JPH04196420A - Structure of semiconductor device and method of manufacturing the same - Google Patents

Structure of semiconductor device and method of manufacturing the same

Info

Publication number
JPH04196420A
JPH04196420A JP32706790A JP32706790A JPH04196420A JP H04196420 A JPH04196420 A JP H04196420A JP 32706790 A JP32706790 A JP 32706790A JP 32706790 A JP32706790 A JP 32706790A JP H04196420 A JPH04196420 A JP H04196420A
Authority
JP
Japan
Prior art keywords
film
metal
barrier metal
forming
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32706790A
Other languages
Japanese (ja)
Inventor
Kuniko Miyagawa
宮川 邦子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP32706790A priority Critical patent/JPH04196420A/en
Publication of JPH04196420A publication Critical patent/JPH04196420A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To reduce a contact resistance by forming a Ge film or a layer containing high concentration impurity of Ge, providing a barrier metal on this film and providing a metal wiring on the barrier metal. CONSTITUTION:A Ge film or a Si film 5 containing high concentration Ge is provided in the contact holes of the souce 2, drain 3 and gate 4 of an N- channel MOSFET formed on a P-type Si substrate 1. A TiN film 6 is provided as a barrier metal on this Ge film or the film containing Ge. Moreover, a Al-Ge film 7 having the melting point lower than that of Al-Si film is provided as the buried wiring on the TiN film. Thereby a contact resistance between a metal and Ge film or Si film 5 containing high concentration Ge can be lowered.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の構造及びその製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the structure of a semiconductor device and its manufacturing method.

〔従来の技術〕[Conventional technology]

高アスペクト比のコンタクトホールは、従来性われてい
るAfのスパッタではコンタクトホールの埋め込みが不
可能である。従って、キャリア濃度の高いポリシリコン
をコンタクトホールに埋め込むか、または、高融点金属
の選択埋め込みを行うことにより、コンタクトホールの
埋め込み及びコンタクト抵抗の低減化をはかってきた。
Contact holes with a high aspect ratio cannot be filled with conventional Af sputtering. Therefore, attempts have been made to fill the contact hole and reduce the contact resistance by filling the contact hole with polysilicon having a high carrier concentration or by selectively filling the contact hole with a high melting point metal.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ポリシリコンをコンタクトホールに埋め込む”方法は、
不純物濃度に固溶限界があるため、アスペクト比の高い
コンタクトホールではコンタクト抵抗が高くなる。また
、高融点金属をコンタクトホールに選択的に埋め込む方
法は、コンタクト抵抗低減には有効であるが、高融点金
属をコンタクトホール内に選択的に成長させると、St
との界面でSiと高融点金属が反応し、コンタクトホー
ルの周辺からさらに外側ヘシリサイド化した金属が拡が
って、リークの原因となっていた。このリークを防ぐな
め、バリアメタル膜を形成後に高融点金属を成長させる
方法もあるが、バリアメタルとSiの接触抵抗が高いた
め、コンタクト抵抗が高くなる問題があった。
The method of burying polysilicon into contact holes is
Since the impurity concentration has a solid solubility limit, contact holes with high aspect ratios have high contact resistance. In addition, the method of selectively burying a high melting point metal in a contact hole is effective for reducing contact resistance, but if a high melting point metal is selectively grown in a contact hole, St.
The Si reacts with the high-melting-point metal at the interface, and the hesilicided metal spreads further outward from the periphery of the contact hole, causing leakage. In order to prevent this leakage, there is a method of growing a high melting point metal after forming a barrier metal film, but there is a problem in that the contact resistance becomes high because the contact resistance between the barrier metal and Si is high.

本発明の目的は、このような問題点を解決した半導体装
置の構造及びその製造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a structure of a semiconductor device and a method of manufacturing the same that solves these problems.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体装置の構造は、 Si半導体装置のコンタクトホール上にGe膜またはG
eの不純物を高濃度に含有する層を有し、前記Ge膜ま
なはGeの不純物を高濃度に含有する層上にバリアメタ
ルを有し、前記バリアメタル上に金属配線を有すること
を特徴とする。
The structure of the semiconductor device of the present invention includes a Ge film or a G film on the contact hole of the Si semiconductor device.
a layer containing a high concentration of Ge impurities, a barrier metal on the Ge film or the layer containing a high concentration of Ge impurities, and a metal wiring on the barrier metal. do.

