JPH04195006A - Carbon coated optical fiber - Google Patents

Carbon coated optical fiber

Info

Publication number
JPH04195006A
JPH04195006A JP2326408A JP32640890A JPH04195006A JP H04195006 A JPH04195006 A JP H04195006A JP 2326408 A JP2326408 A JP 2326408A JP 32640890 A JP32640890 A JP 32640890A JP H04195006 A JPH04195006 A JP H04195006A
Authority
JP
Japan
Prior art keywords
carbon
optical fiber
diameter
circle
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2326408A
Other languages
Japanese (ja)
Other versions
JP2846452B2 (en
Inventor
Kazuto Hirabayashi
平林 和人
Akira Iino
顕 飯野
Kunio Ogura
邦男 小倉
Makoto Furuguchi
古口 誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2326408A priority Critical patent/JP2846452B2/en
Publication of JPH04195006A publication Critical patent/JPH04195006A/en
Application granted granted Critical
Publication of JP2846452B2 publication Critical patent/JP2846452B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To combindely obtain excellent initial intensity, fatigue properties, and hydrogen transmission hydrophobic properties by forming a carbon coating film that the ratio of the diameter of the circle of a halo pattern showing amorphism with respect to the diameter of the circle incorporating an arc showing a crystal structure pattern is set at a specific range, with electron beam diffraction. CONSTITUTION:On an optical fiber base material, the adjustment of the ratio of graphite crystal and an amorphous carbon quantity is carried out by a chlorine system addition agent and carrier gas in a thermal CVD method. Then, the electron beam diffraction image of a carbon film is obtained. Next, an addition density of trichloroethylene, carbon tetrachloride, etc., is adjusted so that the ratio b/a of the diameter (b) of the circle of a halo pattern image, with respect to the diameter (a) of the circle incorporating the arc of a crystal pattern image, is set at the range of 0.2 - 1.2, and finally, a hermetic coating film is formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、長期間信頼性の高い光ファイバとして知られ
ているカーボン被覆光ファイバに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a carbon-coated optical fiber, which is known as an optical fiber with high reliability over a long period of time.

〔従来の技術] 光ファイバは石英ガラス等のガラスから形成されている
が、長時間放置しておくと水分が光フアイバ表面の微小
な傷に作用し、この傷を次第に増長させる。光ファイバ
は布設の際にある程度の応力がかかった状態となり、水
分の存在する雰囲気では経時的に強度の低下が生ずる。
[Prior Art] Optical fibers are made of glass such as quartz glass, but if left for a long time, moisture acts on minute scratches on the surface of the optical fiber, gradually increasing the number of scratches. Optical fibers are subjected to a certain amount of stress during installation, and their strength decreases over time in an atmosphere containing moisture.

また、高多湿の環境下では水分による作用が一層増大し
、光ファイバの強度低下が著しく促進される。加えて。
Further, in a high humidity environment, the effect of moisture is further increased, and the strength of the optical fiber is significantly reduced. In addition.

光ファイバのコア付近に水素分子が侵入すると。When hydrogen molecules enter near the core of the optical fiber.

波長1.24μm付近に吸光ピークが生し、伝送損失が
増加する。
An absorption peak occurs near the wavelength of 1.24 μm, and transmission loss increases.

このような特性の劣化を防ぐために、光フアイバ表面に
水や水素の侵入を防止する高密度なカーボン被覆層を設
けることが提案されている。
In order to prevent such deterioration of characteristics, it has been proposed to provide a high-density carbon coating layer on the surface of the optical fiber to prevent water and hydrogen from entering.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

