JPH04196063A - Sealed lead-acid battery - Google Patents

Sealed lead-acid battery

Info

Publication number
JPH04196063A
JPH04196063A JP2325055A JP32505590A JPH04196063A JP H04196063 A JPH04196063 A JP H04196063A JP 2325055 A JP2325055 A JP 2325055A JP 32505590 A JP32505590 A JP 32505590A JP H04196063 A JPH04196063 A JP H04196063A
Authority
JP
Japan
Prior art keywords
acid battery
unit lead
case
battery
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2325055A
Other languages
Japanese (ja)
Inventor
Ichiro Ishiyama
一郎 石山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2325055A priority Critical patent/JPH04196063A/en
Publication of JPH04196063A publication Critical patent/JPH04196063A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE:To prevent head from running away by arranging a thermal deforma tion member, which is deformed with temperature rise to pressurize a sealed unit lead-acid battery in a laminated direction, between the sealed unit lead-acid battery and a case. CONSTITUTION:A thermal deformation member 5 which is arranged between a unit lead-acid battery 1 located outside in a laminated direction and a case 4 is formed of shape memorizing alloy. The thermal deformation member 5 consists of the base 5a and the reverse section 5b in which a slit 5b1 is formed to separate the reverse section 5b in two for easy reversal and which is protruded from the surface of the base 5a to one direction into a convex form. When the reverse section 5b is heated to a preset temperature depending on the shape memorizing alloy to be used it reverses its direction protruded from the surface of the base 5a in accordance with shape memorization. In this way, as temperature rises in the case 4, the thermal deformation member 5 is deformed to pressurize the unit lead-acid battery 1 to a laminated direction, so that when heat starts running away electrolyte is filled into porosities in a negative plate to restrain the negative plate from absorbing oxygen gas. It is thus possible to restrain heat from running away.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は密閉形鉛蓄電池の改良に関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to improvements in sealed lead-acid batteries.

(従来の技術) 近年、電子機器の小形化あるいは軽量化に伴いポータプ
ル化した電子機器に使用する密閉形鉛蓄電池として、フ
ィルムパック式密閉形単位鉛蓄電池を少なくとも1個用
いた密閉型鉛蓄電池が用いられている。第5図はこの種
の密閉形鉛蓄電池の単位セルを構成するフィルムパック
式密閉形単位鉛蓄電池1(以下単に単位鉛蓄電池という
)の−例の部分拡大図である。この単位鉛蓄電池1は、
正極板及び負極板をセパレータを介して積層した電池要
素としての極板群2と、該極板群2を収納する袋状外装
体3とによって構成されている。袋状外装体3は、耐酸
性で熱容着性を有するシート状あるいはフィルム状の熱
可塑性合成樹脂で作られている。従来の密閉形鉛蓄電池
には、このような単位鉛蓄電池の少なくとも1つを剛性
を有するケース内に収納して形成したものがある。高い
電圧を得る場合には、必要な個数の単位鉛蓄電池を直列
に接続し、各単位鉛蓄電池を重合した状態でケース内に
収納している。
(Prior art) In recent years, sealed lead-acid batteries that use at least one film-pack sealed unit lead-acid battery have been developed as sealed lead-acid batteries used in portable electronic devices that have become smaller and lighter. It is used. FIG. 5 is a partially enlarged view of an example of a film-pack type sealed unit lead-acid battery 1 (hereinafter simply referred to as a unit lead-acid battery) constituting a unit cell of this type of sealed lead-acid battery. This unit lead-acid battery 1 is
It is composed of an electrode plate group 2 as a battery element in which a positive electrode plate and a negative electrode plate are laminated with a separator interposed therebetween, and a bag-like exterior body 3 that houses the electrode plate group 2. The bag-like exterior body 3 is made of a sheet-like or film-like thermoplastic synthetic resin that is acid-resistant and heat-adhesive. Some conventional sealed lead-acid batteries are formed by housing at least one of these unit lead-acid batteries in a rigid case. To obtain a high voltage, the required number of unit lead-acid batteries are connected in series, and each unit lead-acid battery is housed in a polymerized state in a case.

