JPH04197726A - Manufacture of long fiber reinforced composite material - Google Patents

Manufacture of long fiber reinforced composite material

Info

Publication number
JPH04197726A
JPH04197726A JP2331655A JP33165590A JPH04197726A JP H04197726 A JPH04197726 A JP H04197726A JP 2331655 A JP2331655 A JP 2331655A JP 33165590 A JP33165590 A JP 33165590A JP H04197726 A JPH04197726 A JP H04197726A
Authority
JP
Japan
Prior art keywords
cooling
die section
molten
die
impregnating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2331655A
Other languages
Japanese (ja)
Inventor
Takeshi Kimura
剛 木村
Masaru Shirouchi
城内 優
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Chemical Co Ltd
Original Assignee
Aisin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Chemical Co Ltd filed Critical Aisin Chemical Co Ltd
Priority to JP2331655A priority Critical patent/JPH04197726A/en
Publication of JPH04197726A publication Critical patent/JPH04197726A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To shorten cooling time and reduce line space by a method wherein the production device of the material concerned consists of impregnating die section, in which molten resin is kept under molten stage, and cooling die section, in which the molten resin is cooled down to its melting point, so as to cool and solidify the molten resin, which is infiltrated in longer fiber bundle at the impregnating die section, at the cooling die section. CONSTITUTION:Rovings 6 of aramid fiber are respectively introduced through the through holes 32 of an introductory fitting and passed through shaft section 31, impregnating path 20, take-off path 21, second take-off path 52 and cooling die section 5 and, immediately after leaving the cooling section, taken off with a take-off. Further, simultaneously molten nylons 6, 6 are charged into impregnating die section 2. The impregnating die section 2 is heated with heater 23, while the cooling die section 5 is cooled by feeding water having room temperature in cooling water path. Thus, the rovings 6 are impregnated with molten nylon 6, 6, taken off with a take-off and cut with a pelletizer. At this time, nylon 6, 6 infiltrated in the rovings 6 is already cooled down and solidified, surely taken off and, at the same time, easily can be cut off.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、熱可塑性樹脂中に長繊維を内蔵する長繊維強
化複合材の連続的な製造方法に関するものである。
The present invention relates to a continuous method for manufacturing a long fiber reinforced composite material containing long fibers in a thermoplastic resin.

【従来の技術】[Conventional technology]

繊維強化樹脂製の成形体を射出成形などで成形する場合
には、予め樹脂中に繊維が混合されたものを用いるのが
便利である。このような成形材料、として、例えばガラ
ス繊維のチョツプドストランドなどを熱可塑性樹脂と所
定比率で混合して押し出し成形機に供給し、押し出し成
形後所定長さに切断してベレットとしたものが知られて
いる。しかしながらこのような成形材料では、押し出し
時に繊維が破損してベレット中に含まれる繊維長がさら
に短(なる。周知のように繊維強化樹脂中の繊維を短繊
維よりも長繊維にすることによって、成形体の機械的強
度や剛性が大きく向上するので、上記成形材料では成形
体の物性の向上が望めない。 そこで特公昭52−10140号公報には、熱可塑性樹
脂の溶融樹脂中に連続した長繊維を供給して同時に押し
出し、それを切断してベレットとする製造方法が開示さ
れている。この製造方法では、溶融樹脂が加圧注入され
ているダイ内を複数条の繊維束がまとめられて通過する
際に、繊維束の間隙に溶融樹脂が含浸される。これをダ
イから引き取って冷却し、切断して得たベレットを長繊
維強化複合材として使用する。
When molding a fiber-reinforced resin molded article by injection molding or the like, it is convenient to use a resin in which fibers are mixed in advance. Examples of such molding materials include chopped strands of glass fiber mixed with thermoplastic resin at a predetermined ratio, fed to an extrusion molding machine, and then cut into predetermined lengths to form pellets after extrusion molding. Are known. However, in such molding materials, the fibers are damaged during extrusion, resulting in the length of the fibers contained in the pellet becoming even shorter.As is well known, by making the fibers in the fiber-reinforced resin longer than short fibers, Since the mechanical strength and rigidity of the molded body are greatly improved, the above-mentioned molding materials cannot be expected to improve the physical properties of the molded body.Therefore, Japanese Patent Publication No. 10140/1983 discloses that continuous lengths of thermoplastic resin are added to the molten resin. A manufacturing method is disclosed in which fibers are fed, extruded simultaneously, and cut into pellets. In this manufacturing method, multiple fiber bundles are assembled in a die into which molten resin is injected under pressure. As the fiber bundle passes through, the gaps between the fiber bundles are impregnated with molten resin.This is taken out from the die, cooled, and cut into pellets, which are used as a long fiber reinforced composite material.