カーボン被覆膜は一般に非晶質(アモルファス)である
よりもグラファイト結晶である時の方が原子配列が緻密
であり、水素分子の透過阻止性に優れている。しかしな
がら、カーボン膜中のグラファイト結晶の含有率が多く
なるにつれてヤング率が大きくなり、カーボン被覆膜の
破断に至る伸び歪は低下する。一方1石英ガラス光ファ
イバはグラファイトの含有率の大きなカーボン膜に比べ
ると伸び易く、破断に至る伸び歪も大きい。一般に1石
英やカーボンのようなセラミックの破断強度は表面のク
ランクの進行に支配されるため、破断に至る伸び歪の小
さなカーボン膜を表面に持つカーボン被覆光ファイバは
、カーボン被覆が形成されていない光ファイバに比べて
初期強度が低下する。一方、非晶質の占める割合の多い
カーボン被覆膜は原子配列の緻密さの点で結晶質のハー
メチック被覆膜に比べて劣り、非晶質の占める割合が増
していくにつれ気密性が低下し水素透過阻止性は劣化し
ていくが、破断に至る歪は逆に大きくなり初期強度は高
くなる。
In general, the carbon coating film has a denser atomic arrangement when it is a graphite crystal than when it is amorphous, and is superior in blocking the permeation of hydrogen molecules. However, as the content of graphite crystals in the carbon film increases, the Young's modulus increases and the elongation strain leading to breakage of the carbon coating film decreases. On the other hand, a 1-silica glass optical fiber stretches more easily than a carbon film with a large graphite content, and the elongation strain leading to breakage is large. In general, the breaking strength of ceramics such as quartz and carbon is controlled by the progress of cranking on the surface, so carbon-coated optical fibers that have a carbon film on the surface with a small elongation strain that causes breakage do not have a carbon coating. The initial strength is lower than that of optical fiber. On the other hand, carbon coating films with a large proportion of amorphous materials are inferior to crystalline hermetic coating films in terms of the density of atomic arrangement, and as the proportion of amorphous materials increases, the airtightness decreases. However, the hydrogen permeation blocking property deteriorates, but the strain leading to fracture increases and the initial strength increases.

したがって、良好な水素分子の透過阻止性と初期強度を
合わせ持つカーボン被覆光ファイバを得るには、カーボ
ン被覆膜が非晶質とグラファイトを適度に混合させるこ
とが好適である。
Therefore, in order to obtain a carbon-coated optical fiber having both good hydrogen molecule permeation blocking properties and initial strength, it is preferable that the carbon coating film contains an appropriate mixture of amorphous and graphite.

本発明の目的は、かかる観点から、カーボン膜の電子線
回折パターンを用いて、その混合比を特定して適切な混
合比率の非晶質カーボンとグラファイト結晶からなるカ
ーボン被覆膜を形成させることによって解決することに
ある。
From this point of view, an object of the present invention is to identify the mixing ratio using the electron beam diffraction pattern of the carbon film and form a carbon coating film consisting of amorphous carbon and graphite crystals in an appropriate mixing ratio. The goal is to solve the problem by

〔課題を解決するための手段) 上記問題を解決するため1本発明に基づくカーボン被覆
光ファイバには、コアとクラッドからなる光ファイバの
表面に、カーボン膜の電子線回折像において非晶質を示
すハローパターンが現れ。
[Means for Solving the Problems] In order to solve the above problems, the carbon-coated optical fiber according to the present invention has an amorphous material on the surface of the optical fiber consisting of a core and a cladding, as seen in the electron beam diffraction image of the carbon film. A halo pattern appears.

その他にファイバ表面に垂直にグラファイトの(002
)面が並んで、C軸配向している円弧上のパターンが認
められ、かつ、ハローパターンの像の円の直径のグラフ
ァイト結晶パターンの像の円弧を含む円の直径に対する
割合がほぼ0.2〜1.2の範囲にあるカーボン膜が形
成される。
In addition, graphite (002
) A pattern on an arc in which the planes are aligned and C-axis oriented is recognized, and the ratio of the diameter of the circle of the image of the halo pattern to the diameter of the circle including the arc of the image of the graphite crystal pattern is approximately 0.2. A carbon film in the range of ~1.2 is formed.

