅閉じポートをそれぞれ他の気筒
の吸気遅閉じポートに連通させる吸気遅閉じ通路を設け
て、圧縮行程初期の気筒の吸気の一部を吸気行程前段の
他の気筒に流入させるようにし、それによって、吸気行
程にある気筒の吸気負圧を抑えボンピングロスを低減す
るようにした吸気遅閉じシステムが、例えば特開昭63
 ’−71525号公報に記載されているように従来か
ら提案されている。このような吸気遅閉じシステムは、
二つの気筒が背中合わせに並ぶロータリピストンエンジ
ンにおいては中間ハウジングを貫通するように吸気遅閉
じ通路を設けるだけで実現でき、その場合に、吸気行程
にある気筒のポンピングロスが低減できるという効果に
加えて、圧縮行程側の気筒では圧縮圧力が下がるために
アペックスシールを押圧する力が弱まり摺動抵抗が低減
されるという効果も生じる。また、過給手段を併用して
、圧縮行程の初期に他の気筒に逃げる分だけ予めメイン
吸気ポートから多めに吸気を送り込むようにすれば、エ
ンジン運転領域の広い範囲で吸気遅閉じによる所謂ミラ
ーサイクルを成立させることができ、それによって燃費
を改善できることも知られている。
(Prior art) Each cylinder of an engine is provided with a main intake port and an intake slow-close port that closes later than the main intake port, and each cylinder's intake slow-close port is communicated with the intake slow-close port of another cylinder. An intake slow-closing passage is provided to allow a portion of the intake air from the cylinder at the beginning of the compression stroke to flow into other cylinders at the front stage of the intake stroke, thereby suppressing the intake negative pressure of the cylinder during the intake stroke and reducing the pumping loss. For example, an intake slow closing system designed to reduce the
It has been proposed in the past as described in Japanese Patent No. '-71525. This kind of intake slow closing system is
In a rotary piston engine where two cylinders are lined up back to back, this can be achieved by simply providing an intake slow closing passage that penetrates the intermediate housing. In the cylinder on the compression stroke side, the compression pressure is lowered, so the force pressing the apex seal is weakened, and the sliding resistance is reduced. In addition, if a turbocharging means is used in advance to send in more intake air from the main intake port in advance to compensate for the amount that escapes to other cylinders at the beginning of the compression stroke, the so-called mirror effect due to late intake closing can be achieved over a wide range of engine operating ranges. It is also known that a cycle can be established, thereby improving fuel efficiency.

(発明が解決しようとする課題) しかしながら、このようにミラーサイクルを実現する手
段として吸気遅閉じシステムを用いると、圧縮行程に入
っても吸気遅閉じポートが閉じるまでは断熱圧縮が始ま
らないため、圧縮トップでの混合気の温度が低くなり、
特に軽負荷時において燃焼が不安定になるという問題が
生ずる。そこで、軽負荷時には吸気遅閉じを行わないよ
う制御することも考えられるが、軽負荷域というのは本
来燃費改善効果が最も期待できる領域であって、この領
域で吸気遅閉じを止めるのでは期待通りの燃費改善が行
えないことになる。また、例えば吸気遅閉じ通路に流量
制御弁を設けて開閉制御を行おうとしても、過渡時に応
答良くこれを行うことば実際上不可能でもある。
(Problem to be Solved by the Invention) However, when the intake late closing system is used as a means to realize the Miller cycle, adiabatic compression does not start until the intake late closing port closes even after entering the compression stroke. The temperature of the mixture at the compression top becomes lower,
A problem arises in that combustion becomes unstable, especially when the load is light. Therefore, it may be possible to control the intake late closing at light loads, but since the light load range is originally the area where the effect of improving fuel efficiency is most expected, it is not expected to stop the intake late closing in this area. This means that it will not be possible to improve fuel efficiency on the street. Further, even if it is attempted to perform opening/closing control by providing a flow rate control valve in the intake slow closing passage, for example, it is practically impossible to perform this with a good response during a transient period.

