JPH04192259A - Nickel electrode for alkaline storage battery and battery using that - Google Patents

Nickel electrode for alkaline storage battery and battery using that

Info

Publication number
JPH04192259A
JPH04192259A JP2324436A JP32443690A JPH04192259A JP H04192259 A JPH04192259 A JP H04192259A JP 2324436 A JP2324436 A JP 2324436A JP 32443690 A JP32443690 A JP 32443690A JP H04192259 A JPH04192259 A JP H04192259A
Authority
JP
Japan
Prior art keywords
nickel
battery
density
powder particles
hydroxide powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2324436A
Other languages
Japanese (ja)
Other versions
JP3063159B2 (en
Inventor
Toru Horii
堀井 徹
Masuhiro Onishi
益弘 大西
Masahiko Oshitani
政彦 押谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP2324436A priority Critical patent/JP3063159B2/en
Publication of JPH04192259A publication Critical patent/JPH04192259A/en
Application granted granted Critical
Publication of JP3063159B2 publication Critical patent/JP3063159B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain electrodes having improved efficiency of active materials and batteries using them, by providing cobalt plating on porous alkali-resistant metallic base plates and filling specified nickel hydroxide powder particles as active materials. CONSTITUTION:To improve the efficiency of active materials in nickel electrodes for alkaline storage batteries, cobalt plating of 1-5mum in thickness is provided on porous alkali-resistant metallic base plates, and nickel hydroxide powder particles prepared from aqueous solutions of nickel sulfate and sodium hydroxide, of less than 0.08cm<3>/g in hole volume and of 1.7-2.2g/cm<3> in bulk density (tap density) are filled up in the base plates. Thereby nickel electrodes of high energy density and alkaline storage batteries of high density can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はアルカリ電池用ニッケル電極及びこれを用いた
電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a nickel electrode for alkaline batteries and a battery using the same.

従来の技術 従来は厚さ1〜5μmのコバルト鍍金を施した多孔性の
耐アルカリ性金属基板に、硫酸ニッケル塩水溶液と水酸
化ナトリウム水溶液から作製した水酸化ニッケル粉末粒
子を活物質として充填したニッケル電極及びこれを用い
たアルカリ電池が用いられていた。
Conventional technology Conventionally, a nickel electrode is made by filling a porous alkali-resistant metal substrate coated with cobalt with a thickness of 1 to 5 μm with nickel hydroxide powder particles made from a nickel sulfate salt aqueous solution and a sodium hydroxide aqueous solution as an active material. And alkaline batteries using this were used.

発明が解決しようとする課題 近年ポータプルエレクトロニクス機器の軽量化に伴い、
高エネルギー密度化が要求されている。このニーズに対
応するためには、活物質の利用率を向上させるだけでは
限界があることから、高密度化された水酸化ニンケル粉
末粒子の使用が必要である。従来においてもコバルト鍍
金を集電体に施す方法により、活物質の利用率の向上は
行なわれてきた。
Problems to be solved by the invention In recent years, as portable electronic devices have become lighter,
High energy density is required. In order to meet this need, it is necessary to use highly densified nickel hydroxide powder particles, since there is a limit to simply improving the utilization rate of the active material. Conventionally, the utilization rate of active materials has been improved by applying cobalt plating to current collectors.

第1図に厚さ1〜6μmの範囲において、1μmごとに
厚みをかえてコバルト鍍金を施した厚さ200μmのニ
ッケル基板に、硫酸ニッケル塩水溶液と水酸化ナトリウ
ム水溶液から作製した従来の水酸化ニッケル粒子を充填
したニッケル電極と、対極としてペースト式カドミウム
極を組合わせ、比重1.26の水酸化カリウム電解液を
流動電解液が生じる程度に注液し作製した電池を、24
時間放置後、温度20°Cにおいて、充電0.1CAX
15時間、放電0.2CA (終止電圧1.00V)で
10サイクル試験を行ったときの活物質の利用率と、コ
バルト鍍金厚さの関係を示す。
Figure 1 shows conventional nickel hydroxide prepared from a nickel sulfate salt aqueous solution and a sodium hydroxide aqueous solution on a 200-μm-thick nickel substrate coated with cobalt plating in a thickness range of 1 to 6 μm in increments of 1 μm. A battery was prepared by combining a nickel electrode filled with particles and a paste-type cadmium electrode as a counter electrode, and injecting a potassium hydroxide electrolyte with a specific gravity of 1.26 to the extent that a flowing electrolyte was produced.
After leaving it for a while, at a temperature of 20°C, the charge is 0.1CAX.
The relationship between the utilization rate of the active material and the cobalt plating thickness when a 10-cycle test was conducted for 15 hours at a discharge of 0.2 CA (final voltage of 1.00 V) is shown.