〔作用〕[Effect]

上記のような電子線回折パターンを示すカーボン被覆膜
は緻密な原子配列を持つグラファイトと、破断に至る伸
び歪の値が大きし・非晶質カーボンを適度な混合比で併
せ持つので、良好な水素透過阻止性と大きな初期強度を
持つ。
The carbon coating film that shows the electron beam diffraction pattern shown above is a good material because it has both graphite with a dense atomic arrangement and amorphous carbon with a large elongation strain that leads to breakage at an appropriate mixing ratio. It has hydrogen permeation blocking properties and high initial strength.

〔実施例〕〔Example〕

以下5本発明の実施例を図面を参照して詳細に説明する
Hereinafter, five embodiments of the present invention will be described in detail with reference to the drawings.

第1図に本発明の実施例のカーボン被覆光ファイバの横
断面構造を示す。本発明に基づくカーボン被覆光ファイ
バは、直径約10μmのコア1aと外径約125μmの
クラッド1bにより構成される石英ファイバ部1の外周
に厚さ102〜103λ程度の膜厚を持つカーボン被覆
膜2を被覆し、更に必要に応じて樹脂被覆部3が設けら
れている。クラッド1bの表面に石英ガラス系のジャケ
ットが設けられる場合もある。
FIG. 1 shows a cross-sectional structure of a carbon-coated optical fiber according to an embodiment of the present invention. The carbon-coated optical fiber according to the present invention has a carbon coating film having a thickness of about 102 to 103λ on the outer periphery of a quartz fiber part 1, which is composed of a core 1a with a diameter of about 10 μm and a cladding 1b with an outer diameter of about 125 μm. 2, and a resin coating portion 3 is further provided as required. A silica glass jacket may be provided on the surface of the cladding 1b.

以下2本発明の実施例のカーボン被覆光ファイバの製造
方法について第2図を参照して説明する。カーボン膜の
成膜方法としてはCVD法の一種である熱分解法(熱C
VD法)を用いた。
Hereinafter, two methods of manufacturing carbon-coated optical fibers according to embodiments of the present invention will be described with reference to FIG. The method for forming the carbon film is the thermal decomposition method (thermal carbon dioxide), which is a type of CVD method.
VD method) was used.

線引炉5内にプリフォーム4を入れ、軟化温度まで加熱
し5プリフオーム下端に張力をかけて線引きしてコア1
aとクラッド1bからなる石英光ファイハロAとし、外
径測定器7で所定の外径に光ファイバの外径を制御する
。次に光ファイハロAを反応管加熱炉10で加熱されて
いる熱CVD反応管8の中を通過させる。熱CVD反応
管8内には、第1のマスフローコントローラー9で、ア
セチレン(C2H4)などの炭化水素系原料ガスや、 
 He、 A r、 Nzといった希釈ガス、さらには
第2のマスフローコントローラー13で、グラファイト
結晶とアモルファスカーボンの量の調整を行なう役割を
果たすトリクロエチレン、四塩化炭素などの塩素系添加
剤とキャリアガスがバブラー14を介して流量調整され
、搬入される。
The preform 4 is placed in a drawing furnace 5, heated to a softening temperature, and tension is applied to the lower end of the preform 5 to draw the core 1.
The outer diameter of the optical fiber is controlled to a predetermined outer diameter using an outer diameter measuring device 7. Next, the optical fiber halo A is passed through the thermal CVD reaction tube 8 which is being heated in the reaction tube heating furnace 10 . Inside the thermal CVD reaction tube 8, a first mass flow controller 9 supplies hydrocarbon-based raw material gas such as acetylene (C2H4),
Diluent gases such as He, Ar, and Nz, as well as chlorine-based additives such as trichlorethylene and carbon tetrachloride, which play a role in adjusting the amounts of graphite crystals and amorphous carbon, and a carrier gas are used in the second mass flow controller 13. The flow rate is adjusted through the bubbler 14 and then transported.