本発明は上記問題点に鑑みてなされたものであって、吸
気遅閉じを行うことにより圧縮トップでの混合気温度が
低下するのを防いで軽負荷時の燃焼を安定化させること
を目的とする。
The present invention was made in view of the above-mentioned problems, and an object of the present invention is to prevent the mixture temperature at the compression top from decreasing by closing the intake air late, thereby stabilizing combustion at light loads. do.

(課題を解決するための手段) 本発明に係るエンジンの吸気装置は、各気筒にメイン吸
気ポートと該メイン吸気ポートより遅れて閉じられる二
つの吸気遅閉じポートを設けるとともに、各気筒の前記
遅閉じ還流ポートを他の気筒の遅閉じ還流ポートにそれ
ぞれ連通させる吸気遅閉じ通路を設け、さらに、吸気遅
閉じ通路に一方の気筒側の圧力が他方の気筒側の圧力よ
りも所定圧以上高い場合に一方の気筒側から他方の気筒
側へ開く制御バルブを設け、かつ、この制御バルブと遅
閉じ還流ポートとの間を所定容積の畜圧室とすることに
よって、脊圧室内で断熱圧縮された混合気の熱により燃
焼室内混合気温度を高めるようにしたものである。
(Means for Solving the Problems) An intake system for an engine according to the present invention is provided with a main intake port and two intake late-closing ports that close later than the main intake port in each cylinder. An intake slow-closing passage is provided that communicates the closed recirculation port with the late-closing recirculation port of the other cylinder, and furthermore, when the pressure on one cylinder side is higher than the pressure on the other cylinder side by a predetermined pressure or more in the intake late closing passage. By providing a control valve that opens from one cylinder side to the other cylinder side, and creating an accumulating pressure chamber with a predetermined volume between this control valve and the slow-closing reflux port, adiabatic compression is achieved in the spinal pressure chamber. The temperature of the mixture in the combustion chamber is increased by the heat of the mixture.

(作用) エンジンの各気筒に設けられた遅閉じ還流ポートからは
圧縮行程の初期において混合気が高速で流出する。その
際、流出した混合気は吸気遅閉じ通路に形成された畜圧
室において断熱圧縮されて昇温し、所定圧以上で開く制
御バルブを介して吸気行程にある他気筒の遅閉じ還流ポ
ートに流れ込む。そして、この遅閉じ還流ポートから流
れ込む混合気の熱によって燃焼室内混合気の温度が高め
られ、それにより、吸気遅閉じで圧縮開始時期が遅れる
ことによる混合気温度上昇の不足分が補イっれる。
(Operation) The air-fuel mixture flows out at high speed from the slow-closing recirculation ports provided in each cylinder of the engine at the beginning of the compression stroke. At this time, the air-fuel mixture that flows out is adiabatically compressed in the accumulator pressure chamber formed in the intake slow-closing passage, increases in temperature, and is sent to the slow-closing reflux port of another cylinder on the intake stroke via a control valve that opens at a predetermined pressure or higher. Flow into. Then, the temperature of the mixture in the combustion chamber is increased by the heat of the mixture flowing in from this late-closing reflux port, thereby making up for the lack of increase in the mixture temperature due to the delay in the start of compression due to the late closing of the intake air. .

(実施例) 以下、実施例を図面に基づいて説明する。(Example) Examples will be described below based on the drawings.

第1図は本発明の第■実施例を示す2気筒ロークリピス
トンエンジンのシステム図である。このロータリピスト
ンエンジン1は、中間ハウジング2を共有して直列に配
置されたフロント側とリヤ側の二つの気筒3,4を備え
ている。ただし、図では便宜上これら二つの気筒を左右
に分けて記載している。
FIG. 1 is a system diagram of a two-cylinder rotary piston engine showing a second embodiment of the present invention. This rotary piston engine 1 includes two cylinders 3 and 4, one on the front side and the other on the rear side, which are arranged in series and share an intermediate housing 2. However, in the figure, these two cylinders are shown separated into left and right for convenience.

