JPH04196418A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH04196418A
JPH04196418A JP32749190A JP32749190A JPH04196418A JP H04196418 A JPH04196418 A JP H04196418A JP 32749190 A JP32749190 A JP 32749190A JP 32749190 A JP32749190 A JP 32749190A JP H04196418 A JPH04196418 A JP H04196418A
Authority
JP
Japan
Prior art keywords
film
substrate
metal
wiring
metal film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32749190A
Other languages
Japanese (ja)
Inventor
Takayuki Oba
隆之 大場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP32749190A priority Critical patent/JPH04196418A/en
Publication of JPH04196418A publication Critical patent/JPH04196418A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable stable formation of a buried contact hole and wiring films by depositing, through adsorption, a metal halide compound or organometallic compound on a substrate, forming a metal film on the substrate through reaction of the attracted material under the reducing atmosphere by applying heat, light or RF electrical power and forming a conductive film on the metal film. CONSTITUTION:A metal halide or organometallic compound is deposited, through adsorption method, on a substrate 1 to be grown and a metal film 4A is formed on the substrate 1 through reaction of the adsorbed material under the reduction atmosphere by applying heat, light or RF electrical power. Thereafter, a conductive film 5 is formed on the metal film 4A. Namely, an adsorption layer 4 consisting of several number of atoms or molecules of the source gas is formed on the substrate 1, a stable metal thin film 4A is formed utilizing chemical reduction effect as the growth surface, and a film is then formed thereon. Thereby, formation of buried contact hole and wiring film can be realized.

Description

【発明の詳細な説明】 〔概要〕 化学気相成長(CVD)法を用いた配線の形成方法に関
し。
[Detailed Description of the Invention] [Summary] This invention relates to a method for forming wiring using chemical vapor deposition (CVD).

CVD法により剥離や浸食や異常成長等のない安定した
コンタクトホールの埋込と配線膜の形成を目的とし。
The purpose is to stably fill contact holes and form wiring films using the CVD method without peeling, erosion, or abnormal growth.

1)被成長基板上に金属のノ10ゲン化物あるいは金属
の有機化合物を吸着させる工程と、該吸着物を熱、光ま
たはRF電力を加えて還元雰囲気中で反応させて該基板
上に金属膜を形成する工程と、波金属膜上に導電膜を成
膜する工程とを有するよ)に構成する。
1) A step of adsorbing a metal genide or a metal organic compound onto a substrate to be grown, and reacting the adsorbed substance in a reducing atmosphere by applying heat, light or RF power to form a metal film on the substrate. and a step of forming a conductive film on the wave metal film.

2)前記金属がW、 Ti、 Mo、 Ta、 Hf、
 Zr、 Cu、 Al。
2) The metal is W, Ti, Mo, Ta, Hf,
Zr, Cu, Al.

Auであるように構成する。It is configured to be made of Au.

3)還元ガスを被成長基板上に吸着させた後、前記の3
工程を行うように構成する。
3) After adsorbing the reducing gas onto the growth substrate, proceed as described in 3.
Configure to perform the process.

4)前記還元ガスは水素、 m、 rv、 v族元素を
含む水素化物またはハロゲン化物であるように構成する
4) The reducing gas is configured to be hydrogen, a hydride or a halide containing an element of group M, RV, or V.

〔産業上の利用分野〕[Industrial application field]

本発明は半導体装置の製造方法に係り、特にCVD法を
用いた配線の形成方法に関する。
The present invention relates to a method of manufacturing a semiconductor device, and particularly to a method of forming wiring using a CVD method.

超し]デバイスでは微細配線、上下配線間の高アスペク
トコンタクトの接続が必要となる。
Devices require fine wiring and high aspect contact connections between upper and lower wiring.

さらにこれらの配線膜を複雑な表面形状の半導体チップ
上に被覆しなければならない。
Furthermore, these wiring films must be coated on semiconductor chips with complex surface shapes.

また、配線を直接シリコン(Si)に接触させる場合は
配線物質とSiとの反応を防止することが必要である。
Furthermore, when the wiring is brought into direct contact with silicon (Si), it is necessary to prevent a reaction between the wiring material and the Si.