これにより、光ファイハロAの表面には非晶質カーボン
とグラファイト結晶との混合によるカーボン被覆膜が形
成される。この混合比については後に詳細に考察する。
As a result, a carbon coating film made of a mixture of amorphous carbon and graphite crystal is formed on the surface of the optical fiber halo A. This mixing ratio will be discussed in detail later.

第1のマスフローコントローラー9と第2のマスフロー
コントローラー13とは、後述する混合比になるように
上記原料ガスの質量を制御する。
The first mass flow controller 9 and the second mass flow controller 13 control the mass of the raw material gas to achieve the mixing ratio described below.

かかるカーボン被覆が形成された光ファイバ6は被覆ダ
イス11を通過するとき樹被覆が形成され2巻取り機1
2で巻き取られる。
When the optical fiber 6 on which the carbon coating has been formed passes through the coating die 11, a carbon coating is formed thereon.
It is wound up at 2.

このような方法で、添加剤であるトリクロエチレンの添
加量とカーボン膜合成温度を変化させて、5個のサンプ
ルカーボン被覆光ファイバを製造し、評価項目としては
電子線回折の他シこ、長尺引張試験、動疲労試験、水素
試験(伝送損失増加測定)を行なった。試作した5種類
のカーボンコートファイバの製造条件と評価結果を表1
に示す。
Using this method, five sample carbon-coated optical fibers were manufactured by varying the amount of trichlorethylene as an additive and the carbon film synthesis temperature. A tensile test, a dynamic fatigue test, and a hydrogen test (transmission loss increase measurement) were conducted. Table 1 shows the manufacturing conditions and evaluation results of the five types of prototype carbon coated fibers.
Shown below.

(以下余白) 表−1 5種類のカーボンコートファイバの内、4種類は添加剤
として四塩化炭素を用い800〜900°Cといった比
較的低温でカーボン膜を合成したものであり(実施例1
.実施例2.実施例3.比較例1)、他の1種類は添加
剤を用いずに原料ガスであるアセチレンガスのみで、1
000〜1100°Cと言った比較的高温でカーボン膜
を合成したものである(比較例2)。四塩化炭素をアセ
チレンに添加した4種類のカーボン被覆光ファイバは四
塩化炭素の添加濃度を変化させてカーボン膜を合成した
ものである。トリクロエチレンの添加濃度の低い順から
、実施例1.実施例2.実施例3、比較例1とする。
(Leaving space below) Table 1 Among the five types of carbon-coated fibers, four types have carbon films synthesized at a relatively low temperature of 800 to 900°C using carbon tetrachloride as an additive (Example 1
.. Example 2. Example 3. Comparative Example 1), and the other type uses only acetylene gas, which is a raw material gas, without using any additives.
A carbon film was synthesized at a relatively high temperature of 000 to 1100°C (Comparative Example 2). Four types of carbon-coated optical fibers in which carbon tetrachloride is added to acetylene are obtained by synthesizing carbon films by varying the concentration of carbon tetrachloride added. Example 1. Example 2. Example 3 and Comparative Example 1.

第3図(a)〜(C)にこれら5種類のカーボン被覆光
ファイバのカーボン膜の電子線回折像を3種類に分類し
て示す。比較例1のサンプルでは第3図(a)に示すよ
うにハロー(中空)パターンのみで、結晶構造を示す回
折像は認められなかった。実施例1.実施例2.実施例
3のサンプルでは第3図(b)に示すように、ハローパ
ターンの他にグラファイト結晶の(002)面を示すパ
ターンが現れた。ハローパターンの像の円の直径の、結
晶パターンの像の円弧を含む円の直径に対する割合b 
/ aは、四塩化炭素を高濃度含む実施例3が一番大き
く、実施例2.実施例1の順で小さくなっていった。ま
た、結晶パターンを示す円弧系の像の明るさは実施例1
が一番明るく、実施例2.実施例3の順で暗くなってい
った。また。
FIGS. 3A to 3C show electron diffraction images of the carbon films of these five types of carbon-coated optical fibers, classified into three types. In the sample of Comparative Example 1, as shown in FIG. 3(a), only a halo (hollow) pattern was observed, and no diffraction image indicating a crystal structure was observed. Example 1. Example 2. In the sample of Example 3, as shown in FIG. 3(b), in addition to the halo pattern, a pattern indicating the (002) plane of the graphite crystal appeared. Ratio b of the diameter of the circle of the image of the halo pattern to the diameter of the circle including the arc of the image of the crystal pattern
/a is the largest in Example 3 containing a high concentration of carbon tetrachloride, and in Example 2. It became smaller in the order of Example 1. In addition, the brightness of the image of the arc system showing the crystal pattern was determined in Example 1.
is the brightest, and Example 2. The light became darker in the order of Example 3. Also.

