JPH04197056A - Coil insulating part of electric rotating machine - Google Patents

Coil insulating part of electric rotating machine

Info

Publication number
JPH04197056A
JPH04197056A JP32308090A JP32308090A JPH04197056A JP H04197056 A JPH04197056 A JP H04197056A JP 32308090 A JP32308090 A JP 32308090A JP 32308090 A JP32308090 A JP 32308090A JP H04197056 A JPH04197056 A JP H04197056A
Authority
JP
Japan
Prior art keywords
coil
resin
gap
insulation
slot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32308090A
Other languages
Japanese (ja)
Inventor
Takashi Tokuda
徳田 隆士
Akihiko Takahashi
昭彦 高橋
Atsushi Kataoka
片岡 篤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP32308090A priority Critical patent/JPH04197056A/en
Publication of JPH04197056A publication Critical patent/JPH04197056A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

PURPOSE:To obtain a coil insulating part in an electric rotating machine, in which trouble due to gap in and around the coil is prevented, by disposing a member, which absorbs impregnated resin and swells, at leat in the coil or around the coil. CONSTITUTION:A liner 3, i.e., a swelling laminate, absorbs resin to swell thus filling the gap at the corner of coil in a slot. Consequently, resin flow-out passage is clogged at the time of hardening to reduce the void in an insulation layer 2 thus improving insulation characteristics and reliability. Furthermore, gap is eliminated between the coil and the core slot and thereby heat dissipation performance(cooling performance) is improved and temperature rise is suppressed resulting in miniaturization of machine. Manpower in fabrication can also be reduced remarkably because a gap can be provided between a wedge 4 and the liner 3 when the coil is arranged.

Description

【発明の詳細な説明】 人 産業上の利用分野 本説明は全含浸方式を採る絶縁処理にあって、すき間を
なくした回転電機のコイル絶縁部に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This description relates to a coil insulating part of a rotating electrical machine that eliminates gaps in insulation treatment using a total impregnation method.

B 発明の概要 全含浸方式にて絶縁されるコイル絶縁部であって、コイ
ル内部の素線間、コイル間、コイル周囲に含浸樹脂を吸
収する膨潤部材を備えたことにより、すきまをなくして
、絶縁性の向上、温度上昇の低下、樹脂流出の低下等の
効果を得るものである。
B. Summary of the Invention A coil insulation part that is insulated by a full impregnation method, which eliminates gaps by providing a swelling member that absorbs impregnated resin between the wires inside the coil, between the coils, and around the coil. This provides effects such as improved insulation, reduced temperature rise, and reduced resin outflow.

C従来の技術とその1!題 回転電機コイルの絶縁処理方法の一つに、一般的に全含
浸方式と呼ばれる方法がある。
C Conventional technology and part 1! One of the methods for insulating coils of rotating electric machines is generally called the total impregnation method.

この方式は鉄心スロットに絶縁されたコイルを装着、結
線後鉄心ごと、樹、脂を真空加圧含浸、硬化するもので
、機械的、電気的、及び耐環境性に優れた特性が得られ
ることが知られている。
In this method, an insulated coil is attached to the core slot, and after wiring, the entire core is impregnated with resin under vacuum pressure and cured, resulting in excellent mechanical, electrical, and environmental resistance properties. It has been known.

特に乙の方式では加圧により含浸樹脂がくまなく浸入し
、鉄心、絶縁、導体が一体となった緻密な絶縁層が形成
されるため、熱放散性が良く、運転時の導体の温度上昇
の抑制効果が大きく、機器の小形化に寄与している。
In particular, in method B, the impregnated resin permeates thoroughly under pressure, forming a dense insulation layer that integrates the iron core, insulation, and conductor, resulting in good heat dissipation and preventing the temperature rise of the conductor during operation. It has a large suppressive effect and contributes to the miniaturization of equipment.

そして、これ等の特長を最大限に引き出すたメニは、鉄
心スロット内のコイルと、スロッー ト内壁の間は、含
浸されたままの状態でできるだけすき間のないような絶
縁構造にする必要がある。
In order to maximize these features, it is necessary to create an insulating structure that leaves as little gap as possible between the coil in the core slot and the slot inner wall while the coil remains impregnated.

しかし、現状では第7図に示されるようにスロット内の
上下のコイル導体1をライナー3を介してウェッジ4に
て押え込む構造にあって、コイル絶縁層2とライナー3
との間のコイル角部にはすき間が生じている。
However, at present, as shown in FIG. 7, the structure is such that the upper and lower coil conductors 1 in the slot are held down by a wedge 4 via a liner 3, and the coil insulating layer 2 and the liner 3 are held together by a wedge 4.
There is a gap between the corners of the coil.

しかも、最近の傾向として、作業性及びコスト上の問題
から、含浸樹脂の低粘度化及びポットライフの長いもの
が、使用されるようになった。このため、効果時に、コ
イル角部のすき間を通じて、含浸樹脂が流出してすき間
がそのまま存在することになり、絶縁特性及び、熱放散
性が悪化するケースが生じている。
Moreover, as a recent trend, impregnating resins with lower viscosity and longer pot lives have been used due to workability and cost issues. For this reason, when the coil is in effect, the impregnated resin flows out through the gap at the corner of the coil, leaving the gap as it is, resulting in cases where the insulation properties and heat dissipation properties are deteriorated.