本発明の半導体装置の製造方法は、 コンタクトホール形成後、Ge膜を形成する工程と、前
記Ge膜上にバリアメタルの膜を形成する工程と、前記
バリアメタル上に金属膜を溶融状態で形成して配線を行
うことを特徴とする。
The method for manufacturing a semiconductor device of the present invention includes, after forming a contact hole, forming a Ge film, forming a barrier metal film on the Ge film, and forming a metal film in a molten state on the barrier metal. The feature is that wiring is performed by

また本発明の半導体装置の製造方法は、コンタクトホー
ルを形成後、バリアメタルの膜を形成する工程と、前記
バリアメタルを通してGeをイオン注入する工程と、こ
れを高温短時間アニールを行う工程と、前記バリアメタ
ル上に金属膜を溶融状態で形成して配線を行うことを特
徴とする。
Further, the method for manufacturing a semiconductor device of the present invention includes the following steps: after forming a contact hole, forming a barrier metal film, implanting Ge ions through the barrier metal, and annealing this for a short time at a high temperature. The method is characterized in that a metal film is formed in a molten state on the barrier metal to perform wiring.

〔作用〕[Effect]

Geのバンドギャップ0.66eVは、Siのバンドギ
ャップ1.12eVに比べ非常に小さいため、比抵抗も
Stに比べ約4桁低く、従来のようにコンタクトホール
に多結晶Siを埋め込んでいた場合に比べ、金属とGe
1ilまたはGeを高濃度に含有した5iWAとのコン
タクト抵抗は下がる。また、高融点金属の埋め込みのよ
うに、金属が直接に拡散層などのデバイス部分に接して
いないため、合金化を起こしてリークの原因となること
も防げる作用がある。Ge膜またはGe含有層上のバリ
アメタルは、さらにその上の配線材料となる金属膜を形
成する際の、Ge膜またはGe含有層と金属の反応を防
ぎ、リークを阻止する作用がある。上層の配線金属は、
低融点金属を基板温度を上げて堆積することにより、コ
ンタクトホールの埋め込みと平坦化を行う作用がある。
Ge's band gap of 0.66 eV is much smaller than Si's band gap of 1.12 eV, so its resistivity is about four orders of magnitude lower than that of St. In comparison, metal and Ge
The contact resistance with 1il or 5iWA containing a high concentration of Ge is reduced. Furthermore, since the metal is not in direct contact with the device parts such as the diffusion layer, as in the case of embedding a high-melting point metal, it is possible to prevent alloying from occurring and causing leakage. The barrier metal on the Ge film or the Ge-containing layer has the effect of preventing a reaction between the Ge film or the Ge-containing layer and the metal and preventing leakage when forming a metal film that is a wiring material thereon. The upper layer wiring metal is
Depositing a low melting point metal while raising the substrate temperature has the effect of filling and flattening the contact hole.

〔実施例〕〔Example〕

本発明の実施例について図を参照して説明する。 Embodiments of the present invention will be described with reference to the drawings.

第1図は、本発明の半導体装置の一実施例の断面図であ
る。
FIG. 1 is a sectional view of one embodiment of the semiconductor device of the present invention.

p形Si基板1上に形成されたnチャネルのMOSFE
Tのソース2.ドレイン3.ゲート4のコンタクトホー
ルに、膜厚500人のGeWAまたはGeを高濃度に含
んだSi層5を設けている。このGepIAまたはGe
含有層上に、厚さ200人のバリアメタルであるTiN
膜6がある。TiN膜上に、AJ−Siより低融点であ
るAjI−5%Ge膜7を埋め込み配線として設けであ
る。
N-channel MOSFE formed on p-type Si substrate 1
T's sauce 2. Drain 3. In the contact hole of the gate 4, a GeWA layer 5 having a film thickness of 500 nm or a Si layer 5 containing a high concentration of Ge is provided. This GepIA or Ge
On the containing layer, a barrier metal of TiN with a thickness of 200 mm is applied.
There is a membrane 6. An AjI-5%Ge film 7 having a lower melting point than AJ-Si is provided as a buried wiring on the TiN film.