第3図(c)に示すように、比較例2のサンプルではハ
ローパターンの像のグラファイト結晶の回折像に対する
割合は実施例1と比べて更に小さくなり、またグラファ
イト結晶の回折像の明るさは実施例1と比べて一層明る
くなっている。
As shown in FIG. 3(c), in the sample of Comparative Example 2, the ratio of the halo pattern image to the diffraction image of the graphite crystal is even smaller than that of Example 1, and the brightness of the diffraction image of the graphite crystal is It is even brighter than Example 1.

また、比較例1のサンプルはグラファイト結晶の回折像
は認められなかったが、はぼ一定値を示した他の4サン
プルの結晶パターンの像の円弧を含む円の直径を用いる
と、ハローパターンの像の円の直径の結晶パターンの像
の円弧を含む円の直径に対する割合b / aは1.3
0となる。
In addition, although no diffraction image of graphite crystal was observed in the sample of Comparative Example 1, using the diameter of the circle including the arc of the crystal pattern images of the other four samples, which showed approximately constant values, the halo pattern was The ratio b/a of the diameter of the image circle to the diameter of the circle containing the image arc of the crystal pattern is 1.3
It becomes 0.

次に5種類のサンプルの初期強度を評価した。Next, the initial strength of the five types of samples was evaluated.

その結果、比較例】、実施例1.実施例2.実施例3の
各サンプルについては5.5(kgf)以上と実用上は
ぼ問題のない強度を示したが、比較例2は3.5 (k
gf)と著しい強度低下が見られた。これは表面のカー
ボン膜がグラファイトを多く含むようになるにつれて、
破断に至る伸び歪が小さくなっていくためと考えられる
As a result, Comparative Example], Example 1. Example 2. Each sample of Example 3 showed a strength of 5.5 (kgf) or more, which is practically acceptable, but Comparative Example 2 had a strength of 3.5 (kgf) or more.
gf) and a significant decrease in strength was observed. This is because as the carbon film on the surface becomes richer in graphite,
This is thought to be because the elongation strain leading to fracture becomes smaller.

さらに5種類のサンプルの動疲労試験及び水素試験を行
なった。その結果比較例2.実施例1及び実施例2.実
施例3のサンプルに関しては良好な疲労特性、水素透過
阻止性を示したが、比較例1のサンプルでは伝送損失の
増加がみられた。これは、比較例1のサンプルがほとん
ど緻密な構造のグラファイト結晶を含まず、アモルファ
スカーボンから構造されるため、水素や水の侵入が十分
に妨げないためと考えられる。
Furthermore, five types of samples were subjected to dynamic fatigue tests and hydrogen tests. As a result, Comparative Example 2. Example 1 and Example 2. The sample of Example 3 showed good fatigue properties and hydrogen permeation blocking properties, but the sample of Comparative Example 1 showed an increase in transmission loss. This is considered to be because the sample of Comparative Example 1 hardly contains graphite crystals with a dense structure and is structured from amorphous carbon, so that the intrusion of hydrogen and water is not sufficiently prevented.