また、コイルを固定するためウェッジ4を使用している
と同時に、現状は、ライナー3に、板上のプレスポード
、又はポリエステル系、エポキシ系、シリコン系等の樹
脂とガラス繊維、不織布等から成る積層板を使用してい
る。この場合、できるだけ、密着させるため、ウェッジ
4下のライナー3とのすき間ができないようにライナー
3を押し下げながら、ハンマリングにより打ち込んでい
る。このため、作業に熟練を要し、作業工数も多くかか
っている。
In addition, while the wedge 4 is used to fix the coil, the liner 3 is currently made of pressboard on a plate, or a laminated layer made of resin such as polyester, epoxy, silicone, glass fiber, non-woven fabric, etc. using a board. In this case, in order to achieve as close contact as possible, the liner 3 is pressed down and hammered in such a way that there is no gap between the liner 3 and the liner 3 below the wedge 4. For this reason, the work requires skill and a large number of man-hours.

また、従来ては別に樹脂の処理コストの問題がある。処
理コスト;よ、樹脂のポットライフに左右される。即ち
、ポットライフが長く、くり返し使用回数が多い程、1
台当りの処理コストは安くなる。そのため、最近では加
温しなくても、含浸可能な(加温すると、ポットライフ
が短かくなる)、低粘度で、しかも、ポットライフの長
い樹脂の研究がなされ、−部実用化されている。このよ
うな樹脂を使用した場合の問題点は、樹脂硬化過程にお
いて更に粘度が低下すること、及びポットライフを長く
すると、ゲル化時間も長くなることによる、含浸樹脂の
流出がある。含浸した樹脂が流出すると、絶縁中にボイ
ドや空隙が形成され、部分放電劣化や、機械的強度の低
下につながることは良く知らされている。このため■硬
化時に被処理物を回転させる、■樹脂が流出しないよう
にシールする方法がとられている。しかし■の方法では
、安全性及び乾燥炉の使用効率に問題があり、■の方法
では、シールを強化すればする程、含浸性が悪くなる。
In addition, there is another problem with the conventional method, which is the cost of processing the resin. Processing cost: Yes, it depends on the pot life of the resin. In other words, the longer the pot life and the more times it is used, the more
The processing cost per unit is lower. Therefore, recently, research has been carried out on resins that can be impregnated without heating (warming shortens the pot life), have low viscosity, and have a long pot life, and some of them have been put into practical use. . The problem when using such a resin is that the viscosity further decreases during the resin curing process, and when the pot life is lengthened, the gelation time is also lengthened, resulting in the outflow of the impregnated resin. It is well known that when the impregnated resin flows out, voids and voids are formed in the insulation, leading to partial discharge deterioration and a decrease in mechanical strength. For this reason, the methods of (1) rotating the object to be treated during curing and (2) sealing the resin to prevent it from flowing out are used. However, the method (2) has problems with safety and the efficiency of use of the drying oven, and with the method (2), the stronger the seal, the worse the impregnating property becomes.

従って、硬化時被処理物を回転する必要がなく、含浸性
も損なわない、絶縁方法が求められている。
Therefore, there is a need for an insulation method that does not require rotating the object to be treated during curing and does not impair impregnability.

かかる要求に応するため樹脂流出に着目した場合、その
流出径路を知ることが必要となる。高電圧固定子コイル
について検討した結果、樹脂の流出は第8図に示すよう
、スロット直線部での絶縁層2aの貫通方向への流出は
殆んどなく大部分は第9図に示す緊線1間のすき間及び
素$1と、対地絶縁2aの界面のすき間を通って、コイ
ルエンド部へ導びかれ、流出林立上り部のすき間、又は
エンド部の絶縁が、疎になっている部分から外部へ流出
していることが判った。よってこの流出径路を勘案した
流出防止が考えられる。また樹脂の流出を防止するもう
一つの有力な方法は、樹脂を短時間で硬化させることで
ある。しかし、硬化を速めるため硬化温度を高めること
は、短時間でも粘度の低下が大きくなる。そして、絶縁
層内部の樹脂の温度による膨張が大きくなることにより
、樹脂が流出し易くなってかえって逆効果になることが
判った。この結果、外部流出防止の有効な手段を見出す
ことが望まれる。
When paying attention to resin outflow in order to meet such demands, it is necessary to know the outflow route. As a result of studying the high-voltage stator coil, we found that the resin flowed out in the direction of penetrating the insulating layer 2a at the slot straight section, as shown in Figure 8, and that most of the resin flowed out in the direction of penetration of the insulating layer 2a, as shown in Figure 9. It is guided to the coil end through the gap between 1 and the gap between the element 1 and the ground insulation 2a, and from the gap in the rising part of the outflow forest or the part where the insulation at the end is sparse. It turned out that it was leaking outside. Therefore, it is possible to prevent outflow by taking this outflow route into consideration. Another effective method for preventing the resin from flowing out is to cure the resin in a short time. However, increasing the curing temperature to speed up curing results in a large decrease in viscosity even in a short period of time. It has also been found that as the temperature increases the expansion of the resin inside the insulating layer, the resin tends to flow out more easily, resulting in the opposite effect. As a result, it is desirable to find effective means to prevent leakage to the outside.