【発明が解決しようとする課題】[Problem to be solved by the invention]

ところで溶融樹脂が含浸した長繊維束の切断時には、溶
融樹脂が固化していることが必要である。 軟化状態であるとベレタイザによる切断が困難となるか
らである。そこで従来はダイから出た後空冷しているが
、固化までの時間が長くダイからベレタイザまでの距離
が長′く必要となって、ラインスペース面での不具合が
あった。また冷却中に樹脂表面が酸化して着色する場合
もある。 そこでダイから出た含浸長繊維を水中に導入して水冷す
ることが考えられる。しかじ含浸樹脂がナイロンなどの
場合には、吸水率が高いために、冷却後乾燥工程が必要
となって水冷による工程短縮の効果が相殺されてしまう
。 本発明はこのような事情に鑑みてなされたものであり、
工程数の増大なく冷却時間を短縮することを目的とする
By the way, when cutting a long fiber bundle impregnated with molten resin, it is necessary that the molten resin is solidified. This is because in a softened state, it becomes difficult to cut with a beletizer. Conventionally, the material is air-cooled after it comes out of the die, but it takes a long time to solidify and requires a long distance from the die to the beletizer, which causes problems in terms of line space. Furthermore, the resin surface may be oxidized and colored during cooling. Therefore, it is possible to introduce the impregnated long fibers produced from the die into water and cool them with water. If the impregnated resin is nylon or the like, it has a high water absorption rate, so a drying step is required after cooling, which cancels out the process shortening effect of water cooling. The present invention was made in view of these circumstances, and
The purpose is to shorten the cooling time without increasing the number of steps.

【課題を解決するための手段】[Means to solve the problem]