以上の評価結果から、良好な初期強度、疲労特性、水素
透過阻止性を併せ持つカーボンコートファイバの電子線
回折像のハローパターンの像の直径の、結晶パターンの
像の円弧を含む円の直径に対する割合b / aを基準
にするとある範囲内に限定することが出来る。詳細な検
討の結果、その範囲はほぼ0.2〜1.2であり、この
範囲内に入るカーボン被覆膜を合成することにより、良
好な水素透過阻止性と初期強度を併せ持つカーボン被覆
光ファイバを得ることが出来る。
From the above evaluation results, the ratio of the diameter of the halo pattern image in the electron beam diffraction image of the carbon coated fiber, which has good initial strength, fatigue properties, and hydrogen permeation blocking properties, to the diameter of the circle including the arc of the crystal pattern image. Based on b/a, it can be limited within a certain range. As a result of detailed studies, the range is approximately 0.2 to 1.2, and by synthesizing a carbon coating film that falls within this range, a carbon-coated optical fiber that has both good hydrogen permeation blocking properties and initial strength can be produced. can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明したように9本発明によれば、光ファイバに、
 電子m回折像にアモルファスを示すハローパターンが
現れ、その他に光フアイバ表面に垂直にグラファイトの
(002)面が並んで、C軸配向しているパターンが認
められ、かつ、ハローパターンの像の円の直径の、結晶
パターンの像の円弧を含む円の直径に対する割合がほぼ
0.2〜1.2の範囲にあるハーメチック被覆膜を形成
させることにより、良好な初期強度、疲労特性、水素透
過阻止性を併せ持つカーボン被覆光ファイバが提供でき
る。
As explained above, according to the present invention, the optical fiber has
An amorphous halo pattern appears in the electron m-diffraction image, and a pattern in which the (002) planes of graphite are aligned perpendicularly to the optical fiber surface and C-axis oriented is also observed. By forming a hermetic coating film in which the ratio of the diameter of A carbon-coated optical fiber that also has blocking properties can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はカーボン被覆光ファイバの横断面構造を示す図
。 第2図は本発明の実施例の熱CVD法を用いてカーボン
被覆光ファイバを製造する装置の概略構成を示す縦断面
図。 第3図(a)〜(C)は本発明の実施例のカーボン被覆
光ファイバのカーボン膜の電子線回折像を示す概略図で
ある。 (符号の説明) 1・・・石英ファイバ部。 la・・コア。 1b・・クラッド。 2・・・カーボン被覆膜。 3・・・樹脂被覆部。 4・・・光フアイバ母材。 5・・・線引炉。 6A・・光ファイバ。 6・・・カーボン被覆光ファイバ。 7・・・外径測定器。 8・・・熱CVD反応管。 9・・・第1のマスフローコントローラ。 10・・反応管加熱炉。 11・・被覆ダイス。 12・・巻取機。 13・・第2のマスフローコントローラー。 14・・バブラー。 特許出願人 古河電気工業株式会社 代理人   弁理士 住込 隆久 第1図 [コi、l 第3図
FIG. 1 is a diagram showing a cross-sectional structure of a carbon-coated optical fiber. FIG. 2 is a longitudinal cross-sectional view showing a schematic configuration of an apparatus for manufacturing a carbon-coated optical fiber using a thermal CVD method according to an embodiment of the present invention. FIGS. 3(a) to 3(C) are schematic diagrams showing electron beam diffraction images of the carbon film of the carbon-coated optical fiber of the example of the present invention. (Explanation of symbols) 1...Quartz fiber part. la...core. 1b...Clad. 2... Carbon coating film. 3...Resin coating part. 4... Optical fiber base material. 5...Drawing furnace. 6A...Optical fiber. 6...Carbon coated optical fiber. 7...Outer diameter measuring device. 8...Thermal CVD reaction tube. 9...First mass flow controller. 10...Reaction tube heating furnace. 11...Coated die. 12... Winding machine. 13...Second mass flow controller. 14. Bubbler. Patent Applicant Furukawa Electric Co., Ltd. Agent Patent Attorney Takahisa Sumigome Figure 1 [Coi, l Figure 3]