別の従来技術として、回転機の界磁の巻線方法で、絶縁
された素線導体を絶縁された鉄心に直接巻き付けるに当
っては、鉄心に組込み後鉄心毎樹脂を真空加圧含浸する
方法があり、作業性の簡便性と絶縁性能上骨れる。
Another conventional technique is to wind an insulated wire conductor directly around an insulated core in a field winding method for a rotating machine, in which each core is impregnated with resin under vacuum pressure after being assembled into the core. It is easy to work with and has excellent insulation performance.

しかし、四角形の巻型又は鉄心に素線導体を巻きつけろ
と、第10図に示すように緊線導体のスプリングバック
のため、コイル辺の中央部で、外径方向へふくらみ、鉄
心5との間にすき間が生じる。すき間が大きいと、樹脂
を真空加圧含浸しても、硬化時に樹脂が流出して、すき
間が埋まらない。すき間が生じると、コイル1と鉄心5
間の熱電導性が悪くなり、フィル導体1の温度上昇を招
く。その結果、コイル素線導体絶縁の熱劣化を早めて、
機器の寿命を縮めたりして信頼性を損ねる。
However, when the wire conductor is wound around a rectangular winding form or core, as shown in FIG. A gap is created between them. If the gap is large, even if the resin is impregnated with vacuum pressure, the resin will flow out during curing and the gap will not be filled. If a gap occurs, coil 1 and iron core 5
The thermal conductivity between the fill conductors 1 and 1 becomes poor, leading to an increase in the temperature of the fill conductor 1. As a result, the thermal deterioration of the coil wire conductor insulation is accelerated,
It shortens the life of the equipment and impairs its reliability.

また、温度上昇を抑えるためには、導体サイズを大きく
しなければならずその結果機器が大形化し経済損失が大
きい。なお、第10図にて6は鉄心絶縁である。
Furthermore, in order to suppress the temperature rise, the size of the conductor must be increased, resulting in an increase in the size of the device and a large economic loss. In addition, in FIG. 10, 6 is iron core insulation.

本発明は、す上従来例にてあげたコイル内部及びコイル
周囲のすき間の発生による弊害を防止するようにした回
転電機のコイル絶縁部の提供を目的とする。
SUMMARY OF THE INVENTION The present invention aims to provide a coil insulating section for a rotating electric machine that prevents the disadvantages caused by the generation of gaps inside and around the coil as mentioned in the prior art example.

D、  9題を解決するための手段 上述の目的を達成する本発明は、全含浸方式にて製造さ
れる回転電機のコイル絶縁部において、コイル内部及び
コイルのまわりの少なくとも一方に含浸樹脂を吸収して
lll1!する部材を配置したことを特徴とする。
D. Means for Solving Problems 9 The present invention, which achieves the above objects, absorbs impregnated resin into at least one of the inside of the coil and around the coil in the coil insulation part of a rotating electric machine manufactured by the full impregnation method. Dolll1! It is characterized by the arrangement of members that

E  作     用 まず、スロット内におけるコイル角部のすき間は、ライ
ナーとして膨潤性積層板を用いているため、含浸により
埋まることになり、すき間はなくなる。また、すき間の
MP、?lS!lはウェッジ打ち込み作業を容易とし、
工数も大幅に低減する。
E Effect First, since the swellable laminate is used as the liner, the gap between the corners of the coil in the slot is filled by impregnation, and the gap disappears. Also, the MP of the gap? lS! l facilitates wedge driving work,
The man-hours are also significantly reduced.

また、樹脂の処理コストとしてポットライフを長くする
場合にあって、検討の結果、含浸樹脂の流出を防止する
方法としては、■比較的低温で樹脂の硬化を速める方法
、■含浸性に影響を与えず効果的に、樹脂の流出径路を
シールする方法があって、前者にて;イカテープに潜在
性硬化促進剤を用いる場合、次のア〜工の条件を満たす
必要がある。
In addition, when prolonging the pot life as a cost for resin processing, we have investigated the following methods to prevent the impregnated resin from flowing out: ■ A method to speed up the curing of the resin at a relatively low temperature; There is a method of effectively sealing the resin outflow path without causing any damage. In the former case, if a latent curing accelerator is used in squid tape, the following conditions must be met.

ア 低温で含浸樹脂と反応する。A. Reacts with the impregnated resin at low temperatures.

イ マイカテープの接着剤と反応して、作業側に適した
柔軟性を失わない。
It does not react with the adhesive of the mica tape and lose its flexibility suitable for the work side.

ウ 含浸樹脂に溶出して、含浸樹脂のポットライフに影
響を与えない。
c) Will not elute into the impregnated resin and affect the pot life of the impregnated resin.

工 絶縁特性に悪影響を与えない。Does not adversely affect insulation properties.

この結果、第1表を得た。金属亜鉛系促進剤が最も適す
る。
As a result, Table 1 was obtained. Metallic zinc-based accelerators are most suitable.

第1表 硬化促進剤の種類と評価試験結果また■の方法
として、 ア 素線間すき間、及び素線と対地絶縁2aの間に例え
ば約0.5〜1.0mの板状の膨潤性コンパウンド(マ
イカ充填置駒65〜55%、Bステージ)を挿入する。
Table 1 Types of curing accelerators and evaluation test results Also, as method (①), a. A plate-shaped swellable compound with a gap of about 0.5 to 1.0 m between the wires and between the wires and the ground insulation 2a. (Mica filled piece 65-55%, B stage) is inserted.