=4− 各気筒3,4は、上記中間ハウジング2.ロータハウジ
ング5.6および図示しないサイドハウジングによって
構成されるケーシングを備え、これらケーシングの内部
には共通の偏心軸7に支持され上記ロータハウジング5
,6のトロコイド状内周面に沿って遊星回転する略三角
形のロータ8゜9が配設されている。各気筒3,4のケ
ーシング内部には、上記ロータ8,9のフランク面によ
って図にIOa、10bで示す各三つの作動室lOが区
画され、各作動室10a、IObはロータ8゜9の回転
につれ移動しその容積が変化することにより順次、吸入
、圧縮、爆発および排気を繰り返す。
=4- Each cylinder 3, 4 is connected to the intermediate housing 2. The rotor housing 5.6 is provided with a casing composed of a rotor housing 5.6 and a side housing (not shown).
, 6 is provided with a substantially triangular rotor 8.9 that rotates planetarily along the trochoidal inner circumferential surface of the rotor. Inside the casing of each cylinder 3, 4, three working chambers 1O, shown as IOa and 10b in the figure, are divided by the flank surfaces of the rotors 8 and 9, and each working chamber 10a and IOb is divided into As it moves and its volume changes, it repeats inhalation, compression, explosion, and exhaust in sequence.

このような構成のロータリピストンエンジンにおいて、
各気筒3.4の吸気行程の作動室10a。
In a rotary piston engine with such a configuration,
Working chamber 10a for the intake stroke of each cylinder 3.4.

10bに対応する中間ハウジング2の両面にはそれぞれ
吸気ポートlla、llbが形成され、また、短軸部を
挟んで上記吸気ポートlla、11bと対向する位置の
ロータハウジング5.6内面には排気ポート12a、1
2bが形成されている。
Intake ports lla and llb are formed on both sides of the intermediate housing 2 corresponding to 10b, respectively, and an exhaust port is formed on the inner surface of the rotor housing 5.6 at a position facing the intake ports lla and 11b across the short shaft portion. 12a, 1
2b is formed.

そして、二つの気筒3,4の上記吸気ポート1.1a、
llbに連通ずる各吸気通路13.14は、上流で一つ
の上流側吸気通路15に集合され、該上流側吸気通路1
5にはスロットル弁16が配設されている。また、この
上流側吸気通路15はその上流部が二つの分岐通路17
.18に分岐され、各分岐通路17.18には排気ター
ボ過給機I9の二つのタービン20.21によって駆動
されるブロア22,23がそれぞれ配設されている。ま
た、上流側吸気通路15には、分岐点の下流にインター
クーラ24が設けられている。
and the intake ports 1.1a of the two cylinders 3 and 4,
The intake passages 13, 14 that communicate with Ilb are gathered upstream into one upstream intake passage 15.
A throttle valve 16 is disposed at 5. Further, the upstream side intake passage 15 has two branch passages 17 at its upstream part.
.. 18, and each branch passage 17.18 is provided with a blower 22, 23 driven by two turbines 20.21 of the exhaust turbo supercharger I9, respectively. Further, an intercooler 24 is provided in the upstream intake passage 15 downstream of the branch point.

中間ハウジング2の両面には、上記吸気ポート+1a、
Ilbよりリーディング側において各気筒の作動室10
a、IObに開口する第1の遅閉じ還流ポート252L
、25bがそれぞれ設けられ、また、これら第1の遅閉
じ還流ポート25a、25bと隣接し同じタイミングで
開閉する第2の遅閉じ還流ポート26a、26bがそれ
ぞれ設けられている。これら第1の遅閉じ還流ポート2
5a。
On both sides of the intermediate housing 2, the above-mentioned intake port +1a,
Working chamber 10 of each cylinder on the leading side from Ilb
a, first slow-closing reflux port 252L opening to IOb
, 25b are provided, respectively, and second slow-closing reflux ports 26a, 26b that are adjacent to these first slow-closing reflux ports 25a, 25b and open and close at the same timing are provided, respectively. These first slow closing reflux ports 2
5a.

