JPH04200285A - Controller for servomotor - Google Patents

Controller for servomotor

Info

Publication number
JPH04200285A
JPH04200285A JP2332495A JP33249590A JPH04200285A JP H04200285 A JPH04200285 A JP H04200285A JP 2332495 A JP2332495 A JP 2332495A JP 33249590 A JP33249590 A JP 33249590A JP H04200285 A JPH04200285 A JP H04200285A
Authority
JP
Japan
Prior art keywords
speed
fuzzy
same
output
variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2332495A
Other languages
Japanese (ja)
Inventor
Tetsuya Touda
塘田 哲也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2332495A priority Critical patent/JPH04200285A/en
Publication of JPH04200285A publication Critical patent/JPH04200285A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Electric Motors In General (AREA)

Abstract

PURPOSE:To improve the follow-up property of a controller when a speed commanding input or a load torque is changed by a method wherein a fuzzy reasoning device employs a speed commanding signal, the derivative value of the same and a speed difference value as the variable inputs of the same while the output of the same is added to the input of a proportional integrating controller. CONSTITUTION:A fuzzy inference device 18 employs a speed deviation epsilon(epsilon= v0-V1) between the output of a speed detector 12 or a positional information V1 and a position commanding signal V0 as the first variable of the same. The output of a speed commanding device 14 or the position commanding signal V0 is employed as the second variable of the same and a value, obtained by differentiating the position commanding signal V0 by a differentiator 15, is employed as the third variable of the same that is speed information alpha in the same manner. An output (f1), obtained by employing these 3 variable through fuzzy operation, is added to the input of proportional controller 16 while an output (f2) is added to the input of an integrating controller 17 respectively. The speed deviation epsilon, the speed commanding signal V0 and an acceleration alphaare explained by fuzzy variables, explained by a fuzzy expression of a fuzzy variables, which is small or very large, while respective fuzzy variables are defined with a membership function.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、比例積分制御器のゲインを動作条件に応じて
擬似的に可変するファジィ推論器を有するサーボモータ
の制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a servo motor control device having a fuzzy inference device that pseudo-varies the gain of a proportional-integral controller depending on operating conditions.

従来の技術 第5図は従来のサーボモータの速度フィードバックルー
プの構成を表すブロック線図である。
Prior Art FIG. 5 is a block diagram showing the configuration of a speed feedback loop of a conventional servo motor.

図において、lは比例積分制御器およびサーボモータ、
2は積分器(負荷)、3は外乱トルクT L、4は速度
指令信号V、、、5はサーボモータの速度V1.6は速
度指令信号Voとサーボモータの速度V、との差、すな
わち速度偏差εである。
In the figure, l is a proportional-integral controller and a servo motor,
2 is the integrator (load), 3 is the disturbance torque T L, 4 is the speed command signal V, 5 is the servo motor speed V1.6 is the difference between the speed command signal Vo and the servo motor speed V, i.e. The speed deviation is ε.

最初モータは停止、すなわちV、=Oとする。Initially, the motor is stopped, ie, V, =O.

正の値の速度指令Voを与えると、VOからvlを引い
た値である速度偏差εはある正の値をとる。
When a positive speed command Vo is given, the speed deviation ε, which is the value obtained by subtracting vl from VO, takes on a certain positive value.

このため正の値のトルクが発生し、軸が加速され速度が
上がる。速度が上昇するにつれて速度偏差εが零に近づ
く。このためトルクも減少して軸の加速が弱(なる。モ
ータの速度V、が指令速度V。
This generates a positive torque, which accelerates the shaft and increases its speed. As the speed increases, the speed deviation ε approaches zero. As a result, the torque also decreases and the acceleration of the shaft becomes weak (the motor speed V becomes the command speed V).

に一致すると、トルクが零となって加速しな(なり、外
乱トルクTt、がこのままであればこの速度で回転を続
ける。すなわちモータの速度が希望どおりの値に定速制
御される。
If it matches, the torque becomes zero and there is no acceleration (and if the disturbance torque Tt remains as it is, the motor continues to rotate at this speed. In other words, the motor speed is controlled at a constant speed to a desired value.