第1図からコバルト鍍金厚さが2〜5μmの範囲では、
活物質の利用率は比較的安定であるが、厚さ5μm以上
になると活物質の利用率は大きく低下するこ′とが分か
る。このコハル)11金の厚さの違いによる利用率の変
化は、活物質と集電体との有効距離に限界があるためで
あると推定できる。
From Figure 1, when the cobalt plating thickness is in the range of 2 to 5 μm,
It can be seen that the utilization rate of the active material is relatively stable, but when the thickness becomes 5 μm or more, the utilization rate of the active material decreases significantly. It can be assumed that the change in the utilization rate due to the difference in the thickness of Kohar-11 gold is due to the fact that there is a limit to the effective distance between the active material and the current collector.

このようにコバルト鍍金を施した集電体と、活物質であ
る水酸化ニッケル粒子の境界部分に、オキシ水酸化コバ
ルトの強力な導電性ネットワーク層が形成されることに
よって活物質の利用率が向上し、エネルギー密度も大き
く改良された。
In this way, a strong conductive network layer of cobalt oxyhydroxide is formed at the boundary between the cobalt-plated current collector and the active material, nickel hydroxide particles, improving the utilization rate of the active material. The energy density was also greatly improved.

しかしながら従来の水酸化ニッケル粉末粒子内には多数
の空孔が存在し、高密度に充填できるといった点ではま
だ改良の余地があった。
However, conventional nickel hydroxide powder particles have a large number of pores, and there is still room for improvement in terms of being able to fill them with high density.

課題を解決するための手段 この課題を解決するために電極に次のような改良を施し
た。すなわち利用率を向上させるために、厚さ1〜5μ
mのコバルト鍍金を多孔性の耐アルカリ金属基板に施し
、従来の水酸化ニッケル粉末粒子を充填するかわりに、
硫酸ニンケル塩水溶液と水酸化ナトリウム水溶液から作
製した空孔容積が0.08cm3/ g以下で、かさ密
度(タッピング密度)が1.7〜2.2 g / cm
3の範囲内にある高密度の水酸化ニッケル粉末粒子を充
填し、工フルギー密度の向上を計った。
Means for solving the problem In order to solve this problem, the following improvements were made to the electrode. In other words, in order to improve the utilization rate, the thickness is 1 to 5 μm.
m cobalt plating is applied to a porous alkali-resistant metal substrate, instead of filling it with conventional nickel hydroxide powder particles.
The pore volume made from a sulfuric acid nickel salt aqueous solution and a sodium hydroxide aqueous solution is 0.08 cm3/g or less, and the bulk density (tapping density) is 1.7 to 2.2 g/cm.
The material was filled with high-density nickel hydroxide powder particles within the range of 3 to improve the mechanical density.

作用 厚さ1〜5μmのコバルト鍍金を施した多孔性の耐アル
カリ性金属基板を用いることにより利用率が向上し、空
孔容積が0.08cm3/ g以下で、かさ密度が1.
7〜2.2g/C113の範囲内にある水酸化ニッケル
粉末粒子を充填したニッケル電極を用いることによって
、水酸化ニッケル粉末粒子をより高密度に充填できるよ
うになった。従って高エネルギー密度化されたニッケル
電極、すなわち高エネルギー密度化されたアルカリ電池
を製作できるようになった。
Utilization efficiency is improved by using a porous alkali-resistant metal substrate coated with cobalt with a working thickness of 1 to 5 μm, with a pore volume of 0.08 cm3/g or less and a bulk density of 1.
By using a nickel electrode filled with nickel hydroxide powder particles in the range of 7-2.2 g/C113, a higher density of nickel hydroxide powder particles was achieved. Therefore, it has become possible to produce a nickel electrode with a high energy density, that is, an alkaline battery with a high energy density.

実施例 以下、本発明の一実施例について詳述する。Example An embodiment of the present invention will be described in detail below.

正極は厚さ3μmのコバルト鍍金を施したニッケルメツ
シュに、15〜30人の細孔半径を有し、その空孔容積
が0.05+w2/ g以下で且つ比表面積15〜30
m1/gの範囲内にある水酸化ニッケル粉末粒子を活物
質の主成分として充填した。
The positive electrode is made of cobalt-plated nickel mesh with a thickness of 3 μm, and has a pore radius of 15 to 30 mm, a pore volume of 0.05+w2/g or less, and a specific surface area of 15 to 30 mm.
Nickel hydroxide powder particles within the range of m1/g were filled as the main component of the active material.