25bおよび第2の遅閉じ還流ポート26a、26bは
、ロータ8.9によって上記吸気ポートlla、Ilb
よりも遅く開かれ、かつ吸気ポート11a、flbより
も遅くまで開いて圧縮行程初期に閉じられるよう設定さ
れ、フロント側の気筒3の第1の遅閉じ還流ポート25
2Lとリヤ側の気筒4の第2の遅閉じ還流ポート26b
とが第1の吸気遅閉じ通路27aによって連通され、ま
た、リヤ側の気筒4の第1の遅閉し還流ポート25bと
フロント側の気筒3の第2の遅閉じ還流ポート26aと
が第2の吸気遅閉じ通路27bによって連通されている
。また、上記第1および第2の吸気遅閉じ通路27a、
27bの途中には、それぞれ脊圧室282L、28bが
設けられ、これら脊圧室28a、28bの第2の遅閉じ
還流ポート27a、27b側の接続部には、脊圧室28
i、28b内が所定圧以上となった時に開くリードバル
ブ292L、29bが設けられている。
25b and the second slow closing reflux ports 26a, 26b are connected to the intake ports lla, Ilb by the rotor 8.9.
The first late closing recirculation port 25 of the front cylinder 3 is set to open later than the intake ports 11a and flb and close at the beginning of the compression stroke.
2L and the second slow closing recirculation port 26b of the rear cylinder 4
are communicated with each other by the first intake slow closing passage 27a, and the first slow closing recirculation port 25b of the rear cylinder 4 and the second slow closing recirculation port 26a of the front cylinder 3 are connected to each other by the second slow closing recirculation port 25b of the rear cylinder 4 They are communicated by an intake slow closing passage 27b. Further, the first and second intake slow closing passages 27a,
Spinal pressure chambers 282L and 28b are provided in the middle of the spinal pressure chambers 282L and 28b, respectively, and the spinal pressure chambers 282L and 28b are connected to the second slow closing reflux ports 27a and 27b of these spinal pressure chambers 28a and 28b.
Reed valves 292L and 29b are provided which open when the internal pressure of the reed valves i and 28b reaches a predetermined pressure or higher.

このような吸気系において、圧縮行程初期にある気筒3
(又は4)の作動室10a(又は10b)から第1の遅
閉じ還流ボー)25a (又は25b)を介し吸気遅閉
じ通路27a(又は27b)に混合気が流出する。そし
て、流出した混合気は圧縮行程が進むにつれて蓄圧室2
8a、28b内で断熱圧縮され、脊圧室28a、28b
内が所定圧力に達するとリードバルブ29a、29bを
開いて他方の気筒4(又は3)の第2の遅閉じ還流ポー
ト26b(又は26a)から吸気行程の作動室10b(
又はlOλ)に送り込まれる。その際、蓄圧室28a、
28b内で断熱圧縮された混合気の熱によって作動室1
0b(又は10a)内の混合気が昇温する。
In such an intake system, cylinder 3 at the beginning of the compression stroke
The air-fuel mixture flows out from the working chamber 10a (or 10b) of (or 4) to the intake slow-closing passage 27a (or 27b) via the first slow-closing reflux bow) 25a (or 25b). As the compression stroke progresses, the mixture that flows out flows into the pressure accumulator chamber 2.
The spinal pressure chambers 28a, 28b are compressed adiabatically within the chambers 8a, 28b.
When the internal pressure reaches a predetermined pressure, the reed valves 29a and 29b are opened, and the second slow-closing reflux port 26b (or 26a) of the other cylinder 4 (or 3) is drained from the working chamber 10b (or 26a) during the intake stroke.
or lOλ). At that time, the pressure accumulation chamber 28a,
The working chamber 1 is heated by the heat of the mixture adiabatically compressed in 28b.
The temperature of the air-fuel mixture in 0b (or 10a) increases.