             計このために、 CVD法
を利用した成膜や選択成長等の埋込技術を用いる必要が
ある。
For this reason, it is necessary to use a embedding technique such as film formation using the CVD method or selective growth.

本発明は以上の要求に対応したCVD法として利用でき
る。
The present invention can be used as a CVD method that meets the above requirements.

〔従来の技術〕 従来、配線の形成はスパッタ法かあるいはCVD法によ
る選択成長が用いられていた。
[Prior Art] Conventionally, wiring has been formed by selective growth by sputtering or CVD.

特に、コンタクトホールの埋込にはタングステン(W)
等の選択CVD法が検討されている。
In particular, tungsten (W) is used to fill contact holes.
Selective CVD methods such as the following are being considered.

ところが、 CVD法による成膜では剥離や浸食や異常
成長等が発生し、リーク電流やコンタクト抵抗の増加を
生じていた。
However, when forming a film using the CVD method, peeling, erosion, abnormal growth, etc. occur, resulting in an increase in leakage current and contact resistance.

Wの異常成長は基板の結晶配列に配向したために起こる
β−Wの成長がある。通常成膜されたWはα−前である
が、β−Wは密度が小さく粗な膜質のため見掛けの成長
速度がα−前の数倍となり、このため、コンタクトホー
ルから溢れ出してしまうことになる。
Abnormal growth of W includes growth of β-W caused by orientation to the crystalline alignment of the substrate. Normally, the deposited W is before α-, but β-W has a low density and rough film quality, so the apparent growth rate is several times that of before α-, which causes it to overflow from the contact hole. become.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

したがって、従来のCVD法による場合、デバイス特性
を損なうことなく微細配線を形成することは困難であっ
た。
Therefore, when using the conventional CVD method, it is difficult to form fine wiring without impairing device characteristics.

本発明はCVD法により剥離や浸食や異常成長等のない
安定したコンタクトホールの埋込と配線膜の形成を目的
とする。
The object of the present invention is to stably fill contact holes and form interconnection films without peeling, erosion, abnormal growth, etc. by the CVD method.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題の解決は。 What is the solution to the above problem?

1)被成長基板上に金属のハロゲン化物あるいは金属の
有機化合物を吸着させる工程と、該吸着物を熱、光また
はRF電力を加えて還元雰囲気中で反応させて該基板上
に金属膜を形成する工程と、該金属膜上に導電膜を成膜
する工程とを有する半導体装置の製造方法、あるいは 2)前記金属がW、 Ti、 Mo、 Ta、 If、
 Zr、 Cu、 AI。
1) A step of adsorbing a metal halide or a metal organic compound onto a growth substrate, and forming a metal film on the substrate by reacting the adsorbed substance in a reducing atmosphere by applying heat, light, or RF power. and forming a conductive film on the metal film, or 2) the metal is W, Ti, Mo, Ta, If,
Zr, Cu, AI.

Auであることを特徴とする前記l)記載の半導体装置
の製造方法、あるいは 3)還元ガスを被成長基板上に吸着させた後、前記の3
工程を行うことを特徴とする前記1)記載の半導体装置
の製造方法、あるいは 4)前記還元ガスは水素、 I、 IV、 V族元素を
含む水素化物またはハロゲン化物であることを特徴とす
る前記3)請求項3記載の半導体装置の製造方法により
達成される。
The method for manufacturing a semiconductor device according to l) above, characterized in that Au is used, or 3) after adsorbing the reducing gas onto the growth substrate, the method described in 3 above.
1), or 4) the method for manufacturing a semiconductor device, characterized in that the reducing gas is hydrogen, a hydride or a halide containing a group I, IV, or V element; 3) Achieved by the method for manufacturing a semiconductor device according to claim 3.

〔作用〕[Effect]

本発明は前処理を行った基板上にソースガスの数原子ま
たは数分子程度の吸着層を形成し、化学的な還元作用を
利用して薄く安定な金属薄膜を形成してこれを成長表面
とし、この上に成膜を行うことにより、成長皮膜の剥離
や異常成長を防止するようにしたものである。
In the present invention, an adsorption layer of a few atoms or molecules of a source gas is formed on a pretreated substrate, and a thin and stable metal thin film is formed using chemical reduction, and this is used as a growth surface. By forming a film thereon, peeling and abnormal growth of the grown film are prevented.