(発明が解決しようとする課題) この種の密閉形鉛蓄電池は、充放電が繰返されるいわゆ
るサイクル充放電用途、例えば移動用ハンディワープロ
等の電子機器の電源として使用される。しかしながらサ
イクル充放電用途で用いられる密閉形鉛蓄電池では、充
放電が繰返されると正極活物質は徐々に軟化し、正極活
物質の粒子間の結合力が低下して電池の容量が低下する
。また充放電が繰返されると負極活物質の海綿状鉛は収
縮し、粒子膨張する形態変化を起こす。充放電が繰返さ
れてこのような状態になった電池では、充電中に正極板
から酸素ガスを発生しやすくなっており、負極板は常に
酸素ガスを吸収する状態になっている。特に充電量が1
00%を超えると急激に酸素ガスが発生し始める。この
ようにして発生した酸素ガスが負極板で吸収されると、
負極板は発熱して電池の電圧が低下する。更に充電が行
われて充電電流が流れると、負極板の酸素ガス吸収はよ
り一層増加し温度が上昇する。密閉型鉛蓄電池では、こ
のように酸素ガス発生に充電電流が費やされてしまう熱
逸走現象が起きると、電池の定格容量比が低下して電池
の充放電特性が低下する問題がある。
(Problems to be Solved by the Invention) This type of sealed lead-acid battery is used for so-called cyclic charging and discharging applications in which charging and discharging are repeated, for example, as a power source for electronic devices such as portable handheld word processors. However, in sealed lead-acid batteries used for cyclic charging and discharging applications, when charging and discharging are repeated, the positive electrode active material gradually softens, the bonding force between the particles of the positive electrode active material decreases, and the battery capacity decreases. Furthermore, when charging and discharging are repeated, the spongy lead of the negative electrode active material contracts and undergoes a morphological change in which the particles expand. In a battery that is in such a state due to repeated charging and discharging, the positive electrode plate tends to generate oxygen gas during charging, and the negative electrode plate is always in a state of absorbing oxygen gas. Especially when the charge amount is 1
When it exceeds 00%, oxygen gas starts to be generated rapidly. When the oxygen gas generated in this way is absorbed by the negative electrode plate,
The negative electrode plate generates heat and the battery voltage decreases. When charging is further performed and a charging current flows, the absorption of oxygen gas by the negative electrode plate further increases and the temperature rises. In a sealed lead-acid battery, when a heat escape phenomenon occurs in which the charging current is used to generate oxygen gas, the rated capacity ratio of the battery decreases and the charge/discharge characteristics of the battery deteriorate.

(課題を解決するための手段) 本発明は、少なくとも1つのフィルムパック式密閉形単
位鉛蓄電池を剛性を有するケース内に収納してなる密閉
形鉛蓄電池を対象として、請求項1の発明では、単位鉛
蓄電池とケースとの間にケース内の温度が所定の温度ま
で上昇すると変形して単位鉛蓄電池を積層方向に加圧し
、温度が低下すると元の形状に戻る熱変形部材を配置す
る。ここで積層方向とは、単位鉛蓄電池を構成する陰極
板、陽極板を積層する方向、又は複数の単位鉛蓄電池を
積層する方向を特徴する 請求項2の発明では、該熱変形部材を、形状記憶合金又
はバイメタルから形成する。
(Means for Solving the Problems) The present invention is directed to a sealed lead-acid battery comprising at least one film pack type sealed unit lead-acid battery housed in a rigid case. A thermally deformable member is disposed between the unit lead-acid battery and the case, which deforms when the temperature inside the case rises to a predetermined temperature, pressurizes the unit lead-acid battery in the stacking direction, and returns to its original shape when the temperature drops. Here, the lamination direction is the direction in which cathode plates and anode plates constituting a unit lead-acid battery are laminated, or the direction in which a plurality of unit lead-acid batteries are laminated. Formed from memory alloy or bimetal.