上記課題を解決する本発明の長繊維強化複合材の製造方
法は、押出機から押し出された熱可塑性樹脂の溶融樹脂
が滞留しているダイの内部に長繊維束を導入し、溶融樹
脂を長繊維束に含浸させダイの外部に引き出して長繊維
強化複合材を製造する方法において、 ダイは溶融樹脂の溶融状態を維持する含浸ダイ部と、溶
融樹脂の融点以下に冷却された冷却ダイ部とからなり、
含浸ダイ部で長繊維束に含浸した溶融樹脂を冷却ダイ部
で冷却固化させることを特徴とする。 熱可塑性樹脂としては、ポリオレフィン、ポリアミド、
ポリエステル、ポリフェニレンサルファイド、ポリアセ
タールなどの熱可塑性樹脂を従来と同様に用いることが
できる。 長繊維束としては、ガラス繊維、芳香族ポリアミド繊維
、炭素繊維、ボロン繊維などの従来公知の長繊維のロー
ビングを用いることができる。 上記熱可塑性樹脂は押出機から押し出されて溶融状態で
ダイに供給される。またダイには同時に上記長繊維束が
供給され、ダイ内で溶融樹脂が含浸される。 本発明の特色をなすダイは、含浸ダイ部と冷却ダイ部と
から構成される。含浸ダイ部は溶融樹脂の溶融状態を維
持し、通常は用いた熱可塑性樹脂の融点以上に加熱され
ている。また冷却ダイ部は用いた熱可塑性樹脂の融点以
下に冷却されている。 この冷却は水冷、油冷あるいは空冷のいずれでもよいが
、冷却効率の良さ、取扱いの容易さなどから水冷による
のが好ましい。含浸ダイ部と冷却ダイ部とは、直接的に
接していてもよいが、含浸ダイ部の熱損失及び冷却ダイ
部の冷却効率を考慮すると断熱材を介して接するように
構成することが望ましい。 冷却ダイ部で冷却固化した長繊維強化複合材は、ペレタ
イザなどで所定長さに切断されてペレットとされ、成形
材料として用いられる。
The method for manufacturing a long fiber reinforced composite material of the present invention that solves the above problems involves introducing a long fiber bundle into a die in which the molten thermoplastic resin extruded from an extruder remains, and then elongating the molten resin. In the method of manufacturing a long fiber reinforced composite material by impregnating a fiber bundle and drawing it out of a die, the die has an impregnation die section that maintains the molten state of the molten resin, and a cooling die section that is cooled to below the melting point of the molten resin. Consisting of
It is characterized in that the molten resin impregnated into the long fiber bundle in the impregnation die section is cooled and solidified in the cooling die section. Thermoplastic resins include polyolefin, polyamide,
Thermoplastic resins such as polyester, polyphenylene sulfide, and polyacetal can be used in the same manner as in the past. As the long fiber bundle, conventionally known long fiber rovings such as glass fibers, aromatic polyamide fibers, carbon fibers, and boron fibers can be used. The thermoplastic resin is extruded from an extruder and supplied to a die in a molten state. Further, the long fiber bundle is simultaneously supplied to the die and impregnated with molten resin within the die. The die that characterizes the present invention is comprised of an impregnating die section and a cooling die section. The impregnation die maintains the molten state of the molten resin and is usually heated to a temperature higher than the melting point of the thermoplastic resin used. Further, the cooling die portion is cooled to a temperature below the melting point of the thermoplastic resin used. This cooling may be done by water cooling, oil cooling, or air cooling, but water cooling is preferred because of its good cooling efficiency and ease of handling. The impregnation die section and the cooling die section may be in direct contact with each other, but in consideration of the heat loss of the impregnation die section and the cooling efficiency of the cooling die section, it is desirable to configure them so that they are in contact with each other via a heat insulating material. The long fiber reinforced composite material cooled and solidified in the cooling die section is cut into predetermined lengths using a pelletizer or the like to form pellets, which are used as a molding material.

【発明の作用及び効果】[Operation and effects of the invention]

本発明の長繊維強化複合材の製造方法では、含浸ダイ部
内で長繊維束に溶融樹脂が含浸され、次いで冷却ダイ部
内で冷却される。ここで含浸ダイ部と冷却ダイ部との温
度差を大きくすることにより、従来の空冷に比べて冷却
に要する時間を短縮することができる。またダイ内での
冷却であるので、空気と接触する確率が低減し樹脂の酸
化が防止される。なお、冷却時には樹脂の粘度が上昇す
るので引き取り時の抵抗が増大するが、本発明では長繊
維に引っ張りの力が作用するため、長繊維が耐えられる
範囲の大きな力で引き取ることができ、抵抗の増大に余
裕をもって対処することができる。 すなわち本発明の製造方法によれば、冷却時間が短縮さ
れるためラインスペースを縮小することができる。また
樹脂の酸化が防止でき外観も向上する。さらに長繊維強
化複合材の吸水もないので、乾燥工程を設ける必要もな
い。
In the method for manufacturing a long fiber reinforced composite material of the present invention, a long fiber bundle is impregnated with a molten resin in an impregnating die section, and then cooled in a cooling die section. By increasing the temperature difference between the impregnation die section and the cooling die section, the time required for cooling can be shortened compared to conventional air cooling. Furthermore, since the cooling is performed within the die, the probability of contact with air is reduced and oxidation of the resin is prevented. Note that when the resin is cooled, the viscosity of the resin increases, which increases the resistance during pulling. However, in the present invention, since a tensile force acts on the long fibers, the long fibers can be pulled with as large a force as they can withstand. It is possible to cope with the increase in the number of people with ease. That is, according to the manufacturing method of the present invention, the cooling time is shortened, so that the line space can be reduced. In addition, oxidation of the resin can be prevented and the appearance can be improved. Furthermore, since the long fiber reinforced composite material does not absorb water, there is no need to provide a drying process.