発明が解決しようとする課題 比例積分制御における比例ゲイン、積分ゲインは実機の
動作条件に応じて調整され、固定される。
Problems to be Solved by the Invention The proportional gain and integral gain in proportional-integral control are adjusted and fixed according to the operating conditions of the actual machine.

しかし入力信号の急変に速応する。すなわち、モータの
起動、停止時においては連応性をよくするために比例ゲ
インが太き(、積分ゲインが小さいほうがよく、外乱ト
ルクによる定常偏差が大きいときは積分ゲインが大きい
方がよい。
However, it responds quickly to sudden changes in the input signal. That is, when starting and stopping the motor, the proportional gain should be large (and the integral gain should be small) to improve coordination, and when the steady-state deviation due to disturbance torque is large, the integral gain should be large.

したかって、従来の方法で比例ゲイン、積分ゲインを固
定する方法は最適であるとはいえない。
Therefore, the conventional method of fixing the proportional gain and integral gain cannot be said to be optimal.

そこで、本発明はモータの起動、停止時、あるいは外乱
の大小により、比例ゲイン、積分ゲインを適切な値に設
定するためにファジィ推論により、比例制御および積分
制御の人力値を制り11°づるり・−ボモータの制御装
置を提供することを目的とする。
Therefore, the present invention uses fuzzy reasoning to control the human power values of proportional control and integral control in order to set the proportional gain and integral gain to appropriate values when starting or stopping the motor, or depending on the magnitude of disturbance. The object of the present invention is to provide a control device for a motor.

課題を解決するための手段 上記目的を達成するために本発明のサーボモータの制御
装置は、適切なサーボ動作を行うために、速度指令V。
Means for Solving the Problems In order to achieve the above object, the servo motor control device of the present invention uses a speed command V to perform an appropriate servo operation.

、voの変化率α、および速度偏差εを前件部の変数と
して、その出力fを比例積分制御器の入力に加算するフ
ァジィ推論器を備えている。
, vo, and the speed deviation ε as variables of the antecedent part, and a fuzzy inference device that adds the output f to the input of the proportional-integral controller is provided.

作用 上記の構成により、速度指令入力や負荷トルクが変化し
た時の追従性が向上する。
Effect: The above configuration improves followability when speed command input or load torque changes.

実施例 以下の実施例を図面を参照して説明する。Example The following embodiments will be described with reference to the drawings.

第1図は本発明のサーボモータの制御装置の一実施例を
示すブロック図である。
FIG. 1 is a block diagram showing an embodiment of a servo motor control device of the present invention.

図において、11はサーボモータ、12は速度検出器、
13は電流検出器、14は速度指令信号■oを発する速
度指令器、15は微分器、16は比例制御器、17は積
分mり部器、18は本発明の骨子であるファジィ推論器
、19は電流増幅器である。
In the figure, 11 is a servo motor, 12 is a speed detector,
13 is a current detector, 14 is a speed command device that emits a speed command signal o, 15 is a differentiator, 16 is a proportional controller, 17 is an integral multiplier, 18 is a fuzzy inference device which is the gist of the present invention, 19 is a current amplifier.

まず、ファジィ推論の手段を詳しく説明する。First, the means of fuzzy inference will be explained in detail.

−ファジィ推論とは、周知のように言語的に記述された
制御ルールに従って出力を決定する推論方法であり、人
間の経験や勘、熟練オペレータのノウハウに基づ(知識
をルールに反映することによって、要求に見合った制御
系を設計することができる。
- Fuzzy inference is an inference method that determines output according to control rules written in language, and is based on human experience, intuition, and the know-how of skilled operators (by reflecting knowledge in rules). , it is possible to design a control system that meets the requirements.

本実施例ではファジィ推論器18は速度検出器12の出
力である位置情報V、と位置指令信号■。
In this embodiment, the fuzzy inference unit 18 receives the position information V, which is the output of the speed detector 12, and the position command signal ■.