Claims (1)

【特許請求の範囲】 1、石英光ファイバ表面上にカーボン被覆膜を有するカ
ーボン被覆光ファイバにおいて、 電子線回折パターンで非晶質を示すハローパターンが現
れ、更にその他にc軸配向したグラファイト結晶構造を
示す円弧上のパターンが認められ、かつ結晶構造パター
ンを示す円弧を含む円の直径に対するハローパターンの
円の直径の割合がほぼ0.2〜1.2の範囲にあるカー
ボン被覆膜を形成させたことを特徴とするカーボン被覆
光ファイバ。
[Scope of Claims] 1. In a carbon-coated optical fiber having a carbon coating film on the surface of a quartz optical fiber, a halo pattern indicating an amorphous state appears in an electron beam diffraction pattern, and in addition, a c-axis oriented graphite crystal appears. A carbon coating film in which a pattern on an arc indicating a structure is recognized and the ratio of the diameter of the circle of the halo pattern to the diameter of the circle including the arc indicating the crystal structure pattern is approximately in the range of 0.2 to 1.2. 1. A carbon-coated optical fiber characterized by forming a carbon-coated optical fiber.
JP2326408A 1990-11-28 1990-11-28 Carbon coated optical fiber Expired - Lifetime JP2846452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2326408A JP2846452B2 (en) 1990-11-28 1990-11-28 Carbon coated optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2326408A JP2846452B2 (en) 1990-11-28 1990-11-28 Carbon coated optical fiber

Publications (2)

Publication Number Publication Date
JPH04195006A true JPH04195006A (en) 1992-07-15
JP2846452B2 JP2846452B2 (en) 1999-01-13

Family

ID=18187461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2326408A Expired - Lifetime JP2846452B2 (en) 1990-11-28 1990-11-28 Carbon coated optical fiber

Country Status (1)

Country Link
JP (1) JP2846452B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014033186A (en) * 2012-07-09 2014-02-20 Tokyo Electron Ltd Carbon film deposition method and deposition device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014033186A (en) * 2012-07-09 2014-02-20 Tokyo Electron Ltd Carbon film deposition method and deposition device

Also Published As

Publication number Publication date
JP2846452B2 (en) 1999-01-13

Similar Documents

Publication Publication Date Title
US5000541A (en) Hermetically sealed optical fibers
US4964694A (en) Optical fiber and apparatus for producing same
JPH0283240A (en) Airtight sealed treated optical fiber
US5157755A (en) Hermetically coated optical fiber
JP4744670B2 (en) Preform including a barrier layer to prevent hydrogen from diffusing into an optical fiber made from the preform and method for preparing such a preform
US5037464A (en) Method of cleaning and carbon coating optical fiber
JPH04195006A (en) Carbon coated optical fiber
US5235666A (en) Production of a hermetically coated optical fiber
US4294514A (en) Light-wave guides and method of producing same
JP2959890B2 (en) Carbon coated optical fiber
JP3039948B2 (en) Optical fiber manufacturing method
JP2798790B2 (en) Optical fiber manufacturing method
JP2595364B2 (en) Optical fiber manufacturing method
KR100203566B1 (en) Method of producing optical fiber and base material therefor
JPH0646251B2 (en) Light fiber
JP2727702B2 (en) Manufacturing method of carbon coated optical fiber
JP2583392B2 (en) Method for manufacturing hermetic coated optical fiber
JPH07234322A (en) Method for drawing plastic optical fiber
JP3039961B2 (en) Optical fiber manufacturing method
JP2003212588A (en) Production method of optical fiber
JP2895535B2 (en) Hermetic coated optical fiber and apparatus for manufacturing the same
JPS61168548A (en) Parent material for quartz optical fiber
JPH0235404A (en) Optical fiber
JPS6051631A (en) Preparation of optical fiber
JPH02149450A (en) Production of optical fiber

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081030

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091030

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091030

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101030

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111030

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111030

Year of fee payment: 13