第2図は、本発明の半導体装置のコンタクト部の一製造
方法を示す断面図である。
FIG. 2 is a cross-sectional view showing one method of manufacturing the contact portion of the semiconductor device of the present invention.

ドライエツチングであけた開口部0.8X0.8μm2
.高さ0.7μmのコンタクトホールにリンを固溶限界
まで拡散させたGe膜を、超高真空のガスソース分子線
エピタキシー(ガスソースMBE)法によりコンタクト
ホール底部に選択的に500人成長させる(第2図(a
))、ガスは水素希釈ゲルマンを用い、ECRによるク
ラッキングを行った。基板温度は600℃、ガス圧は5
 X 1O−5Torrである。
Opening 0.8x0.8μm2 by dry etching
.. A Ge film with phosphorus diffused to the solid solution limit in a contact hole with a height of 0.7 μm is selectively grown at the bottom of the contact hole using ultra-high vacuum gas source molecular beam epitaxy (gas source MBE) ( Figure 2 (a
)), hydrogen-diluted germane gas was used, and cracking was performed by ECR. Substrate temperature is 600℃, gas pressure is 5
X 1O-5Torr.

次に、スパッタによりTiN膜を1000人堆積したく
第2図(b))、このとき、ホールの側壁及び底部には
TiNが入り込みにくいため、その膜厚は約200人で
ある。その後、Geを5%含むAJ;1−Ge合金7を
1μmスパッタしたく第2図(c ) ) ’+1 A
j’−Ge合金は共晶温度がAf−Stに比べ低いため
、基板温度300℃でリフロースパッタが行えた。その
後、配線パターンを形成した。
Next, a TiN film of 1,000 layers is deposited by sputtering (FIG. 2(b)); at this time, the film thickness is about 200 layers because TiN is difficult to penetrate into the side walls and bottoms of the holes. After that, AJ; 1-Ge alloy 7 containing 5% Ge was sputtered to a thickness of 1 μm.
Since the j'-Ge alloy has a lower eutectic temperature than Af-St, reflow sputtering could be performed at a substrate temperature of 300°C. After that, a wiring pattern was formed.

゛第3図は、本発明の半導体装置のコンタクト部の別の
一製造方法を示す断面図である。
3 is a sectional view showing another method of manufacturing the contact portion of the semiconductor device of the present invention.

ドライエツチングであけた開口部0.8X O,8μm
2.高さ0.7μmのコンタクトホールにTiN6を1
000人スパッタする(第3図(a))、このときホー
ルの側壁及び底部にはTiNは約200人ついている。
Dry etched opening 0.8X O, 8μm
2. 1 layer of TiN6 in a contact hole with a height of 0.7 μm
At this time, about 200 TiN particles are attached to the side walls and bottom of the hole (FIG. 3(a)).

次にGeをTiN膜6を通してイオン注入する(第3図
(b))、このとき加速エネルギーは60keV、ドー
ス量は2.5X 1016/ cm2である。イオン注
入によるSi中の欠陥を減少し、SiサイトにGe原子
を置換させるために600℃で3時間窒素処理をする。
Next, Ge ions are implanted through the TiN film 6 (FIG. 3(b)), at which time the acceleration energy is 60 keV and the dose is 2.5×10 16 /cm 2 . Nitrogen treatment is performed at 600° C. for 3 hours to reduce defects in Si due to ion implantation and to substitute Ge atoms at Si sites.

その後さらにTiNを緻密にし、メタルのバリア効果を
向上させるために、1000℃で10秒ランプアニール
を行った。その後のAl−5%Ge7による配線工程は
、前記製造方法と同様である。
Thereafter, lamp annealing was performed at 1000° C. for 10 seconds in order to further make the TiN dense and improve the barrier effect of the metal. The subsequent wiring process using Al-5%Ge7 is the same as the manufacturing method described above.