【実施例】【Example】

以下、実施例により具体的に説明する。 第1図に本実施例で用いた製造装置を示す。第1図には
プラスチック押出機の押し出し口部分が図示されている
。 押出機1(本体の図示省略)の押し出し口部分には含浸
ダイ部2が連結されている。含浸ダイ部2は押出機1の
押し出し方向に直交する方向に延びる含浸通路20をも
ち、含浸通路2oの一端には導入金具3が固定されてい
る。また含浸通路20の他端側には、中心に含浸通路2
oと連通ずる引き取り通路21をもつ凸部22が形成さ
れ、断熱材4を介して冷却ダイ部5がボルト5oで凸部
22を被覆して固定されている。この含浸ダイ部2には
ヒータ23が埋設され、加熱可能に構成されている。 導入金具3は含浸ダイ部2に固定される板状のフランジ
部30と、フランジ部3oがら突出する軸部31とから
なり、フランジ部3oから軸部31に向かい含浸通路2
oの軸方向に平行に延びる複数の貫通孔32が形成され
ている。そして図示しない供給装置から貫通孔32に長
繊維束が供給される。 断熱材4はアスベスト板から中心孔をもつ円板状に形成
され、厚さは10mmである。 冷却ダイ部5は、含浸ダイ部2に向かう地面から軸方向
に延び凸部22が嵌合する凹部51をもち、凹部51の
底から軸方向に延び引き取り通路21と同軸の第2引き
取り通路52が他端面まで賞通している。この冷却ダイ
部5には冷却水通路53が埋設され、冷却水通路53を
流れる水で冷却可能に構成されている。そして第2引き
取り通路52から出た含浸長繊維束は、直ちに図示しな
い引き取り装置で引き取られ、図示しないベレタイザで
直ちに所定長に切断されてベレットとされる。 さて、上記のように構成された装置を用い、以下のよう
に長繊維強化複合材を製造した。 まずアラミド繊維のロービング6が導入金具の貫通孔3
2からそれぞれ導入され、軸部31から出た後含浸通路
20、引き取り通路21、第2引き取り通路52を通じ
て冷却ダイ部5から出て、図示しない引き取り装置で直
ちに引き取られる。 またこれと同時に溶融した6、6ナイロンを含浸ダイ部
2に供給する。 ここで、押出機1の押し出し条件は、スクリュー回転数
95〜1105rp、フィーダー回転数20 r pm
、シリンダ温度270〜290 ’Cで行った。また引
き取り速度は5m/min、である。 そして含浸ダイ部2はヒータ23で加熱され、冷却ダイ
部5は冷却水通路に室温の水が供給されて冷却されてい
る。この時の含浸ダイ部2の温度は、含浸通路20に沿
う部分が300〜310’Cの範囲にあり、凸部22は
260〜120 ”Cの範囲にあった。また冷却ダイ部
5の温度は、全体が約60℃であった。 上記の条件でロービング6に溶融した6、6ナイロンを
含浸させ、引き取り装置で引き取ってベレタイザで切断
した。この時、ロービング6に含浸した6、6ナイロン
は既に冷却固化し、確実に引き取られるとともに容易に
切断することができた。また溶融時に空気との接触がな
いため、含浸した6、6ナイロンの酸化が防止され良好
な外観を示していた。さらに水との接触もないため、水
分の吸収もなく、乾燥工程を行う必要もない。したがっ
て従来の製造方法に比べて製造に要する時間が短縮でき
、ラインスペースも縮小された。 なお、本実施例では、含浸ダイ部2に凸部22を設けて
断熱材4から突出させ冷却ダイ部5と直接的に接触させ
ているので、凸部22には含浸通路20側から冷却ダイ
部5に向かうにつれて温度が下降する温度分布が生じる
。したがって引き取り通路21を通過する材料は徐々に
冷却されるので、急冷による内部応力の発生が防止され
、引き取り後の変形や割れなどの不具合が防止されてい
る。
Hereinafter, this will be explained in detail using examples. FIG. 1 shows the manufacturing equipment used in this example. FIG. 1 shows the extrusion opening of a plastic extruder. An impregnating die portion 2 is connected to an extrusion opening portion of an extruder 1 (main body not shown). The impregnation die section 2 has an impregnation passage 20 extending in a direction perpendicular to the extrusion direction of the extruder 1, and an introduction fitting 3 is fixed to one end of the impregnation passage 2o. Further, on the other end side of the impregnation passage 20, there is an impregnation passage 2 in the center.
A convex portion 22 having a take-up passage 21 communicating with the convex portion 21 is formed, and a cooling die portion 5 is fixed by covering the convex portion 22 with a bolt 5o via a heat insulating material 4. A heater 23 is embedded in this impregnation die part 2 and is configured to be able to heat. The introduction fitting 3 consists of a plate-shaped flange part 30 fixed to the impregnation die part 2 and a shaft part 31 that protrudes from the flange part 3o.
A plurality of through holes 32 are formed extending parallel to the axial direction of the o. Then, the long fiber bundle is supplied to the through hole 32 from a supply device (not shown). The heat insulating material 4 is formed from an asbestos plate into a disk shape with a central hole, and has a thickness of 10 mm. The cooling die section 5 has a recess 51 that extends axially from the ground toward the impregnating die section 2 and into which the convex section 22 fits, and a second take-up passage 52 that extends axially from the