この場合9例えば、基板をSiや金属とした場合。In this case 9, for example, when the substrate is made of Si or metal.

表面に酸化膜があると吸着量が少なく、また吸着状態が
弱いことから、ソースガスの圧力、基板温度を適宜に設
定することによりSiや金属面にのみ吸着させることが
できる。
If there is an oxide film on the surface, the adsorption amount is small and the adsorption state is weak, so by appropriately setting the pressure of the source gas and the substrate temperature, it is possible to make it adsorb only on Si or metal surfaces.

〔実施例〕〔Example〕

第1図(A)〜(C)は本発明の一実施例を説明する断
面図である。
FIGS. 1A to 1C are cross-sectional views illustrating an embodiment of the present invention.

図において、lはSi基板、2は絶縁膜で二酸化シリコ
ン(SiCh)膜、3はコンタクトホール14は吸着層
、 4Aは金属膜、5は埋込層、6は第2の吸着膜、 
6Aは第2の金属膜、7は配線膜である。
In the figure, l is a Si substrate, 2 is an insulating film and is a silicon dioxide (SiCh) film, 3 is a contact hole 14 is an adsorption layer, 4A is a metal film, 5 is a buried layer, 6 is a second adsorption film,
6A is a second metal film, and 7 is a wiring film.

つぎに実施例を工程順に説明する。Next, examples will be explained in order of steps.

〔第1図(A)参照〕 (1)前処理 例えば、バターニング工程での残留物を除去した後に、
つぎの(A)、(B) 2段階のプラズマ処理を行う。
[See Figure 1 (A)] (1) Pretreatment For example, after removing the residue from the buttering process,
The following two steps (A) and (B) are performed.

(A)反応ガス:  NFI/H2,5/100 SC
CM反応圧カニ  20 mTorr RF主電力:30〜60 W/cm2 処理時間:20秒 ここで、 NF、の代わりにF2を用いることもできる
(A) Reaction gas: NFI/H2, 5/100 SC
CM reaction pressure 20 mTorr RF main power: 30-60 W/cm2 Processing time: 20 seconds Here, F2 can also be used instead of NF.

(B)反応ガス:F7 反応圧カニ  50 mTorr RF主電力:100〜200 W/cm’処理時間:3
0秒 (2)吸着層4の形成 反応ガス:  Al(iC,)16)、、  53CC
Mガス圧カニ  10−7〜10−’ Torr基板温
度ニー40〜40°C 処理時間:   0.1−10秒 〔第1図(B)参照〕 (3)加熱(金属膜4Aの形成) 基板温度=240℃ この加熱は吸着層に還元反応を起こさせるために還元雰
囲気中で行う。
(B) Reaction gas: F7 Reaction pressure 50 mTorr RF main power: 100-200 W/cm' Processing time: 3
0 seconds (2) Formation of adsorption layer 4 Reactive gas: Al(iC,)16),, 53CC
M gas pressure crab 10-7~10-' Torr Substrate temperature knee 40~40°C Processing time: 0.1-10 seconds [See Figure 1 (B)] (3) Heating (formation of metal film 4A) Substrate Temperature = 240° C. This heating is performed in a reducing atmosphere in order to cause a reduction reaction in the adsorption layer.

また9反応促進のための加熱の代わりに光の照射、 R
F主電力印加等を行ってもよい。
9Instead of heating to promote the reaction, light irradiation, R
F main power may also be applied.

(4)コンタクトホールの埋込(埋込層5の形成)選択
成長の条件 反応ガス:  WFs/SiH4,5/3SCCMガス
圧カニ  30 mTorr 基板温度=240℃ (5)吸着層6の形成 反応ガス:  TiC!<、  53CCMガス圧カニ
  10−” Torr 基板温度:10〜100℃ 〔第1図(C)参照〕 (6)加熱(金属膜6Aの形成) 基板温度=200°に の加熱も吸着層に還元反応を起こさせるために還元雰囲
気中で行う。
(4) Contact hole filling (formation of buried layer 5) Selective growth conditions Reactive gas: WFs/SiH4,5/3SCCM gas pressure crab 30 mTorr Substrate temperature = 240°C (5) Formation of adsorption layer 6 Reactive gas : TiC! <, 53CCM gas pressure crab 10-” Torr Substrate temperature: 10 to 100°C [See Figure 1 (C)] (6) Heating (Formation of metal film 6A) Heating to substrate temperature = 200° also reduces the adsorption layer. It is carried out in a reducing atmosphere to allow the reaction to occur.