以上の構造及び製造方法によれば、高融点材料の埋め込
みで問題になっている、Pチャネルのコンタクト抵抗も
低減することができる。また本発明はMOSFETに限
らずバイポーラトランジスタ等にも適用可能である。
According to the above structure and manufacturing method, it is also possible to reduce the contact resistance of the P channel, which is a problem when embedding a high melting point material. Furthermore, the present invention is applicable not only to MOSFETs but also to bipolar transistors and the like.

〔発明の効果〕〔Effect of the invention〕

本発明を用いれば、高アスペクト比のコンタクトホール
を埋め込むことができる上、材料自身の抵抗も低く、ま
た、金属とのオーミックコンタクトもとりやすいので、
コンタクト抵抗の低減化をはかることができる。また、
金属とソース・トレインが直接接していないため、St
基板への金属の食い込みによるリークや、金属スパイク
による接合の破壊も起こらない。よって、将来の微細デ
バイスにおいて大きな問題となるとされている、コンタ
クト抵抗増大によるデバイスの劣化を改善することがで
きる効果がある。
Using the present invention, it is possible to fill contact holes with high aspect ratios, the resistance of the material itself is low, and it is easy to make ohmic contact with metal.
Contact resistance can be reduced. Also,
Since the metal and source train are not in direct contact, St
There is no leakage due to metal digging into the board, and no damage to the bond due to metal spikes. Therefore, it is possible to improve device deterioration due to increased contact resistance, which is considered to be a major problem in future fine devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の半導体装置の一実施例の構造を示す断
面図、 第2図はその一製造方法を示す図、 第3図は別の一製造方法を示す図である。 1・・・p形Si基板 2・・・ソース 3・・・ドレイン 4・・・ゲート 5・・・Ge1lまたは高濃度Ge含有Si層6・・・
TiN膜 7・・・AJ−5%Ge配線 代理人 弁理士  岩 佐 義 幸 第 1 図 (a) (b) (C) 第2図 (C) 第3図
FIG. 1 is a cross-sectional view showing the structure of an embodiment of the semiconductor device of the present invention, FIG. 2 is a view showing one manufacturing method thereof, and FIG. 3 is a view showing another manufacturing method. 1... P-type Si substrate 2... Source 3... Drain 4... Gate 5... Ge11 or high concentration Ge-containing Si layer 6...
TiN film 7...AJ-5%Ge wiring agent Patent attorney Yoshiyuki Iwasa Figure 1 (a) (b) (C) Figure 2 (C) Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)Si半導体装置のコンタクトホール上にGe膜ま
たはGeの不純物を高濃度に含有する層を有し、前記G
e膜またはGeの不純物を高濃度に含有する層上にバリ
アメタルを有し、前記バリアメタル上に金属配線を有す
ることを特徴とする半導体装置。
(1) A Ge film or a layer containing a high concentration of Ge impurities is provided on the contact hole of the Si semiconductor device, and the
A semiconductor device comprising a barrier metal on an e-film or a layer containing a high concentration of Ge impurities, and a metal wiring on the barrier metal.
(2)コンタクトホール形成後、Ge膜を形成する工程
と、前記Ge膜上にバリアメタルの膜を形成する工程と
、前記バリアメタル上に金属膜を溶融状態で形成して配
線を行うことを特徴とする半導体装置の製造方法。
(2) After forming the contact hole, a step of forming a Ge film, a step of forming a barrier metal film on the Ge film, and a step of forming a metal film in a molten state on the barrier metal to perform wiring. A method for manufacturing a featured semiconductor device.
(3)コンタクトホールを形成後、バリアメタルの膜を
形成する工程と、前記バリアメタルを通してGeをイオ
ン注入する工程と、これを高温短時間アニールを行う工
程と、前記バリアメタル上に金属膜を溶融状態で形成し
て配線を行うことを特徴とする半導体装置の製造方法。
(3) After forming the contact hole, a step of forming a barrier metal film, a step of implanting Ge ions through the barrier metal, a step of annealing this for a short time at high temperature, and a step of forming a metal film on the barrier metal. A method of manufacturing a semiconductor device characterized by forming the semiconductor device in a molten state and performing wiring.
JP32706790A 1990-11-28 1990-11-28 Structure of semiconductor device and method of manufacturing the same Pending JPH04196420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32706790A JPH04196420A (en) 1990-11-28 1990-11-28 Structure of semiconductor device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32706790A JPH04196420A (en) 1990-11-28 1990-11-28 Structure of semiconductor device and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JPH04196420A true JPH04196420A (en) 1992-07-16