第2図にこの新水酸化ニッケル粉末粒子と、硫酸ニッケ
ル塩水溶液と水酸化ナトリウム水溶液から作製した従来
の水酸化ニッケル粉末粒子の細孔径分布の比較を示す。
FIG. 2 shows a comparison of the pore size distributions of this new nickel hydroxide powder particle and the conventional nickel hydroxide powder particle prepared from a nickel sulfate salt aqueous solution and a sodium hydroxide aqueous solution.

細孔径分布と比表面積の差にみられる細孔構造の違いは
高密度に充填するうえで最も重要ながさ密度(タッピン
グ密度)に大きな差を生しる。この新水酸化ニッケル粉
末粒子を用いると、従来の中和粉末粒子よりも約20%
程度多く充填できることが明らかである。この水酸化ニ
ッケル粉末粒子50wt%とニッケル粉末50−t%を
混合した活物質をプレスし、ベレ・ント状に成形したも
のを上記ニッケルメツシュに包んで再びプレスしたもの
を正極とした。この正極の放電理論容量は400wAh
とした。
Differences in pore structure, seen in differences in pore size distribution and specific surface area, result in large differences in burlap density (tapping density), which is the most important factor for high-density packing. When using this new nickel hydroxide powder particles, it is approximately 20% more effective than conventional neutralized powder particles.
It is clear that a larger amount can be filled. The active material, which was a mixture of 50 wt % of nickel hydroxide powder particles and 50-t % of nickel powder, was pressed, formed into a bead shape, wrapped in the above nickel mesh, and pressed again to form a positive electrode. The theoretical discharge capacity of this positive electrode is 400wAh
And so.

このニッケル電極に、対極としてカドミウム電極を用い
、比重1.26の水酸化カリウム電解液を注液して電池
を作製した。以下、この電池を電池Aと記述する。また
従来の水酸化ニッケル粉末粒子を活物質の主成分として
用い、この水酸化ニッケル粉末粒子50wt%とニッケ
ル粉末50−t%を混合した活物質を用いて、上記作製
方法と同様の方法を用いて電池を作製した。以下、この
電池を電池Bと記述する。これらの電池を24時間放置
後、温度20°Cにおいて、充電0.IC+IIAX 
15時間、放電0.2C+eA (終止電圧1.0OV
)で充放電試験を行った。第3図にこれらの電池の放電
電圧と放電時間の関係を示した。
A battery was fabricated by using a cadmium electrode as a counter electrode and injecting a potassium hydroxide electrolyte having a specific gravity of 1.26 into this nickel electrode. Hereinafter, this battery will be referred to as battery A. In addition, using conventional nickel hydroxide powder particles as the main component of the active material, and using an active material in which 50 wt% of these nickel hydroxide powder particles and 50-t% of nickel powder were mixed, a method similar to the above manufacturing method was used. A battery was fabricated. Hereinafter, this battery will be referred to as battery B. After leaving these batteries for 24 hours, at a temperature of 20°C, the charge was 0. IC+IIAX
15 hours, discharge 0.2C+eA (final voltage 1.0OV
), a charge/discharge test was conducted. FIG. 3 shows the relationship between the discharge voltage and discharge time of these batteries.

第3図の結果は、電池Aでは平均電圧1.22V、放電
容量348mAh、利用率87%であり、電池Bでは平
均電圧1.20V、放電容量300sAh、利用率75
%であった。このように利用率は12%向上し、平均電
圧も20mV高くなった。
The results in Figure 3 show that battery A has an average voltage of 1.22V, a discharge capacity of 348mAh, and a utilization rate of 87%, while battery B has an average voltage of 1.20V, a discharge capacity of 300sAh, and a utilization rate of 75%.
%Met. In this way, the utilization rate improved by 12%, and the average voltage also increased by 20 mV.

この結果からコバルト鍍金を施した多孔性の耐アルカリ
性金属基板と空孔容積が0.08cm”7g以下で、か
さ密度が1.7〜2.2g/cm3の範囲内にある水酸
化ニッケルの境界部分においても導電性ネットワークは
形成され、利用率、平均電圧の向上によって、より高エ
ネルギー密度化されたニッケル電極を作製できることが
わかった。
From this result, the boundary between a porous alkali-resistant metal substrate coated with cobalt and nickel hydroxide with a pore volume of 0.08 cm and 7 g or less and a bulk density within the range of 1.7 to 2.2 g/cm3. It was found that a conductive network was formed even in the nickel part, and by improving the utilization rate and average voltage, it was possible to create a nickel electrode with higher energy density.