bottom of the recess 51 and is coaxial with the take-off passage 21 . is passed through to the other end. A cooling water passage 53 is embedded in this cooling die part 5, and is configured to be able to be cooled by water flowing through the cooling water passage 53. The impregnated long fiber bundle coming out of the second take-up passage 52 is immediately taken up by a take-up device (not shown), and immediately cut into a predetermined length by a beletizer (not shown) to form a pellet. Now, using the apparatus configured as described above, a long fiber reinforced composite material was manufactured as follows. First, the aramid fiber roving 6 is inserted into the through hole 3 of the introduction fitting.
After exiting from the shaft portion 31, they exit from the cooling die portion 5 through the impregnating passage 20, the taking-off passage 21, and the second taking-off passage 52, and are immediately taken up by a taking-off device (not shown). At the same time, molten 6,6 nylon is supplied to the impregnation die section 2. Here, the extrusion conditions of the extruder 1 are a screw rotation speed of 95 to 1105 rpm and a feeder rotation speed of 20 rpm.
, at a cylinder temperature of 270-290'C. Moreover, the take-up speed is 5 m/min. The impregnation die section 2 is heated by the heater 23, and the cooling die section 5 is cooled by supplying room temperature water to the cooling water passage. At this time, the temperature of the impregnating die part 2 was in the range of 300 to 310'C in the part along the impregnating passage 20, and in the range of 260 to 120'C in the convex part 22. The temperature of the entire roving 6 was approximately 60° C. Under the above conditions, the roving 6 was impregnated with molten 6,6 nylon, taken out by a take-up device, and cut with a beretizer.At this time, the 6,6 nylon impregnated into the roving had already cooled and solidified and could be reliably taken off and easily cut.Also, since there was no contact with air during melting, oxidation of the impregnated 6,6 nylon was prevented and it had a good appearance. Furthermore, since there is no contact with water, there is no absorption of moisture, and there is no need for a drying process.Therefore, compared to conventional manufacturing methods, the time required for manufacturing can be shortened and the line space has also been reduced. In the example, the impregnation die part 2 is provided with a convex part 22 that protrudes from the heat insulating material 4 and is brought into direct contact with the cooling die part 5. A temperature distribution is created in which the temperature decreases as the material passes through the take-up passage 21. Therefore, the material passing through the take-up passage 21 is gradually cooled, preventing the generation of internal stress due to rapid cooling, and preventing defects such as deformation and cracking after being taken off. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に用いたダイの断面図である
。 1:押出機     2:含浸ダイ部 3:導入金具    4:断熱材 5:冷却ダイ部   6:ロービング
FIG. 1 is a sectional view of a die used in an embodiment of the present invention. 1: Extruder 2: Impregnation die section 3: Introductory fitting 4: Heat insulating material 5: Cooling die section 6: Roving