含浸時は板状のためすき間があり、含浸性は阻害しない
が、樹脂が含浸されると、樹脂を吸収して膨潤してすき
間を埋め、シール効果がでる。
At the time of impregnation, since it is plate-shaped, there are gaps, which do not impede the impregnating property, but when impregnated with resin, it absorbs the resin and swells to fill the gaps, creating a sealing effect.

イ コイルエンド、表面層に熱収縮性のポリエステルフ
ィルムを巻回する。含浸時は、収縮がないため、テープ
間のすき間があり、含浸性を阻害しないが硬化時には、
熱により収縮して、絶縁層全体が締まり、シール効果が
でる。特に膨潤性コンパウンドと組合せると、効果が大
きくなる。
B. Wrap a heat-shrinkable polyester film around the coil end and surface layer. During impregnation, there is no shrinkage, so there are gaps between the tapes, which do not impede impregnating properties, but during curing,
It contracts due to heat, tightening the entire insulation layer and creating a sealing effect. The effect is especially great when combined with a swelling compound.

以上の検討の結果、 対地絶縁に金属亜鉛系硬化促進剤入りマイカテープを使
用する。
As a result of the above considerations, mica tape containing a metal zinc curing accelerator will be used for ground insulation.

素線間、及び素線と対地絶縁の界面に膨潤性コンパウン
ド板を挿入する。
A swellable compound plate is inserted between the wires and at the interface between the wires and the ground insulation.

コイルエンド部の表面層に熱収縮フィルムテープを巻回
する。
Wrap a heat shrink film tape around the surface layer of the coil end.

組合せにより、硬化時の含浸樹脂の流出を防止する。The combination prevents the impregnated resin from flowing out during curing.

更に、緊線導体のスプリングバックによるふくらみのす
き間防止にあっては、膨潤性絶縁シートの使用によって
鉄心とコイルとの間のすき間が埋められる。
Furthermore, in order to prevent gaps caused by bulges due to springback of the wire conductor, the gaps between the iron core and the coil can be filled by using a swellable insulating sheet.

E実施例 ここで、第1図ないし第6図を参照して本発明の詳細な
説明する。第1図(al (blは、ライナー3として
膨潤性積層板を用いた第1実施例を示しており、同図に
おいて、1はコイル導体、2はコイル絶縁層、4はウェ
ッジを示しており、第7図に示す従来技術に対応するも
のである。ライナー3である膨潤性積層板は含浸された
樹脂を吸収して膨潤するもので、スロット内のコイル角
部のすき間を第1図(b)の如く埋める作用がある。
Embodiment E The present invention will now be described in detail with reference to FIGS. 1 to 6. Figure 1 (al) shows the first embodiment in which a swellable laminate is used as the liner 3. In the figure, 1 is a coil conductor, 2 is a coil insulating layer, and 4 is a wedge. , which corresponds to the prior art shown in Fig. 7.The swellable laminate, which is the liner 3, absorbs the impregnated resin and swells. It has a filling effect as shown in b).

この結果、空間部分がなくなることにより、硬化時の樹
脂流出経路がふさがれ、その結果絶縁層2中のボイドが
少なくなり、絶縁特性が向上して信頼性が向上すると共
に、コイルと鉄心スロットとの間のすき間がなくなり、
熱放散性(冷却性)が向上し温度上昇が抑制される結果
機器の小形化ができる。また、コイルの配置に当ってウ
ェッジ4とライナー3の間にすき間を設けられることに
より、ウェッジ打込み作業が容易になり、工数も大巾に
低減できる。
As a result, by eliminating the space, the resin outflow path during curing is blocked, resulting in fewer voids in the insulating layer 2, improving insulation properties and reliability, and improving the connection between the coil and core slot. There is no gap between
Heat dissipation (cooling performance) is improved and temperature rises are suppressed, allowing equipment to be made smaller. Further, by providing a gap between the wedge 4 and the liner 3 when arranging the coil, the wedge driving operation becomes easier and the number of man-hours can be greatly reduced.

(具体例) 電線サイズ4.OX2.0の平角エナメル銅線を2並び
、12段に巻いて、直線部長、500閣の亀甲形に成形
後、集成マイカテープを主体とした絶縁を施した後、ス
ロット長400簡のモデルスロットを装着した。モデル
スロットの底部及びウェッジ下部には、それぞれ厚さ1
.0℃巾は(スロット巾−0,3wa )の膨潤性ガラ
ス積層板(イソボルタ社製ボロマットVPO747)を
配した構造とした。なお、ウェッジと、膨潤性積層板と
の間は0.5〜1.0閣のすき間を設けた。その後、エ
ポキシ系樹脂を全含浸方式により、真空加圧含浸、硬化
処理を行った。
(Specific example) Wire size 4. After winding OX2.0 rectangular enamelled copper wire in two rows and 12 tiers, forming a straight section into a 500-square tortoise shell shape, and insulating with laminated mica tape as the main material, a model slot with a slot length of 400 strips was made. was installed. The bottom of the model slot and the bottom of the wedge each have a thickness of 1
.. The structure was such that a swellable glass laminate (Boromatt VPO747 manufactured by Isovolta) with a width of 0° C. (slot width −0.3 wa) was arranged. Note that a gap of 0.5 to 1.0 mm was provided between the wedge and the swellable laminate. Thereafter, vacuum pressure impregnation and curing treatment were performed using an epoxy resin by a total impregnation method.