また1反応促進のための加熱の代わりに光の照射、 R
F主電力印加等を行ってもよい。
Also, instead of heating to promote 1 reaction, light irradiation, R
F main power may also be applied.

この金属膜6A膜はつぎのTiN成膜のための成長核と
なる。均一なTi膜ができると、 TiNの成膜特性(
膜厚分布1表面状態)が改善される。
This metal film 6A becomes a growth nucleus for the next TiN film formation. Once a uniform Ti film is formed, the film formation characteristics of TiN (
The film thickness distribution (1) surface condition) is improved.

(7) TiNの成長(図では省略) 反応ガス:  TiCl4.10 SC0MN2H4,
100SCCM ガス圧カニ  0.13〜10 Torr基板温度: 
  500〜600℃ ここで9本発明とは直接関係がないので図示を省略した
が、このTiNの成長は密着性向上と、この膜の上下の
層の反応防止用のバリア層として成長するものである。
(7) Growth of TiN (omitted in the figure) Reaction gas: TiCl4.10 SC0MN2H4,
100SCCM gas pressure crab 0.13~10 Torr substrate temperature:
500 to 600°CHere 9 Although not shown in the figure as it has no direct relation to the present invention, this TiN growth is intended to improve adhesion and to form a barrier layer for preventing reactions between the layers above and below this film. be.

(8) Alの成膜(配線膜7の形成)CVD条件 反応ガス:  Al(iCJs)s、 203CCMガ
ス圧カニ   0.5〜100 Torr基板温度:2
40℃ または、スパッタ条件 スパッタガス:Ar ガス圧カニ  10−’ Torr RF電力 :800W 以上により配線膜の形成が終わり、この膜をパターニン
グして配線を形成する。
(8) Al film formation (formation of wiring film 7) CVD conditions Reactive gas: Al(iCJs)s, 203CCM gas pressure crab 0.5-100 Torr Substrate temperature: 2
40[deg.] C. or sputtering conditions Sputtering gas: Ar Gas pressure 10-' Torr RF power: 800 W The formation of the wiring film is completed, and this film is patterned to form wiring.

上記の工程は(1)の前処理から各工程ごとの反応室間
をロードロック室で連結して(8)のAIの成膜まで基
板は大気中に取り出されることなく処理されるようにす
る。
In the above steps, the reaction chambers for each step are connected by a load lock chamber from the pretreatment in (1) to the AI film formation in (8), so that the substrate is processed without being taken out into the atmosphere. .

上記の実施例の(2)、(8)の吸着層の形成において
1反応ガスの代表例としてAI(ic4)11)、 T
iCl4を用いたが、  W、 Ti、 Mo、 Ta
、 Hf、 Zr、 Cu、 AI、 Auのハロゲン
化物かあるいは有機化合物を用いても同等の効果が得ら
れる。
In the formation of the adsorption layer in (2) and (8) of the above examples, representative examples of one reaction gas are AI(ic4)11), T
iCl4 was used, but W, Ti, Mo, Ta
, Hf, Zr, Cu, AI, Au halides or organic compounds may be used to obtain the same effect.

また、適当な温度を設定することにより、これらの金属
のシリサイド層を形成し、実施例の金属層の代わりにこ
れを用いても同等の効果がある。
Further, by setting an appropriate temperature, a silicide layer of these metals can be formed and the same effect can be obtained by using this instead of the metal layer of the embodiment.

例えば、コンタクトホール内のSi基板上にTiC1,
の薄層を吸着し、400℃に加熱してTi5itを形成
する。
For example, TiC1,
A thin layer of Ti5it is adsorbed and heated to 400°C to form Ti5it.

また、これらの金属は直接埋込層としても用いることが
できる。
Furthermore, these metals can also be used as a directly buried layer.