Claims (1)

【特許請求の範囲】[Claims] (1)押出機から押し出された熱可塑性樹脂の溶融樹脂
が滞留しているダイの内部に長繊維束を導入し、該溶融
樹脂を該長繊維束に含浸させ該ダイの外部に引き出して
長繊維強化複合材を製造する方法において、 前記ダイは前記溶融樹脂の溶融状態を維持する含浸ダイ
部と、前記溶融樹脂の融点以下に冷却された冷却ダイ部
とからなり、該含浸ダイ部で前記長繊維束に含浸した前
記溶融樹脂を該冷却ダイ部で冷却固化させることを特徴
とする長繊維強化複合材の製造方法。
(1) A long fiber bundle is introduced into the inside of a die where the molten thermoplastic resin extruded from the extruder is retained, the long fiber bundle is impregnated with the molten resin, and the long fiber bundle is drawn out of the die and lengthened. In the method for manufacturing a fiber reinforced composite material, the die includes an impregnating die section that maintains the molten state of the molten resin, and a cooling die section that is cooled to a temperature below the melting point of the molten resin, and the impregnating die section maintains the molten state of the molten resin. A method for producing a long fiber reinforced composite material, characterized in that the molten resin impregnated into a long fiber bundle is cooled and solidified in the cooling die section.
JP2331655A 1990-11-29 1990-11-29 Manufacture of long fiber reinforced composite material Pending JPH04197726A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2331655A JPH04197726A (en) 1990-11-29 1990-11-29 Manufacture of long fiber reinforced composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2331655A JPH04197726A (en) 1990-11-29 1990-11-29 Manufacture of long fiber reinforced composite material

Publications (1)

Publication Number Publication Date
JPH04197726A true JPH04197726A (en) 1992-07-17

Family

ID=18246099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2331655A Pending JPH04197726A (en) 1990-11-29 1990-11-29 Manufacture of long fiber reinforced composite material

Country Status (1)

Country Link
JP (1) JPH04197726A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103619565A (en) * 2011-05-10 2014-03-05 赢创罗姆有限公司 Multicoloured fused deposition modelling print
EP2781342A1 (en) * 2013-03-19 2014-09-24 Eads UK Limited Extrusion-based additive manufacturing
WO2015028809A1 (en) * 2013-08-29 2015-03-05 The University Of Warwick Improvements relating to fused deposition modelling
WO2016009735A1 (en) * 2014-07-16 2016-01-21 株式会社神戸製鋼所 Manufacturing device and manufacturing method for fiber-reinforced thermoplastic resin tape
JP2016083923A (en) * 2014-07-16 2016-05-19 株式会社神戸製鋼所 Apparatus and method for manufacturing fiber-reinforced thermoplastic resin tape
WO2016146270A1 (en) * 2015-03-13 2016-09-22 Vmi Holland B.V. Extruder and method for extruding cord reinforced tire components