(比較例) 具体例にて、膨潤性ガラス積層板の替りに、エポキシガ
ラス積層板を用いた。なお、ウェッジと積層板の間はす
き間を設けず、密着させながら、ウェッジを打ち込んだ
(Comparative Example) In a specific example, an epoxy glass laminate was used instead of a swellable glass laminate. Note that the wedge was driven into the laminate while keeping the wedge and the laminate in close contact with each other without leaving a gap.

第2図に硬化の−δ−電圧特性を示す。具体例の方が、
高電圧領域での−δの立ち上がりが小さく、絶縁層のボ
イドが少ないのが判る。これに対して比較例(従来方式
)では、―δの立ち上がりが大きく、絶縁層中に多くボ
ルトが形成されており、硬化中の樹脂流出が大きいのが
判る。
Figure 2 shows the -δ-voltage characteristics of curing. The specific example is
It can be seen that the -δ rise in the high voltage region is small, and there are few voids in the insulating layer. On the other hand, in the comparative example (conventional method), the rise of -δ is large, many bolts are formed in the insulating layer, and it can be seen that there is a large amount of resin flowing out during curing.

第2表は、具体例によるコイルと比較例によるコイルを
直列に接続して、通電した時のモデルスロット中央部に
おける温度上昇値を示したものである。9℃の温度差が
あり、実施例によれば、樹脂の流出が少なく、より緻密
な絶縁層を形成することが判る。
Table 2 shows the temperature rise value at the center of the model slot when the coil according to the specific example and the coil according to the comparative example are connected in series and energized. There is a temperature difference of 9° C. According to the example, it can be seen that less resin flows out and a denser insulating layer is formed.

第2表 温度上昇試験結果 このように本実施例によれば、WIe潤性積層板を、ス
ロット底部、上下コイル間、及びウェッジ下に用いるこ
とにより次の効果を得る。
Table 2 Temperature Rise Test Results As described above, according to this example, the following effects are obtained by using the WIe wettable laminate at the bottom of the slot, between the upper and lower coils, and under the wedge.

(1)樹脂含浸後コイル角部の空間が充填され、硬化時
の樹脂流出が防止される。
(1) After resin impregnation, the spaces at the corners of the coil are filled, preventing resin from flowing out during curing.

(2)樹脂流出が防止される結果、絶縁層がより緻密と
なり、絶縁特性の向上及び熱放散性(冷却性)の向上に
つながり、機器としての信頼性が高まり、また小形化が
できる。
(2) As a result of preventing the resin from flowing out, the insulating layer becomes more dense, which leads to improved insulation properties and heat dissipation (cooling performance), which increases the reliability of the device and allows it to be made smaller.

(3)  ウェッジ下のラノナーとの間にすき間を設け
て、ウェッジの打ち込みができて作業の容易化、及び作
業時間の短縮ができた。
(3) A gap was provided between the wedge and the lanonar, making it possible to drive the wedge in, making the work easier and reducing the work time.

(4)樹脂流出が防止できる構造となるため、より低粘
度で、ポットライフの長い、含浸樹脂の適用が可能とな
り、含浸作業の向上、及び絶縁処理コストの低減ができ
る。
(4) Since the structure is such that resin outflow can be prevented, it is possible to use an impregnating resin with lower viscosity and a longer pot life, which improves impregnation work and reduces insulation treatment costs.

次に、第3図ないし第5図を参照して第2実施例を説明
する。この第2実施例は、第4図に示すようにコイル導
体1のスロット部外の緊線1間と、素線1と対地絶縁と
の界面とに膨潤性フンパウンド板7を装着する例を示し
たものである。この膨潤性コンパウンド板7は、含浸さ
れた樹脂を吸収して膨潤する板状又はパテ状の樹脂と充
填剤との混合物である。
Next, a second embodiment will be described with reference to FIGS. 3 to 5. This second embodiment is an example in which a swellable foam plate 7 is attached between the wires 1 outside the slot portion of the coil conductor 1 and at the interface between the strands 1 and the ground insulation, as shown in FIG. This is what is shown. This swellable compound plate 7 is a mixture of a resin and a filler in the form of a plate or putty that swells by absorbing the impregnated resin.

また、対地絶縁2aとしては、硬化促進剤を付与したマ
イカテープを使用する。この場合、硬化促進剤は金属亜
鉛系が好ましい。
Further, as the ground insulation 2a, mica tape to which a curing accelerator has been applied is used. In this case, the curing accelerator is preferably a metallic zinc type.

更に、コイルエンド部の表面層には熱収縮性フィルムテ
ープを巻回する。この場合のテープは、ポリエステル系
フィルムが望ましい。
Further, a heat-shrinkable film tape is wound around the surface layer of the coil end portion. The tape in this case is preferably a polyester film.