との速度偏差ε(ε=Vo  V+)を前件部の第1の
変数とする。同様に速度指令器14の出力であるvl+
を1);1件部の第2の変数、Voを微分器15て微分
した値である速度情報αを第3の変数とする。これら3
つの変数を用いてファジィ演算して得られる出力「、を
比例制御器16の入力に、出力f2を積分制御器17の
入力に各々加算する。
Let the velocity deviation ε (ε=Vo V+) between the Similarly, vl+ which is the output of the speed command device 14
1); Let speed information α, which is a value obtained by differentiating Vo, the second variable of the first part, using a differentiator 15, be the third variable. These 3
The output "," obtained by fuzzy calculation using two variables, is added to the input of the proportional controller 16, and the output f2 is added to the input of the integral controller 17.

速度偏差ε、速度指令信号VO+加速度αは小さいこと
か非常に大きいなどのあいまいな表現であるファジィ変
数で表され、それぞれのファジィ変数は第2図および第
3図に示すようにメンバーシップ関数で定義される。
Speed deviation ε, speed command signal VO + acceleration α are expressed as fuzzy variables with ambiguous expressions such as small or very large, and each fuzzy variable is represented by a membership function as shown in Figures 2 and 3. defined.

速度偏差情報εは第2図(a)のように[−1〜1]の
区間に正規化され、NL’(負に非常に大きい。
The speed deviation information ε is normalized to an interval of [-1 to 1] as shown in FIG. 2(a), and NL' (negatively very large).

すなわち目的の速度より負の方向に非常に離れているこ
とを表す)からPL(正に非常に大きい。
In other words, the target velocity is very far from the target speed in the negative direction) to PL (very large in the positive direction).

すなわち目的の速度より正の方向に非常に離れているこ
とを表す)までの7つのファジィ変数で定義される。同
様に速度指令信号VOは第2図(b)のように加速度情
報αは第2図(C)のように、比例制御器16への入力
値、flは第3図(a)のように、積分制御器17への
入力値、f2は第3図(b)のようにそれぞれ7つのフ
ァジィ変数で定義される。
In other words, it is defined by seven fuzzy variables up to (representing a distance far away from the target speed in the positive direction). Similarly, the speed command signal VO is the input value to the proportional controller 16 as shown in FIG. 2(b), the acceleration information α is the input value to the proportional controller 16 as shown in FIG. 2(C), and fl is the input value as shown in FIG. 3(a). , the input value to the integral controller 17, and f2 are each defined by seven fuzzy variables as shown in FIG. 3(b).

これらのファジィ変数を用いた制御ルールとしては、例
えば次のようなものが考えられる。
Examples of control rules using these fuzzy variables include the following.

比例増幅器入力値の制御ルールの場合 (1)  もし速度偏差εが正に非常に太きく (PL
)、速度指令信号■。が正に非常に太きく (PL)、
加速度αが正に非常に大きい(PL)ならば、比例mり
部器の入力f1は正に非常に太きく (PL)しなさい
In the case of the control rule for the proportional amplifier input value (1) If the speed deviation ε is very large (PL
), speed command signal■. is very thick (PL),
If the acceleration α is very large (PL), the input f1 of the proportional multiplier should be very large (PL).

(2)  もしεが正に非常に大きく(PL)、voが
正に非常に人きく (PI、)、αが正に中位大きいく
PM)ならば、flは正に中位太きく (PM)しなさ
い。
(2) If ε is positively very large (PL), vo is positively very popular (PI, ), and α is positively moderately large PM), then fl is positively moderately thick ( PM) Do it.

(3)  もしεが正に非常に太きく (PL)、Vo
が正に中位大−e< (PM) 、αが正に中位大きい
(PM)ならば、flを正に中位太きく (PM)しな
さい。
(3) If ε is very thick (PL), Vo
If is exactly moderately large - e < (PM) and α is exactly moderately large (PM), then make fl exactly moderately thick (PM).