また、配線膜にもこれらの材料を用いることができる。Further, these materials can also be used for the wiring film.

さらに、配線膜形成に際しCVD、 PVD法の選択も
可能となる。
Furthermore, it is also possible to select between CVD and PVD methods when forming wiring films.

第2図(A)、 (B)は従来例と対比して実施例の効
果を示すデータの説明図である。。
FIGS. 2A and 2B are explanatory diagrams of data showing the effects of the embodiment in comparison with the conventional example. .

第2図(A)はW/5i(n+)およびW/5i(p”
)のコンタクト抵抗R6を示す。
Figure 2 (A) shows W/5i(n+) and W/5i(p”
) shows the contact resistance R6.

ここで、コンタクト抵抗は多数のコンタクトを直列にし
て測定した相対値で示される。
Here, the contact resistance is expressed as a relative value measured by connecting a large number of contacts in series.

この場合は、 Alの吸着を利用している。In this case, adsorption of Al is utilized.

第2図(B)はSiの浸食をλ単位で示す。FIG. 2(B) shows the Si erosion in units of λ.

図より、実施例の浸食は従来例に比し半減していること
が分かる。
From the figure, it can be seen that the erosion in the example is reduced by half compared to the conventional example.

この場合は、 WF、の吸着を利用している。In this case, adsorption of WF is utilized.

つぎに、被膜の剥離と異常成長の改善された具体例を従
来例に対比して説明する。
Next, a specific example in which film peeling and abnormal growth are improved will be explained in comparison with a conventional example.

剥離は9例えばWのCVDでは、従来例で220℃以下
では顕著であったが、実施例では1008Cでも起きな
かった。
For example, in CVD of W, peeling was noticeable at 220° C. or lower in the conventional example, but it did not occur even at 1008° C. in the example.

異常成長は前記のような形状変化をともなうため目視で
確認できる。その結果、従来例で認められた。異常成長
は、実施例では全く認められなかった。
Abnormal growth is accompanied by the above-mentioned shape change and can be visually confirmed. As a result, this was observed in the conventional example. Abnormal growth was not observed at all in the examples.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、剥離や浸食や異常
成長等のない安定したCVD法によるコンタクトホール
の埋込と配線膜の形成が可能となった。
As explained above, according to the present invention, it is possible to fill contact holes and form a wiring film by stable CVD method without peeling, erosion, abnormal growth, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)〜(C)は本発明の一実施例を説明する断
面図。 第2図(A)、(B)は従来例と対比して実施例の効果
を示すデータの説明図である。。 図において。 1はSi基板。 2は絶縁膜で5i02膜。 3はコンタクトホール。 4は吸着層。 4Aは金属膜。 5は埋込層。 6は第2の吸着膜。 6Aは第2の金属膜。 7は配線膜 (A)、      (B)         (C)
(A)            (13)寅枡伊1のf
j1果/)説明図 罫 2 ロ
FIGS. 1A to 1C are cross-sectional views illustrating an embodiment of the present invention. FIGS. 2A and 2B are explanatory diagrams of data showing the effects of the embodiment in comparison with the conventional example. . In fig. 1 is a Si substrate. 2 is an insulating film and is a 5i02 film. 3 is the contact hole. 4 is an adsorption layer. 4A is a metal film. 5 is the embedded layer. 6 is the second adsorption film. 6A is the second metal film. 7 is wiring film (A), (B) (C)
(A) (13) Toramasui 1 f
j1 result /) explanatory diagram border 2 b

Claims (1)