(具体例) 電線ライズ4.Ox2.Oの平角エナメル銅線を2並び
、12段に巻いて、長線部長500 wmの亀甲形のフ
ルコイルに成形した。成形する前にコイルの第3図に示
すような位置の緊線並び間に厚さ0.5m巾30mの膨
潤性コンパウンド板7を挿入した。成形後緊線並び間に
挿入した部品の外側に、同じく厚さ0.5−巾20mの
膨潤性フンパウンド板を巻き付け、その上に、循環エポ
キシ系樹脂接着剤に05g / m’になるような量の
金属亜鉛を混入して貼合せたガラス裏打集成マイカテー
プ(厚さ0.17+v+、巾25鴫をハーフラップで4
回巻回して、絶縁層を形成した。コイル表面層で、スロ
ット部の直線部に通常のポリエステルフィルムを巻回し
、コイルエンド部には、熱収縮性ポリエステルフィルム
テープを巻回した。
(Specific example) Electric wire rise 4. Ox2. O rectangular enamelled copper wire was wound in two rows in 12 stages and formed into a hexagonal full coil with a long wire length of 500 wm. Before molding, a swellable compound plate 7 having a thickness of 0.5 m and a width of 30 m was inserted between the tension wires at the positions shown in FIG. 3 of the coil. After molding, wrap a swellable foam board with a thickness of 0.5 m and a width of 20 m around the outside of the part inserted between the tension wires, and apply circulating epoxy resin adhesive on top of it to a thickness of 0.5 g/m'. Glass-backed laminated mica tape mixed with a suitable amount of metallic zinc (thickness 0.17+V+, width 25 mm, half-wrap 4
It was wound to form an insulating layer. In the coil surface layer, a normal polyester film was wound around the linear part of the slot part, and a heat-shrinkable polyester film tape was wound around the coil end part.

その後、モデルスロットを装着して、エポキシ系樹脂を
真空加圧含浸し、100℃10h+135℃16 hr
の硬化処理を行った。尚、硬化時は、最も樹脂が流出が
起り易い吊り金具8を用いた第5図に示すような姿勢で
硬化した。
After that, the model slot was installed, vacuum pressure impregnated with epoxy resin, and heated at 100℃ for 10 hours + 135℃ for 16 hours.
A hardening process was performed. Incidentally, during curing, the resin was cured in the posture shown in FIG. 5 using the hanging metal fitting 8 where resin is most likely to flow out.

く比較例−1〉 具体例にてスロット直線部も熱収縮性ポリエステルフィ
ルムを巻回した。
Comparative Example 1> In a specific example, a heat-shrinkable polyester film was also wound around the straight slot portion.

く比較例−2〉 具体例にてutl性コシコンパウンドいた。Comparative example-2> In the specific example, a utl stiffness compound was used.

く比較例−3〉 具体例にて、コイルエンド部の熱収縮性ポリエステルテ
ープの替りに通常のポリエステルテープを巻回した。
Comparative Example 3 In a specific example, a normal polyester tape was wound instead of the heat-shrinkable polyester tape at the coil end.

〈比較例−4〉 具体例にて、金属亜鉛を混入しないマイカテープの替に
通常のポリエステルテープを巻回した。
<Comparative Example 4> In a specific example, a normal polyester tape was wound instead of a mica tape containing no metallic zinc.

く比較例−5〉 具体例にて、金属亜鉛を混入しないマイカテープを使用
し、膨潤性コンパウンドを省き、熱収縮性ポリエステル
テープの替りに通常のポリエステルテープを使用した。
Comparative Example 5 In a specific example, a mica tape containing no metallic zinc was used, the swelling compound was omitted, and a normal polyester tape was used instead of the heat-shrinkable polyester tape.

以上の絶縁方法の評価として、硬化時、上側になったス
ロット部と下側になったスロット部に分けて、それぞれ
の定格電圧における△―δを第3表に示す。△―δが大
きい程、樹脂の流出量が大きいことを表わしている。
As an evaluation of the above insulation method, Table 3 shows the Δ-δ at each rated voltage for the upper slot portion and the lower slot portion during curing. The larger the value of Δ-δ, the larger the amount of resin flowing out.

第3表 絶縁方法と特性試験結果 具体例では、上側、下側のΔ―δが、はぼ同しで、旦つ
、小さいことから、殆んど樹脂の流出がなし)ことは判
る。
Table 3: Insulation method and characteristic test results In the specific example, the Δ-δ on the upper and lower sides are almost the same and both smaller, so it can be seen that there is almost no resin leakage.

この結果から判るように硬化時の樹脂流出を防止するた
めには ■ 促進剤入りマイカテープの使用 ■ 緊線間及び緊線と対地絶縁間への膨潤性コンパウン
ドの使用 ■ コイルエンド部表面層への熱収縮性フィルムの使用
の組合せが不可欠となる。
As can be seen from these results, in order to prevent the resin from flowing out during curing, ■ Use mica tape containing an accelerator ■ Use a swelling compound between the wires and between the wire and ground insulation ■ To the surface layer of the coil end The combination of use of heat-shrinkable film becomes essential.

また促進剤としては第1表から、金属亜鉛が最も適して
いる。
As shown in Table 1, metal zinc is the most suitable accelerator.

このように本実施例によれば次の効果を有する。As described above, this embodiment has the following effects.

(1)硬化時の樹脂流出防止方法が確立した乙とにより
、含浸樹脂に、低粘度でゲル化時間の遅い(ポットライ
フの長い)適用が可能になり、絶縁処理コストを大巾に
下げることができる。
(1) With the establishment of a method to prevent resin leakage during curing, it becomes possible to apply impregnated resins with low viscosity and slow gelling time (long pot life), significantly reducing insulation treatment costs. I can do it.

(2)硬化時に、回転する必要がなくなり、設備費用の
低減、安全性の向上、硬化処理効率の向上が図れる。
(2) There is no need for rotation during curing, which reduces equipment costs, improves safety, and improves curing efficiency.

(3)回転設備上の制約がなくなり、大形機への適用が
可能になる。
(3) Restrictions on rotating equipment are eliminated, allowing application to large machines.