(4)  もしεが正に中位太きく (PM) 、v、
が正に中位太きく (PM) 、αが正に中位大きい(
PM)ならば、flを正に中位太きく (PM)しなさ
い。
(4) If ε is exactly medium thick (PM), v,
is exactly moderately thick (PM), and α is exactly moderately large (
PM), then make fl exactly medium thick (PM).

(5)  もしεか正に少し大きく(PS)、voが正
に中位太きく(PM)、αか正に中位大きい(PM)な
らば、f、を正に中位太きく (PM)しなさい。
(5) If ε is positively slightly larger (PS), vo is positively moderately thick (PM), and α is positively moderately large (PM), then f is positively moderately thick (PM). )do it.

(6)  もしεが正に少し太きく(PS)、V、が正
に少し太きく(PS)、αが正に少し大きい(PS)な
らば、f+を正に少し太きく (PS)しなさい。
(6) If ε is slightly thicker (PS), V is slightly thicker (PS), and α is slightly larger (PS), then f+ is slightly thicker (PS). Please.

(7)  もしεが適正(ZR)、Voが適正(ZR)
、αが適正(ZR)ならば、flを適正(ZR)にしな
さい。
(7) If ε is appropriate (ZR), Vo is appropriate (ZR)
, α is proper (ZR), then make fl proper (ZR).

(8)  もしεが負に非常に太きく(NL)、voが
負に非常に太きく(NL)、αが負に非常に大きい(N
L)ならば、flは負に非常に太き((NL)Lなさい
(8) If ε is very negative (NL), vo is very negative (NL), and α is very negative (N
L), then fl is very negative ((NL)L).

(9)  もしεが負に非常に太きく (NL) 、v
oが負に非常に太きく (NL)、αが負に中位大きい
(NM)ならば、f、は負に中位太きく (NM)しな
さい。
(9) If ε is very negative (NL), v
If o is very negative (NL) and α is medium negative (NM), then f should be medium negative (NM).

aa+  ムし乙が負に非’!+!’に太きく(NL)
、Voが負に中位太きく (NM)、αが負に中位大き
い(NM)ならば、flは負に中位太きく(NM)しな
さい。
aa+ Mushi Otsu is negative! +! ' Thick (NL)
, Vo is moderately large (NM) in the negative direction, and α is moderately large (NM) in the negative direction, then fl should be moderately large (NM) in the negative direction.

OD  もしεが負に中位太きく (NM) 、Voが
負に中位太きく(NM)、αが負に中位大きい(NM)
ならば、f、は負に中位太きく(NM)しなさい。
OD If ε is moderately large in the negative (NM), Vo is moderately large in the negative (NM), α is moderately large in the negative (NM).
Then, make f medium negative (NM).

G2)  もしεが負に少し太き((NS)、Voが負
に中位太きく (NM) 、αが負に中位大きい(NM
)ならば、flを負に中位太きく(NM)しなさい。
G2) If ε is slightly thick in the negative ((NS), Vo is moderately thick in the negative (NM), α is medium large in the negative (NM).
), then make fl negative and medium thick (NM).

■ もしεが負に少し太きく(NS)、Voが負に少し
太きく(NS)、αが負に少し大きい(NS)ならば、
flを負に少し太きく (NS)しなさい。
■ If ε is a little negative (NS), Vo is a little negative (NS), and α is a little negative (NS), then
Make fl a little negative (NS).

積分制御器170入力値f2の制御ルールの場合も同様
に考えられろう 次にファジィ推論の過程を第4図を用いて説明する。
The same can be considered for the control rule for the input value f2 of the integral controller 170. Next, the process of fuzzy inference will be explained using FIG. 4.

本実施例でのファジィ推論では、M I N −M A
 X−重心法(頭切り法とも吋ばれる)を用いる。
In the fuzzy inference in this example, M I N - M A
The X-centroid method (also known as the truncated method) is used.