発明の効果 上述の如く本発明は活物質利用率の向上した高エネルギ
ー密度のニッケル電極及びこれを用いたアルカリ電池を
提供することができるので、その工業的価値は極めて大
である。
Effects of the Invention As described above, the present invention can provide a high energy density nickel electrode with improved active material utilization and an alkaline battery using the same, and therefore has extremely great industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はコバルト鍍金厚さと活物質利用率の関係図、第
2図は従来及び本発明で用いた水酸化ニッケルの細孔径
分布を示す図、第3図は従来電池及び本発明電池の放電
時間と放電電圧との関係図である。
Figure 1 is a diagram showing the relationship between cobalt plating thickness and active material utilization rate, Figure 2 is a diagram showing the pore size distribution of nickel hydroxide used in the conventional and the present invention, and Figure 3 is the discharge of the conventional battery and the battery of the present invention. FIG. 3 is a relationship diagram between time and discharge voltage.

Claims (1)

【特許請求の範囲】 1)厚さ1〜5μmのコバルト鍍金を施した多孔性の耐
アルカリ性金属基板の上に、空孔容積が0.08cm^
3/g以下で、かさ密度(タッピング密度)が1.7〜
2.2g/cm^3の範囲内にある水酸化ニッケル粉末
粒子を活物質として充填したことを特徴とするアルカリ
電池用ニッケル電極。 2)請求項1に記載したアルカリ電池用ニッケル電極を
用いた電池。
[Claims] 1) On a porous alkali-resistant metal substrate coated with cobalt with a thickness of 1 to 5 μm, the pore volume is 0.08 cm^.
3/g or less, bulk density (tapping density) is 1.7~
A nickel electrode for an alkaline battery, characterized in that it is filled with nickel hydroxide powder particles within the range of 2.2 g/cm^3 as an active material. 2) A battery using the nickel electrode for alkaline batteries according to claim 1.
JP2324436A 1990-11-26 1990-11-26 Nickel electrode for alkaline battery and battery using the same Expired - Lifetime JP3063159B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2324436A JP3063159B2 (en) 1990-11-26 1990-11-26 Nickel electrode for alkaline battery and battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2324436A JP3063159B2 (en) 1990-11-26 1990-11-26 Nickel electrode for alkaline battery and battery using the same

Publications (2)

Publication Number Publication Date
JPH04192259A true JPH04192259A (en) 1992-07-10
JP3063159B2 JP3063159B2 (en) 2000-07-12

Family

ID=18165790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2324436A Expired - Lifetime JP3063159B2 (en) 1990-11-26 1990-11-26 Nickel electrode for alkaline battery and battery using the same

Country Status (1)

Country Link
JP (1) JP3063159B2 (en)

Also Published As

Publication number Publication date
JP3063159B2 (en) 2000-07-12

Similar Documents

Publication Publication Date Title
US5489314A (en) Manufacturing method of nickel plate and manufacturing method of alkaline battery
JP2682162B2 (en) Nickel electrode active material for alkaline storage batteries
JPH04192259A (en) Nickel electrode for alkaline storage battery and battery using that
JPH03179664A (en) Hydrogen storage electrode for alkaline storage battery
JP3156485B2 (en) Nickel electrode for alkaline storage battery
JPS59173961A (en) Organic electrolyte secondary battery
JP3114160B2 (en) Nickel electrode for alkaline storage battery and alkaline storage battery using the same
JP3204275B2 (en) Nickel electrode for alkaline storage battery
JPS6149374A (en) Nickel positive electrode for alkali cell
JP3384109B2 (en) Nickel plate
JPH02109261A (en) Active material for nickel electrode, nickel electrode, and alkaline battery using this electrode
JP3292204B2 (en) Nickel sintered electrode for alkaline storage battery
JP2589750B2 (en) Nickel cadmium storage battery
JP4531874B2 (en) Nickel metal hydride battery
JPH0568068B2 (en)
JPH0434857A (en) Enclosed type alkaline battery and manufacture thereof
JPS62252072A (en) Manufacture of negative electrode for alkaline storage battery
JPS6097560A (en) Sealed type alkaline storage battery
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JPH08102322A (en) Active material powder for alkaline storage battery non-sintered nickel electrode, its manufacture, alkaline storage battery non-sintered nickel electrode, and its manufacture
JP2538303B2 (en) Zinc electrode for alkaline storage battery
JPH0565988B2 (en)
JPS60250556A (en) Production of nickel-cadmium storage battery
JPS61124060A (en) Paste type positive pole plate for alkaline storage battery
JPH01272050A (en) Nickel electrode for alkaline battery

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080512

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 11

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 11

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 11

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 11

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 11