【特許請求の範囲】 1)被成長基板上に金属のハロゲン化物あるいは金属の
有機化合物を吸着させる工程と、該吸着物を熱、光また
はRF電力を加えて還元雰囲気中で反応させて該基板上
に金属膜を形成する工程と、 該金属膜上に導電膜を成膜する工程とを有することを特
徴とする半導体装置の製造方法。2)前記金属がW、T
i、Mo、Ta、Hf、Zr、Cu、Al、Auである
ことを特徴とする請求項1記載の半導体装置の製造方法
。 3)還元ガスを被成長基板上に吸着させた後、前記の3
工程を行うことを特徴とする請求項1記載の半導体装置
の製造方法。 4)前記還元ガスは水素、III、IV、V族元素を含む水
素化物またはハロゲン化物であることを特徴とする請求
項3記載の半導体装置の製造方法。
[Claims] 1) A step of adsorbing a metal halide or a metal organic compound onto a growth substrate, and reacting the adsorbed substance in a reducing atmosphere by applying heat, light or RF power to the substrate. A method for manufacturing a semiconductor device, comprising the steps of: forming a metal film thereon; and forming a conductive film on the metal film. 2) The metal is W, T
2. The method for manufacturing a semiconductor device according to claim 1, wherein the material is i, Mo, Ta, Hf, Zr, Cu, Al, or Au. 3) After adsorbing the reducing gas onto the growth substrate, proceed as described in 3.
2. The method of manufacturing a semiconductor device according to claim 1, further comprising the steps of: 4) The method for manufacturing a semiconductor device according to claim 3, wherein the reducing gas is hydrogen, a hydride or a halide containing a group III, IV, or V element.
JP32749190A 1990-11-28 1990-11-28 Manufacture of semiconductor device Pending JPH04196418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32749190A JPH04196418A (en) 1990-11-28 1990-11-28 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32749190A JPH04196418A (en) 1990-11-28 1990-11-28 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH04196418A true JPH04196418A (en) 1992-07-16

Family

ID=18199750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32749190A Pending JPH04196418A (en) 1990-11-28 1990-11-28 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH04196418A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6355545B1 (en) 1999-06-03 2002-03-12 Semiconductor Leading Edge Technologies, Inc. Method and apparatus for wiring, wire, and integrated circuit
WO2008053625A1 (en) * 2006-10-30 2008-05-08 Tokyo Electron Limited Method of film deposition and apparatus for treating substrate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6355545B1 (en) 1999-06-03 2002-03-12 Semiconductor Leading Edge Technologies, Inc. Method and apparatus for wiring, wire, and integrated circuit
WO2008053625A1 (en) * 2006-10-30 2008-05-08 Tokyo Electron Limited Method of film deposition and apparatus for treating substrate
JP2008112803A (en) * 2006-10-30 2008-05-15 Tokyo Electron Ltd Film forming method, and substrate processing apparatus
US7981794B2 (en) 2006-10-30 2011-07-19 Tokyo Electron Limited Film forming method and substrate processing apparatus

Similar Documents

Publication Publication Date Title
JP3094004B2 (en) Method for CVD deposition of tungsten layer on semiconductor wafer
US6399490B1 (en) Highly conformal titanium nitride deposition process for high aspect ratio structures
JPS63275114A (en) Method of forming low strain fire -resistant metal layer on substrate
WO1998028783A1 (en) Method of nucleation used in semiconductor devices
JPH05209279A (en) Metal film forming device and metal film forming method
KR100259692B1 (en) Semiconductor device manufacturing method having contact structure
JPH09186102A (en) Manufacture of semiconductor device
KR0179797B1 (en) Method of forming cu thin film with bias voltage supplied
JPH04196418A (en) Manufacture of semiconductor device
IE911059A1 (en) Process and apparatus for producing conductive layers or¹structures for circuits integrated on the very largest scale
JPH1032248A (en) Formation of tungsten film
CN109994424B (en) Method for forming titanium nitride film in contact hole structure for 28 nm and below technology node
JPH09260306A (en) Formation of thin film
KR0161889B1 (en) Formation method of wiring in semiconductor device
JP2542617B2 (en) Method for manufacturing semiconductor device
JP3149912B2 (en) Semiconductor device and method of manufacturing the same
JPH0474865A (en) Production of semiconductor
TWI833823B (en) Linerless continuous amorphous metal films
JPH0467655A (en) Semiconductor device and manufacture thereof
JPH1126582A (en) Formation of metal thin film
KR0183772B1 (en) Forming method of titanium nitride thin film
JP3263611B2 (en) Copper thin film manufacturing method, copper wiring manufacturing method
JPH07142411A (en) Deposition of thin metal film in semiconductor device
JPH03278431A (en) Manufacture of semiconductor device
KR100190076B1 (en) Metalization method for a semiconductor device