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103619565A (en) * 2011-05-10 2014-03-05 赢创罗姆有限公司 Multicoloured fused deposition modelling print
EP2781342A1 (en) * 2013-03-19 2014-09-24 Eads UK Limited Extrusion-based additive manufacturing
US9908145B2 (en) 2013-03-19 2018-03-06 Airbus Group Limited Extrusion-based additive manufacturing
WO2015028809A1 (en) * 2013-08-29 2015-03-05 The University Of Warwick Improvements relating to fused deposition modelling
WO2016009735A1 (en) * 2014-07-16 2016-01-21 株式会社神戸製鋼所 Manufacturing device and manufacturing method for fiber-reinforced thermoplastic resin tape
JP2016083923A (en) * 2014-07-16 2016-05-19 株式会社神戸製鋼所 Apparatus and method for manufacturing fiber-reinforced thermoplastic resin tape
WO2016146270A1 (en) * 2015-03-13 2016-09-22 Vmi Holland B.V. Extruder and method for extruding cord reinforced tire components
NL2014454B1 (en) * 2015-03-13 2016-10-14 Vmi Holland Bv Extruder and method for extruding cord reinforced tire components.
KR20170125849A (en) * 2015-03-13 2017-11-15 브이엠아이 홀랜드 비.브이. Extruder and method for extruding cord-reinforced tire components
US10814542B2 (en) 2015-03-13 2020-10-27 Vmi Holland B.V. Extruder and method for extruding cord reinforced tire components
US11420375B2 (en) 2015-03-13 2022-08-23 Vmi Holland B.V. Extruder and method for extruding cord reinforced tire components

Similar Documents

Publication Publication Date Title
US6090319A (en) Coated, long fiber reinforcing composite structure and process of preparation thereof
JPS63216732A (en) Method and device for manufacturing special-form sectional material made of thermoplastic polymer through drawing molding and product obtained through said method
EP0920971A1 (en) Screw and apparatus for plasticizing fiber-reinforced thermoplastic resins, and method and product of molding the resins
EP1105277B1 (en) Coated, long fiber reinforcing composite structure and process of preparation thereof
CA2333126C (en) Continuous-strand pellets and method and device for preparing continuous-strand pellets
JPH0371258B2 (en)
CN209851636U (en) Production equipment for continuous fiber reinforced thermoplastic composite material
EP0303499B1 (en) Preformed yarn useful for forming composite articles and process of producing same
JPH04197726A (en) Manufacture of long fiber reinforced composite material
US20120148840A1 (en) Long-fiber-reinforced polymer material and method and installation for its manufacture
JP2524941B2 (en) Continuous glass fiber reinforced thermoplastic resin pellets and method for producing the same
CN217531957U (en) Apparatus for preparing thermoplastic composite material
JP5088188B2 (en) Manufacturing method of glass fiber reinforced resin pellet
US6264746B1 (en) Cross-head die
KR101108893B1 (en) Antenna cover manufacturing apparatus and its manufacturing method
JP2001129827A (en) Long fiber pellet, and method and apparatus for manufacturing it
JPH06254850A (en) Manufacture of filament reinforced synthetic resin strand
JP2688845B2 (en) Method and apparatus for producing glass fiber-containing resin composition
JPH07310287A (en) Production of fiber-reinforced thermoplastic resin
JP2633358B2 (en) Method and apparatus for producing long fiber resin composition
JP3241435B2 (en) Fiber-reinforced thermoplastic resin composite material and method for producing the same
JPH0615647A (en) Manufacturing die of long fiber composite material
JPH0647740A (en) Continuous glass filament thermoplastic resin pellet
JPS5920339A (en) Production of master pellet of glass fiber-reinforced polyester resin
JP2902756B2 (en) Dies for the production and production of reinforced plastics