この作動室内混合気の温度特性を図示すると第2図のよ
うになる。図で実線aがこの実施例の場合の温度特性曲
線である。また、−点鎖線すは従来システムによる吸気
遅閉じの場合を、破線Cは吸気遅閉じを行わない場合を
それぞれ示している。
The temperature characteristics of the air-fuel mixture in the operating chamber are illustrated in FIG. 2. In the figure, the solid line a is the temperature characteristic curve in this example. Furthermore, the dashed line C indicates the case where the intake late closing is performed by the conventional system, and the broken line C indicates the case where the intake late closing is not performed.

この実施例の場合(a)は、他気筒3(又は4)の第1
の遅閉じ還流ポート25a(又は25b)から出て山気
筒4(又は3)の第2の遅閉じ還流ポート26b(又は
26a)から作動室10b(又は10a)に流入する混
合気の流入期間(Δθ。。)の間に、断熱圧縮された混
合気の熱による昇温効果があられれ、その効果が、山気
筒4(又は3)の第1の遅閉じ還流ポート25b(又は
252L)から他気筒3(又は4)へ混合気が流れ出る
期間(Δθ。ut)の間持続するため、第1の遅閉じ還
流ポート25b(又は25a)が閉じ山気筒の圧縮が開
始される時点で既に混合気温度が高く、したがって、従
来の吸気遅閉じシステムの場合(b)と比較して圧縮ト
ップにおける混合気温度が明らかに高くなり、吸気遅閉
じを行わない場合(C)とほぼ同等の混合気温度が得ら
れる。
In the case of this embodiment (a), the first cylinder of the other cylinder 3 (or 4)
The inflow period ( During the period Δθ...), there is a temperature increasing effect due to the heat of the adiabatically compressed air-fuel mixture, and this effect is transferred from the first slow-closing reflux port 25b (or 252L) of the mountain cylinder 4 (or 3) to the others. Since it lasts for a period (Δθ.ut) during which the air-fuel mixture flows into cylinder 3 (or 4), the air-fuel mixture is already closed when the first late-closing reflux port 25b (or 25a) is closed and compression of the mountain cylinder starts. The temperature is higher, and therefore the mixture temperature at the compression top is clearly higher than in the case of the conventional intake late closing system (b), and the mixture temperature is almost the same as in the case without the intake late closing (C). is obtained.

なお、本発明はロータリピストンエンジン以外にも適用
することが可能である。
Note that the present invention can be applied to other than rotary piston engines.

(発明の効果) 本発明は以上のように構成されているので、吸気遅閉じ
通路において断熱圧縮された混合気の熱によって燃焼室
内混合気を昇温させ燃焼安定性を向上させることができ
、したがって、軽負荷時においても吸気遅閉じを行って
燃費向」二を図ることが可能となる。  −
(Effects of the Invention) Since the present invention is configured as described above, it is possible to raise the temperature of the air-fuel mixture in the combustion chamber by the heat of the air-fuel mixture compressed adiabatically in the intake late closing passage, thereby improving combustion stability. Therefore, it is possible to improve fuel efficiency by closing the intake air late even under light loads. −

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す2気筒ロークリピスト
ンエンジンのシステム図、第2図は同実施例における作
動室内混合気温度の特性図である。 ■=ロータリピストンエンジン、3.気筒(フロント側
)、4:気筒(リヤ側)、10a、10b:作動室、l
la、llb:吸気ポート(メイン吸気ポート)、25
a、25b:第1の遅閉じ還流ポート、2B2L、26
b:第2の遅閉じ還流ポート、27a、27b:吸気遅
閉じ通路、28a、28b:蓄圧室、29a、29b:
リードバルブ(制御バルブ)。 代理人 弁理士 進 藤 純 −
FIG. 1 is a system diagram of a two-cylinder rotary piston engine showing one embodiment of the present invention, and FIG. 2 is a characteristic diagram of the air-fuel mixture temperature in the operating chamber in the same embodiment. ■=Rotary piston engine, 3. Cylinder (front side), 4: Cylinder (rear side), 10a, 10b: Working chamber, l
la, llb: intake port (main intake port), 25
a, 25b: first slow closing reflux port, 2B2L, 26
b: Second slow closing reflux port, 27a, 27b: Intake slow closing passage, 28a, 28b: Pressure accumulation chamber, 29a, 29b:
Reed valve (control valve). Agent Patent Attorney Jun Susumu Fuji −