」;ず、それぞれのJL −JL h)の茅1−二白を
二にめる11例えばルール1(if  ε=PL  a
nd  Vn−PM  and  a=PM、then
  f+ =PM)に対しては、第4図■に示すように
前件部の最小(MIN)をとることにより前件部の適合
度を求め、第4図■に示すように後件部変数の頭を前件
部の適合度でカット(斜線部分)したものをこのルール
の結論とする−同じステップを各ルールに適用し、各ル
ール毎の結論を求めた後に第4図■に示すように、全結
論の最大(MAX)をとって第4図■を作成し、第4図
■に示すように斜線面積の重心に対応する値を推論結果
として決定する。
''; zu, each JL - JL h)'s 1 - 2 white 11 For example, rule 1 (if ε = PL a
nd Vn-PM and a=PM, then
f+ = PM), the fitness of the antecedent part is determined by taking the minimum (MIN) of the antecedent part as shown in Figure 4 ■, and the consequent part variable is calculated as shown in Figure 4 ■. The conclusion of this rule is the one whose head is cut by the fitness of the antecedent part (the shaded part) - After applying the same steps to each rule and finding the conclusion for each rule, as shown in Figure 4 ■ Then, the maximum (MAX) of all the conclusions is taken to create Figure 4 (■), and as shown in Figure 4 (■), the value corresponding to the center of gravity of the hatched area is determined as the inference result.

このような・推論の実行は汎用のマイクロコンピュータ
やディジタル・シグナル・プロセッサを用いることによ
って、また専用のファジィ演算チップを用いても可能で
ある。
Execution of such inference is possible by using a general-purpose microcomputer or digital signal processor, or by using a dedicated fuzzy arithmetic chip.

発明の効果 以上の説明で明らかなように、速度偏差情報と速度指令
情報および加速度(’i’l報を加味して比例制ゝ 神
器の入力値および積分制御器の入力値をファジィ推論に
よって制御すると、比例ゲインおよび積分ゲインを固定
しているときに(らベサーボモータの連応性はいろいろ
の動作条件下において大幅に向上し、その実用的効果は
大きい。
Effects of the invention As is clear from the above explanation, the input value of the sacred treasure and the input value of the integral controller are controlled by proportional control by taking into account speed deviation information, speed command information, and acceleration ('i'l information). Then, when the proportional gain and integral gain are fixed, the responsiveness of the servo motor is greatly improved under various operating conditions, and its practical effects are great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のサーボモータの制御装置の
ブロック図、第2図、第3図はファジィ変数の定義を示
す模式図、第4図はファジィ推論の過程を説明するため
の模式図、第5図は従来の速度フィードバックのブロッ
ク図である。 14・・・・・・速度指令器、15・・・・・・微分器
、16・・・・・・比例制御器、17・・・・・・積分
制御器、18・・・・・・ファジィ推論器、Vo・・・
・・・速度指令信号、ε・・・・・・速度偏差。 代理人の氏名 弁理士 小鍜治明 ほか2名NMI、+
又中イ九ベノ(會い           PM 正1
又中イ立1マフ(〕し−NS  −11(ル”したν、
            ps コ三1て))L、;ζ
=れ)θ(遮り舗44!帆) Vo(蓮戻指々) 次(加il&)(41シーン 第3図
Fig. 1 is a block diagram of a servo motor control device according to an embodiment of the present invention, Figs. 2 and 3 are schematic diagrams showing the definition of fuzzy variables, and Fig. 4 is a schematic diagram for explaining the process of fuzzy inference. The schematic diagram, FIG. 5, is a block diagram of a conventional speed feedback. 14... Speed command device, 15... Differentiator, 16... Proportional controller, 17... Integral controller, 18... Fuzzy inference machine, Vo...
...Speed command signal, ε...Speed deviation. Name of agent: Patent attorney Haruaki Ogata and 2 others NMI, +
Mataka Ikubeno (Meeting PM Sho 1)
Also, neutral 1 muff () - NS -11 (ru" 1 muff ()),
ps ko31te))L, ;ζ
=Re) θ (Interruption 44! Sail) Vo (Returning fingers) Next (Kil &) (41 Scene 3rd figure)

Claims (1)