(作 用) 通常の状態では、単位鉛蓄電池は、ケースによって拘束
されて積層方向に所定の加圧力で加圧されて、セパレー
タから電解液が負極板に供給されている。負極板の酸素
ガス吸収能力は、負極板に含まれる電解液の量に影響を
受ける。すなわち電解液が負極板の活物質の多孔内を満
たすならば、負極板の酸素ガス吸収を抑制できる。しか
しながらケースによる加圧では、過充電状態における酸
素ガスを抑制することはできない。そこで請求項1の発
明のように熱変形部材を配置すれば、熱逸走現象が起き
始める段階でケース内の温度が上昇すると、熱変形部材
が変形して単位鉛蓄電池を積層方向に加圧するため、熱
変形部材が発生する加圧力によりセパレータに含まれて
いる電解液を積極的に負極板の多孔内に移動させること
ができる。
(Function) In a normal state, the unit lead-acid battery is restrained by the case and pressurized with a predetermined pressure in the stacking direction, and electrolyte is supplied from the separator to the negative electrode plate. The oxygen gas absorption ability of the negative electrode plate is affected by the amount of electrolyte contained in the negative electrode plate. That is, if the electrolytic solution fills the pores of the active material of the negative electrode plate, oxygen gas absorption by the negative electrode plate can be suppressed. However, pressurization by the case cannot suppress oxygen gas in an overcharged state. Therefore, if the thermally deformable member is arranged as in the invention of claim 1, when the temperature inside the case rises at the stage where the thermal escape phenomenon starts to occur, the thermally deformable member deforms and pressurizes the unit lead-acid battery in the stacking direction. The electrolytic solution contained in the separator can be positively moved into the pores of the negative electrode plate by the pressing force generated by the thermally deformable member.

その結果、本発明によれば、熱逸走現象が発生する前に
、負極板に酸素ガス吸収の抑制に必要な電解液を補給で
きるので、熱逸走現象の発生を防止できる。
As a result, according to the present invention, it is possible to replenish the negative electrode plate with the electrolytic solution necessary for suppressing oxygen gas absorption before the thermal escape phenomenon occurs, so that the occurrence of the thermal escape phenomenon can be prevented.

また請求項2の発明のように熱変形部材を形状記憶合金
又はバイメタルから形成すると、熱変形部材が単位鉛蓄
電池を積層方向に加圧するように変形する温度の設定が
容易であるという利点がある。ちなみに−船釣には、熱
逸走現象が起き始めるおそれのある電池温度は、約50
’Cと考えられている。
Further, when the thermally deformable member is made of a shape memory alloy or a bimetal as in the invention of claim 2, there is an advantage that it is easy to set the temperature at which the thermally deformable member deforms so as to pressurize the unit lead-acid batteries in the stacking direction. . By the way - when fishing on a boat, the battery temperature at which there is a risk of heat loss occurring is approximately 50℃.
'C.

(実施例) 本発明の実施例を図面を参照して詳細に説明する。本発
明の電池は、単位鉛蓄電池とケースとの間の構成に特徴
があり、その他の部分の構成は従来の電池と同じである
。そこで第1図には、常温における単位鉛蓄電池とケー
スとの間の構成を概略的に示しである。図において1・
・・は第5図に示した公知のフィルムパック式密閉形単
位鉛蓄電池であり、本実施例の電池では直列接続された
複数の単位鉛蓄電池1・・・が積層又は重合されてケー
ス4内に収納されている。ケース4は、合成樹脂製ケー
ス又は金属製ケースからなり、単位鉛蓄電池を積層方向
に加圧できるように十分な剛性を有している。5は積層
方向外側に位置する単位鉛蓄電池1とケース4との間に
配置された熱変形部材であり、本実施例ではこの熱変形
部材5を形状記憶合金から構成している。第2図は形状
記憶合金により形成した熱変形部材5を正面から見た図
である。図に示されるように、熱変形部材5は基体部5
aと反転部5bとから構成され、反転部5bには反転が
容易に行えるように反転部5bを1分するスリット5b
lが形成されている。反転部5bは基体部5aの表面か
ら一方向に凸状に突出している。この反転部5bは、使
用する形状記憶合金によって決まる所定の温度まで加熱
されると、形状記憶に基づいて基体部5aの表面からの
突出方向を反転する。本実施例の電池では熱逸走現象が
起き始める温度(50℃)で反転部5bが反転するよう
に熱変形部材5の材料が選定されている。
(Example) An example of the present invention will be described in detail with reference to the drawings. The battery of the present invention is characterized by the structure between the unit lead-acid battery and the case, and the structure of other parts is the same as that of conventional batteries. Therefore, FIG. 1 schematically shows the structure between a unit lead-acid battery and a case at room temperature. In the figure 1.
... is a known film-pack type sealed unit lead-acid battery shown in FIG. It is stored in. The case 4 is made of a synthetic resin case or a metal case, and has sufficient rigidity to be able to pressurize the unit lead-acid batteries in the stacking direction. Reference numeral 5 denotes a thermally deformable member disposed between the unit lead-acid battery 1 and the case 4 located on the outer side in the stacking direction, and in this embodiment, the thermally deformable member 5 is made of a shape memory alloy. FIG. 2 is a front view of the thermally deformable member 5 formed of a shape memory alloy. As shown in the figure, the thermally deformable member 5 has a base portion 5
a and a reversing part 5b, and the reversing part 5b has a slit 5b that divides the reversing part 5b into one part so that reversing can be easily performed.
l is formed. The inverted portion 5b protrudes convexly in one direction from the surface of the base portion 5a. When this reversing portion 5b is heated to a predetermined temperature determined by the shape memory alloy used, it reverses the direction of protrusion from the surface of the base portion 5a based on shape memory. In the battery of this embodiment, the material of the thermally deformable member 5 is selected so that the inversion part 5b is inverted at the temperature (50° C.) at which the thermal escape phenomenon begins to occur.