Claims (1)

【特許請求の範囲】[Claims] (1)各気筒にメイン吸気ポートと該メイン吸気ポート
より遅れて閉じられる二つの遅閉じ還流ポートを設ける
とともに、各気筒の前記遅閉じ還流ポートを他の気筒の
遅閉じ還流ポートにそれぞれ連通させる吸気遅閉じ通路
を設け、さらに、前記吸気遅閉じ通路に一方の気筒側の
圧力が他方の気筒側の圧力よりも所定圧以上高い場合に
一方の気筒側から他方の気筒側へ開く制御バルブを設け
、かつ、該制御バルブと前記一方の気筒側の遅閉じ還流
ポートとの間を所定容積の蓄圧室としたことを特徴とす
るエンジンの吸気装置。
(1) Each cylinder is provided with a main intake port and two late closing reflux ports that close later than the main intake port, and the late closing reflux ports of each cylinder are communicated with the late closing reflux ports of other cylinders, respectively. An intake late-closing passage is provided, and the intake late-closing passage further includes a control valve that opens from one cylinder side to the other cylinder side when the pressure on one cylinder side is higher than the pressure on the other cylinder side by a predetermined pressure or more. An intake system for an engine, characterized in that a pressure accumulation chamber of a predetermined volume is formed between the control valve and the slow-closing recirculation port on the one cylinder side.
JP2334838A 1990-11-29 1990-11-29 Air intake device of engine Pending JPH04203320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2334838A JPH04203320A (en) 1990-11-29 1990-11-29 Air intake device of engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2334838A JPH04203320A (en) 1990-11-29 1990-11-29 Air intake device of engine

Publications (1)

Publication Number Publication Date
JPH04203320A true JPH04203320A (en) 1992-07-23

Family

ID=18281788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2334838A Pending JPH04203320A (en) 1990-11-29 1990-11-29 Air intake device of engine

Country Status (1)

Country Link
JP (1) JPH04203320A (en)

Similar Documents

Publication Publication Date Title
CN101749121B (en) Engine intake quantity control apparatus
JP4807343B2 (en) Engine supercharger
JPS5870023A (en) Improving of operation condition of internal combustion engine
JP2002527673A (en) Internal combustion engine
JPH05280354A (en) Engine with mechanical supercharger
JP4807344B2 (en) Supercharger for inline 4-cylinder engine
JPH04203320A (en) Air intake device of engine
JPH0457848B2 (en)
JPS6069235A (en) Diesel engine with supercharger
JPH04203322A (en) Air intake device of rotary piston engine
JPH0436026A (en) Intake system of engine
JPH03182632A (en) Air intake device for rotary piston engine
JP2020097914A (en) Exhaust device of engine with turbocharger
JP2673426B2 (en) Engine with mechanical supercharger
JPS5925109B2 (en) Fuel injection engine supercharging device
JPS60122227A (en) Intake device of internal-combustion engine
KR820000757B1 (en) Method for improving the efficiency of internal combustion engines
JPH04203323A (en) Air intake device of engine
JPH0447388Y2 (en)
JPH04203314A (en) Intake device of engine
JPH0340214B2 (en)
JPH0144742Y2 (en)
JPS60159336A (en) Diesel engine with supercharger
JPS62165532A (en) Exhauster for engine
JPS62248823A (en) Intake device for engine