【特許請求の範囲】[Claims] 速度フィードバックループと、比例積分制御器と、ファ
ジィ推論器とを備え、ファジィ推論器は速度指令信号と
その微分値と速度偏差値とを前件部の変数入力とし、そ
の出力を上記比例積分制御器の入力に加算することを特
徴とするサーボモータの制御装置。
Equipped with a speed feedback loop, a proportional-integral controller, and a fuzzy inference device, the fuzzy inference device uses the speed command signal, its differential value, and speed deviation value as variable inputs of the antecedent part, and its output is used for the proportional-integral control described above. A servo motor control device characterized by adding to the input of a servo motor.
JP2332495A 1990-11-28 1990-11-28 Controller for servomotor Pending JPH04200285A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2332495A JPH04200285A (en) 1990-11-28 1990-11-28 Controller for servomotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2332495A JPH04200285A (en) 1990-11-28 1990-11-28 Controller for servomotor

Publications (1)

Publication Number Publication Date
JPH04200285A true JPH04200285A (en) 1992-07-21

Family

ID=18255579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2332495A Pending JPH04200285A (en) 1990-11-28 1990-11-28 Controller for servomotor

Country Status (1)

Country Link
JP (1) JPH04200285A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09192980A (en) * 1995-11-23 1997-07-29 Lg Ind Syst Co Ltd Position control device for machine tool
KR100321465B1 (en) * 1993-07-20 2002-06-20 가나이 쓰도무 Frequency control method and apparatus for inverter
CN112590765A (en) * 2020-12-22 2021-04-02 佛山仙湖实验室 Speed control method of hybrid electric vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100321465B1 (en) * 1993-07-20 2002-06-20 가나이 쓰도무 Frequency control method and apparatus for inverter
JPH09192980A (en) * 1995-11-23 1997-07-29 Lg Ind Syst Co Ltd Position control device for machine tool
CN112590765A (en) * 2020-12-22 2021-04-02 佛山仙湖实验室 Speed control method of hybrid electric vehicle
CN112590765B (en) * 2020-12-22 2022-03-01 佛山仙湖实验室 Speed control method of hybrid electric vehicle

Similar Documents

Publication Publication Date Title
Ying Theory and application of a novel fuzzy PID controller using a simplified Takagi–Sugeno rule scheme
Chen et al. Robust adaptive sliding-mode control using fuzzy modeling for an inverted-pendulum system
Berger et al. Funnel cruise control
Tatikonda et al. Control of inverted pendulum using adaptive neuro fuzzy inference structure (ANFIS)
Alouache et al. Fuzzy logic PD controller for trajectory tracking of an autonomous differential drive mobile robot (ie Quanser Qbot)
Farooq et al. Comparative analysis of zero order Sugeno and Mamdani fuzzy logic controllers for obstacle avoidance behavior in mobile robot navigation
JPH04200285A (en) Controller for servomotor
Hoshino et al. PSO training of the neural network application for a controller of the line tracing car
KR20180024240A (en) Type-2 Fuzzy Self-Tuning PID Controller for mobile robot turning
Akishita et al. Fast path planning available for moving obstacle avoidance by use of Laplace potential
Baghli et al. Design and simulation of robot manipulator position control system based on adaptive fuzzy PID controller
Kikuchi et al. Fuzzy neural network control of complex systems: a study on longitudinal vehicle control
JPH0293904A (en) Fuzzy control device
JPS61203883A (en) Servo motor control system
JPH04193085A (en) Controller of servo motor
Pour et al. Type-2 fuzzy adaptive PID controller for differential drive mobile robot: A mechatronics approach
JPH0566842A (en) Controller of servomotor
JPH0566841A (en) Controller of servomotor
JPH0561553A (en) Servo motor controller
Chand et al. Energy based stability analysis of a fuzzy roll controller design for a flexible aircraft wing
Zhang et al. Robust H∞ Fuzzy Logic Control of Intelligent Electrically Powered Wheelchair
Lubin et al. Fuzzy controller in AC servo motor drive
JPS6140616A (en) Position control system
Abro et al. Modeling, controlling & stabilization of an underactuated air-cushion vehicle (ACV)
Elaydi et al. Supervisory fuzzy control for 5 DOF robot arm