本実施例では、熱変形前の反転部5bを収容する空間を
確保するために、ケース4の内部に熱変形部材5の基体
部5aの周囲と当接する段部4aを備えている。
In this embodiment, in order to secure a space for accommodating the inverted portion 5b before thermal deformation, the case 4 is provided with a stepped portion 4a that comes into contact with the periphery of the base portion 5a of the thermally deformable member 5.

第3図は電池を使用してケース内の温度が50℃に達し
て熱逸走現象が起き始めるときの状態を示した図である
。図に示されるように反転部5bは基体部5aの表面か
らの突出方向を反転し、単位鉛蓄電池1・・・を積層方
向(矢印P)に加圧する。
FIG. 3 is a diagram showing the state when the temperature inside the case reaches 50° C. and the thermal escape phenomenon begins to occur when the battery is used. As shown in the figure, the reversing portion 5b reverses the direction of protrusion from the surface of the base portion 5a, and pressurizes the unit lead-acid batteries 1 in the stacking direction (arrow P).

この加圧により単位鉛蓄電池1内のセパレータに含まれ
ている電解液は負極板の多孔内に移動する。
Due to this pressurization, the electrolytic solution contained in the separator in the unit lead-acid battery 1 moves into the pores of the negative electrode plate.

そして負極板は十分に電解液を含むようになり、負極板
の酸素ガス吸収は抑制される。
Then, the negative electrode plate comes to sufficiently contain the electrolyte, and absorption of oxygen gas by the negative electrode plate is suppressed.

本発明の効果を確認するために、500mAの単位鉛蓄
電池を6個作成してケース内に収容し、実施例の電池と
同様に単位鉛蓄電池とケースとの間に熱変形部材を配置
した本発明の電池Aと、この電池Aと同じ単電池群を有
するが、熱変形部材を有しない従来の電池Bとをそれぞ
れ製造した。そして各電池に下記の条件で放電と充電と
を繰り返して本発明の電池Aの充放電特性を調べた。
In order to confirm the effects of the present invention, six 500 mA unit lead-acid batteries were made and housed in a case, and a thermally deformable member was placed between the unit lead-acid batteries and the case in the same way as the batteries in the example. A battery A of the invention and a conventional battery B having the same cell group as this battery A but without a thermally deformable member were manufactured. Then, each battery was repeatedly discharged and charged under the following conditions to examine the charging and discharging characteristics of Battery A of the present invention.

放電 : 0.17CA、時間: 4hr充電 :0.
3CA、  カット電圧:2.45V/cell(放電
量の120%充電) 液温 25°C 第4図は上記条件で測定した各電池の充放電特性を表し
た図であり、本図では充放電回数を横軸に表し、定格容
量比を縦軸に表している。図において曲線Aは本発明の
電池Aの特性曲線であり、曲線Bは従来の電池Bの特性
曲線である。本図より従来の電池Bが約340回の充放
電回数で定格容量比75に低下しているのに対して、本
発明の電池Aは約500回の充放電回数でも定格容量比
75までしか低下しないのが判る。このように本発明の
電池によれば、大幅に充放電特性を向上させることがで
きる。
Discharge: 0.17CA, time: 4hr Charging: 0.
3CA, cut voltage: 2.45V/cell (charging at 120% of discharge amount), liquid temperature: 25°C. Figure 4 shows the charge/discharge characteristics of each battery measured under the above conditions. The horizontal axis represents the number of times, and the rated capacity ratio is represented on the vertical axis. In the figure, curve A is the characteristic curve of battery A of the present invention, and curve B is the characteristic curve of conventional battery B. This figure shows that conventional battery B has a rated capacity ratio of 75 after about 340 charging and discharging cycles, while battery A of the present invention only reaches a rated capacity ratio of 75 even after about 500 charging and discharging cycles. It can be seen that it does not decrease. As described above, according to the battery of the present invention, the charging and discharging characteristics can be significantly improved.