Family

ID=18194927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32706790A Pending JPH04196420A (en) 1990-11-28 1990-11-28 Structure of semiconductor device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JPH04196420A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5691571A (en) * 1994-12-28 1997-11-25 Nec Corporation Semiconductor device having fine contact hole with high aspect ratio
DE4406861B4 (en) * 1993-03-02 2005-01-20 Samsung Electronics Co., Ltd., Suwon Ohmic contact structure for a highly integrated semiconductor device and manufacturing method
US6891244B2 (en) * 2002-07-12 2005-05-10 Winbond Electronics Corporation Plug structure having low contact resistance and method of manufacturing
US7564062B2 (en) 2002-10-29 2009-07-21 Toyoda Gosei, Co., Ltd. Electrode for p-type SiC
US7750476B2 (en) 1995-12-20 2010-07-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having a reliable contact

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04192562A (en) * 1990-11-27 1992-07-10 Fujitsu Ltd Semiconductor device and its manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04192562A (en) * 1990-11-27 1992-07-10 Fujitsu Ltd Semiconductor device and its manufacture

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4406861B4 (en) * 1993-03-02 2005-01-20 Samsung Electronics Co., Ltd., Suwon Ohmic contact structure for a highly integrated semiconductor device and manufacturing method
US5691571A (en) * 1994-12-28 1997-11-25 Nec Corporation Semiconductor device having fine contact hole with high aspect ratio
CN1088912C (en) * 1994-12-28 2002-08-07 日本电气株式会社 Semiconductor device and method of manufacturing the same
US7750476B2 (en) 1995-12-20 2010-07-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having a reliable contact
US6891244B2 (en) * 2002-07-12 2005-05-10 Winbond Electronics Corporation Plug structure having low contact resistance and method of manufacturing
US7564062B2 (en) 2002-10-29 2009-07-21 Toyoda Gosei, Co., Ltd. Electrode for p-type SiC

Similar Documents

Publication Publication Date Title
US4717681A (en) Method of making a heterojunction bipolar transistor with SIPOS
KR100243286B1 (en) Method for manufacturing a semiconductor device
US5210043A (en) Process for producing semiconductor device
JPS6050920A (en) Manufacture of semiconductor device
JPH04196420A (en) Structure of semiconductor device and method of manufacturing the same
JPS63181422A (en) Formation of titanium nitride film
US5084403A (en) Method of manufacturing a semiconductor device including connecting a monocrystalline aluminum wire
JPH04320329A (en) Manufacture of semiconductor device
JPH02246159A (en) Wiring structure of semiconductor device and formation thereof
JPS6324668A (en) Semiconductor device
JPH0430421A (en) Selective metal growth method
JP2983611B2 (en) Method for manufacturing semiconductor device
JP2920912B2 (en) Method for manufacturing semiconductor device
JP2736371B2 (en) Method for manufacturing semiconductor device
JP3038875B2 (en) Method for manufacturing semiconductor device
JP2720567B2 (en) Method for manufacturing semiconductor device
JP2890550B2 (en) Method for manufacturing semiconductor device
JPH0362015B2 (en)
JPH0234930A (en) Manufacture of semiconductor device
JPH0442575A (en) Semiconductor device
JP2935732B2 (en) Method for manufacturing semiconductor device
JPH02113583A (en) Manufacture of semiconductor device
JPS62105428A (en) Manufacture of semiconductor device
JPH04299527A (en) Manufacture of semiconductor device
JPS60189221A (en) Manufacture of semiconductor device