(4)  ポットライフの長い樹脂の適用が可能になり
、従来、含浸可能な粘度を超えると廃え処分していた樹
脂が殆んど無くなり、省資源につながる。
(4) It is now possible to use resin with a long pot life, and most of the resin that was conventionally discarded once it exceeds the viscosity that can be impregnated is eliminated, leading to resource savings.

次に、第6図に示す第3実施例にあっては、素線導体の
スプリングバックのふくらみによる鉄心とコイル間のす
き間を埋めるために、鉄心絶縁6外に膨潤性絶縁シート
9を使用する。膨潤性絶縁シート9は、含浸樹脂を吸収
することによって膨潤するものでガラス繊維に少量の接
着剤を結合剤として圧縮成形しシート状としたもの(ポ
ロマットVPO74フイソボルタ社)があり、樹脂含没
後厚さが約2倍に膨潤する。乙の膨潤によって、鉄心5
とコイル1間のすき間を埋めることができる。
Next, in the third embodiment shown in FIG. 6, a swellable insulating sheet 9 is used outside the core insulation 6 to fill the gap between the core and the coil due to the springback bulge of the wire conductor. . The swellable insulating sheet 9 swells by absorbing impregnated resin, and is made into a sheet by compression molding glass fiber with a small amount of adhesive as a binder (Poromat VPO74 Fisovolta). It will swell to about twice its size. Due to the swelling of B, the iron core 5
The gap between the coil 1 and the coil 1 can be filled.

(具体例) 巾180m高さ123m鉄心長538−の交流発電機の
界磁鉄心に耐熱ナイロンパーパ(ノーメックス紙デュポ
ン社製)を主体とした絶縁を於した後、鉄心のコーナ部
を除いた四辺の絶縁表面に、厚さ1.0+w+の膨潤性
シート(ボロットVPO747)を接着剤で貼り付けた
(Specific example) After insulating the field core of an alternating current generator with a width of 180 m, a height of 123 m, and a core length of 538 cm, insulation mainly made of heat-resistant nylon paper (Nomex paper manufactured by DuPont) was applied to the four sides of the core excluding the corners. A swellable sheet (Borot VPO747) with a thickness of 1.0+w+ was attached to the insulating surface of the sample using an adhesive.

その後、導体サイズ7.5 mnX 3.Ownのエナ
メル平角銅線を鉄心に直巻き方法によす221回巻き付
けた。尚、コイル温度測定のため、界磁コイルのほぼ中
心部に熱電対を埋入した。
After that, conductor size 7.5 mnX 3. Own enameled rectangular copper wire was wound 221 times around the iron core using the direct winding method. A thermocouple was embedded almost in the center of the field coil to measure the coil temperature.

しかる後、真空加圧含浸槽の中で、鉄心ごと、エポキシ
系樹脂を真空加圧含浸処理を行い、炉中で加熱硬化させ
た。
Thereafter, the entire core was subjected to vacuum pressure impregnation treatment with epoxy resin in a vacuum pressure impregnation tank, and then heated and hardened in a furnace.

(比較例) 具体例にて膨潤性シートなし 熱放散性の硬化をみるため、実施例と比較例のそれぞれ
の製作方法で製作したコイルを直列に接続して、直流1
0 (A/m2)を通電して、それぞれの界磁コイルの
温度上昇を測定した結果を第4表に示す。
(Comparative example) In order to examine the curing of heat dissipation without a swellable sheet in a specific example, coils manufactured by the manufacturing methods of the example and comparative example were connected in series, and a direct current of 1
Table 4 shows the results of measuring the temperature rise of each field coil by applying current of 0 (A/m2).

第4表 通電時間に対するコイルの温度上昇値通電々流
DC10(A/m’) 30分後で両者を比較すると19℃の温度差が生してお
り膨潤性シートの効果が確認できた。
Table 4: Temperature rise value of coil as a function of energization time Current current DC10 (A/m') Comparing the two after 30 minutes, there was a temperature difference of 19°C, confirming the effect of the swellable sheet.

このように膨潤性シートを使用することによ リ 、 (1)鉄心とコイル間にできるすき間が充填され、その
結果熱放散性(冷却性)が著るしく改善される。
By using the swellable sheet in this way, (1) the gap between the iron core and the coil is filled, and as a result, heat dissipation (cooling) is significantly improved.

(2)冷却性が改善される結果、電流密度(A/a2)
を上げることができ、機器の小形軽量化につながる。
(2) As a result of improved cooling performance, current density (A/a2)
This can lead to smaller and lighter equipment.

(3)温度上昇が抑制される結果、熱による絶縁劣化を
少なくしてmWの長寿命化、及び信頼性の向上につなが
る。
(3) As a result of suppressing temperature rise, insulation deterioration due to heat is reduced, leading to a longer mW life and improved reliability.