尚、上記実施例の電池では熱変形部材を形状記憶合金を
用いて形成しているが、熱変形部材をバイメタル等のよ
うに温度の相違によって形状を変えるその他の熱変形材
料で構成してもよいのは勿論である。また熱変形部材の
形状は実施例に限定されるものではなく、熱変形後に熱
変形前よりも大きな力で単位鉛蓄電池を積層方向に加圧
することができる形状であればいかなる形状であっても
よい。
In the battery of the above embodiment, the thermally deformable member is formed using a shape memory alloy, but the thermally deformable member may also be formed of other thermally deformable materials such as bimetals that change shape depending on temperature differences. Of course it's good. Furthermore, the shape of the thermally deformable member is not limited to the example, and may be any shape as long as it can press the unit lead-acid battery in the stacking direction with a greater force after thermally deformed than before thermally deformed. good.

また本実施例の電池では単電池群の片側とケースとの間
に熱変形部材を配置したが、単電池群の両側に熱変形部
材を配置して単位鉛蓄電池を両側から積層方向に加圧し
ても構わないのは勿論のことである。
In addition, in the battery of this example, a thermally deformable member was placed between one side of the cell group and the case, but thermally deformable members were placed on both sides of the cell group and the unit lead-acid battery was pressurized from both sides in the stacking direction. Of course, it is okay to do so.

(本発明の効果) 請求項1の発明によれば、熱逸走現象が起き始める温度
までケース内の温度が上昇すると、熱変形部材が変形し
て単位鉛蓄電池を積層方向に加圧するため、熱逸走現象
が起き始めるときに負極板の多孔内に電解液を満たすこ
とができ、負極板の酸素ガス吸収を抑制することができ
る。したがって、本発明によれば熱逸走状態を抑制して
、電池の充放電特性を向上させることが可能となる。
(Effects of the present invention) According to the invention of claim 1, when the temperature inside the case rises to a temperature at which a heat escape phenomenon begins to occur, the thermally deformable member deforms and pressurizes the unit lead-acid batteries in the stacking direction. When the escape phenomenon starts to occur, the electrolytic solution can be filled into the pores of the negative electrode plate, and oxygen gas absorption by the negative electrode plate can be suppressed. Therefore, according to the present invention, it is possible to suppress the thermal escape state and improve the charging and discharging characteristics of the battery.

また請求項2の発明によれば熱変形部材を形状記憶合金
又はバイメタルから形成するため、熱変形部材が単位鉛
蓄電池を積層方向に加圧するように変形する温度を正確
に設定することができる。
Further, according to the second aspect of the invention, since the thermally deformable member is formed from a shape memory alloy or a bimetal, the temperature at which the thermally deformable member deforms so as to pressurize the unit lead-acid battery in the stacking direction can be accurately set.

したがって、熱逸走状態をより確実に抑制して、電池の
充放電特性を向上させることが可能となる。
Therefore, it becomes possible to suppress the thermal escape state more reliably and improve the charging and discharging characteristics of the battery.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の電池の正常状態における単
位鉛蓄電池とケースとの間の構成を示した概略図、第2
図は第1図の実施例で使用される熱変形部材の正面図、
第3図はケース内の温度が上昇したときの第1図の実施
例の単位鉛蓄電池とケースとの間の構成を示した概略図
、第4図は本発明の実施例の電池と従来の電池の充放電
特性を測定した図、第5図はフィルムパック式単位鉛蓄
電池の一部切り欠き部分拡大図である。 1・・・フィルムパック式単位鉛蓄電池、2・・・極板
群、3・・・袋状外装体、4・・・ケース、5・・・熱
変形部材ElmB、別忍
FIG. 1 is a schematic diagram showing the structure between a unit lead-acid battery and a case in a normal state of a battery according to an embodiment of the present invention, and FIG.
The figure is a front view of the thermally deformable member used in the embodiment of Fig. 1;
FIG. 3 is a schematic diagram showing the structure between the unit lead-acid battery of the embodiment of FIG. 1 and the case when the temperature inside the case increases, and FIG. FIG. 5, which is a diagram showing the measurement of the charging and discharging characteristics of the battery, is an enlarged partially cutaway view of a film pack type unit lead-acid battery. DESCRIPTION OF SYMBOLS 1... Film pack type unit lead-acid battery, 2... Plate group, 3... Bag-like exterior body, 4... Case, 5... Heat deformable member ElmB, Betsunin