F 発明の効果 以上実施例にて説明したように本発明によれば、すき間
からの樹脂流出をなくし、温度上昇を防止し、ポットラ
イフの長い樹脂を使用できる。
F. Effects of the Invention As explained in the Examples above, according to the present invention, it is possible to eliminate resin outflow from gaps, prevent temperature rise, and use resin with a long pot life.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例の断面図を示し、第1図(
a)は含浸前、第1図(blは含浸後を示す。 第2図は第1図に示す実施例におけるーδ−電圧特性線
図、第3図ないし第5図は第2実施例を示し、第3図(
alはフルコイルの構成図、第3図(b)は第3図(&
)の一部拡大図、第4図は第3図のA−A断面図、第5
図は硬化時の姿勢を示す図、第6図は第3実施例の断面
図を示し、第6図(alは含浸前、第6図(b)は含浸
後を示す。第7図〜第10図は従来例で、第7図は第1
図に対応するスロット部の構造を示す断面図、第8図は
フルコイルの樹脂流棗状態図、第9図は第8図のB−B
断面図、第10図は第6図と対応する図である。 図  中、 1はコイル導体(緊線、界磁コイル)、2.2a、2b
はコイル絶縁層、 3はライナー、 4はウェッジ1 6は鉄心絶縁、 7は膨潤性コンパウンド板、 9は膨潤性絶縁シートである。
FIG. 1 shows a sectional view of a first embodiment of the present invention, and FIG.
a) is before impregnation, FIG. 1 (bl is after impregnation). FIG. 2 is a -δ-voltage characteristic diagram for the embodiment shown in FIG. 1, and FIGS. 3 to 5 are for the second embodiment. Figure 3 (
al is a full coil configuration diagram, and Figure 3 (b) is Figure 3 (&
), Figure 4 is a sectional view taken along line A-A in Figure 3, Figure 5 is a partially enlarged view of
The figure shows the posture during curing, and FIG. 6 shows a cross-sectional view of the third embodiment. Figure 10 shows the conventional example, and Figure 7 shows the first example.
A cross-sectional view showing the structure of the slot portion corresponding to the figure, Figure 8 is a diagram of the resin flow state of the full coil, and Figure 9 is B-B in Figure 8.
The sectional view, FIG. 10, corresponds to FIG. 6. In the diagram, 1 is the coil conductor (tension wire, field coil), 2.2a, 2b
3 is a coil insulating layer, 3 is a liner, 4 is a wedge 1, 6 is an iron core insulation, 7 is a swellable compound plate, and 9 is a swellable insulating sheet.

Claims (1)

【特許請求の範囲】 全含浸方式にて製造される回転電機のコイル絶縁部にお
いて、 コイル内部及びコイルのまわりの少なくとも一方に含浸
樹脂を吸収して膨潤する部材を配置したことを特徴とす
る回転電機のコイル絶縁部。
[Scope of Claims] A coil insulating part of a rotating electric machine manufactured by a full impregnation method, characterized in that a member that absorbs impregnated resin and swells is disposed inside the coil and at least one around the coil. Coil insulation part of electrical equipment.
JP32308090A 1990-11-28 1990-11-28 Coil insulating part of electric rotating machine Pending JPH04197056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32308090A JPH04197056A (en) 1990-11-28 1990-11-28 Coil insulating part of electric rotating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32308090A JPH04197056A (en) 1990-11-28 1990-11-28 Coil insulating part of electric rotating machine

Publications (1)

Publication Number Publication Date
JPH04197056A true JPH04197056A (en) 1992-07-16

Family

ID=18150865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32308090A Pending JPH04197056A (en) 1990-11-28 1990-11-28 Coil insulating part of electric rotating machine

Country Status (1)

Country Link
JP (1) JPH04197056A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5851340A (en) * 1994-05-24 1998-12-22 Elin Energieversorgung Gmbh Process for fastening conductive bars

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5851340A (en) * 1994-05-24 1998-12-22 Elin Energieversorgung Gmbh Process for fastening conductive bars

Similar Documents

Publication Publication Date Title
JP2738572B2 (en) High voltage insulation of electrical machines
JP4893085B2 (en) Electrically insulated wire ring, fully impregnated coil and rotating electric machine using these
US6130495A (en) Supporting element for an electric winding, turbogenerator and method of producing a corona shield
US6140733A (en) Conductor winding configuration for a large electrical machine
WO2002089296A1 (en) Coil of dynamoelectric machine, and mica tape and mica sheet used to insulate this coil
US11979070B2 (en) Electrical machine coil insulation system and method
JPH04502546A (en) Conductor winding device for large rotating electric machines
JP2000510316A (en) Conductor winding structure of large electric machine
KR101699683B1 (en) High voltage stator coil with reduced power tip-up
JP2007282410A (en) Rotating electric machine, stator coil thereof, its manufacturing method, and semiconductive sheet, semiconductive tape
JPH04197056A (en) Coil insulating part of electric rotating machine
US6927342B1 (en) Insulation for electrical conductors that produces no partial discharges
US4704787A (en) Process for production of the winding of an electrical machine
JPH1028345A (en) Insulated coil of stator in high-pressure rotating machine
JP3736821B2 (en) Insulated wire ring of rotating electrical machine
JP2555690Y2 (en) Structure of insulation part of rotating electrical machine winding
JPH06225489A (en) Stator coil of high voltage rotary apparatus
JPS624937B2 (en)
JP2023092752A (en) Prepreg mica tape, rotary electric machine, and manufacturing method for rotary electric machine
JPH0576148A (en) Electric rotating machine
JP3123583B2 (en) Rotating electric machine
Nakayama Development of global vacuum pressure impregnation insulation system for turbine generators
JP3214596B2 (en) Method for manufacturing rotating electric machine insulation coil
JPS6036697B2 (en) rotating electric machine
JPH0635641Y2 (en) High voltage rotating machine winding insulation structure