Claims (2)

【特許請求の範囲】[Claims] (1)少なくとの1つのフィルムパック式密閉形単位鉛
蓄電池を剛性を有するケース内に収納してなる密閉形鉛
蓄電池において、 前記密閉形単位鉛蓄電池と前記ケースとの間に、前記ケ
ース内の温度が所定の温度まで上昇すると変形して前記
密閉形単位鉛蓄電池を積層方向に加圧し、温度が低下す
ると元の形状に戻る熱変形部材を配置したことを特徴と
する密閉形鉛蓄電池。
(1) In a sealed lead-acid battery in which at least one film-pack type sealed unit lead-acid battery is housed in a rigid case, between the sealed unit lead-acid battery and the case, the inside of the case A sealed lead-acid battery, characterized in that a thermally deformable member is disposed that deforms when the temperature of the unit rises to a predetermined temperature to pressurize the sealed unit lead-acid battery in the stacking direction, and returns to its original shape when the temperature falls.
(2)前記熱変形部材は、形状記憶合金又はバイメタル
から形成されている請求項1に記載の密閉形鉛蓄電池。
(2) The sealed lead-acid battery according to claim 1, wherein the thermally deformable member is formed of a shape memory alloy or a bimetal.
JP2325055A 1990-11-27 1990-11-27 Sealed lead-acid battery Pending JPH04196063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2325055A JPH04196063A (en) 1990-11-27 1990-11-27 Sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2325055A JPH04196063A (en) 1990-11-27 1990-11-27 Sealed lead-acid battery

Publications (1)

Publication Number Publication Date
JPH04196063A true JPH04196063A (en) 1992-07-15

Family

ID=18172649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2325055A Pending JPH04196063A (en) 1990-11-27 1990-11-27 Sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JPH04196063A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0700109A1 (en) * 1994-08-23 1996-03-06 Canon Kabushiki Kaisha A battery and a method for the manufacture of such a battery
EP0834933A1 (en) * 1996-10-03 1998-04-08 Saft Electrochemical generator with device for inserting and holding a group of electrodes

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0700109A1 (en) * 1994-08-23 1996-03-06 Canon Kabushiki Kaisha A battery and a method for the manufacture of such a battery
US5800939A (en) * 1994-08-23 1998-09-01 Canon Kabushiki Kaisha Battery and method for the manufacture of such a battery
EP0834933A1 (en) * 1996-10-03 1998-04-08 Saft Electrochemical generator with device for inserting and holding a group of electrodes
FR2754393A1 (en) * 1996-10-03 1998-04-10 Accumulateurs Fixes DEVICE FOR INTRODUCING AND HOLDING AN ELECTRODES BEAM IN AN ELECTROCHEMICAL GENERATOR CONTAINER

Similar Documents

Publication Publication Date Title
JP4186500B2 (en) Module with flat secondary battery
US4452867A (en) Storage battery containing voltage reducing means
KR100194913B1 (en) Unit battery of sealed alkaline battery
JPH0756810B2 (en) Sealed lead acid gas recombined storage battery
US6060198A (en) Electrochemical battery structure and method
JP2003203615A (en) Module
JPH08509835A (en) Sealed rechargeable battery
JP2993069B2 (en) Sealed battery pack
KR101539788B1 (en) Battery case and Pouch type secondary battery
JPH04196063A (en) Sealed lead-acid battery
JP3474919B2 (en) Stacked sealed nickel-hydride battery
JP3383210B2 (en) Open industrial storage battery with maintenance-free alkaline electrolyte
US3463673A (en) Electrochemical coulometer and method of forming same
JP3670838B2 (en) Square sealed alkaline storage battery
JPH11121029A (en) Open storage battery for industry requiring no maintenance
JP2002324568A (en) Cell having a plurality of wound pole plates
JPH0821372B2 (en) Sealed lead acid battery
CN110444722A (en) Battery cell and battery pack and battery component
CN220856728U (en) Battery pack
JPH04296464A (en) Sealed-type lead-acid battery
US3457111A (en) Alkaline storage battery with be(oh)2 in the electrolyte
JP2751407B2 (en) Liquid fuel cell
JPS6266557A (en) Jar of lead-storage battery
JP3379129B2 (en) Sealed lead-acid battery
JPH0635374Y2 (en) Sealed lead acid battery