JPH04191419A - Liquid air gas turbine - Google Patents

Liquid air gas turbine

Info

Publication number
JPH04191419A
JPH04191419A JP32411590A JP32411590A JPH04191419A JP H04191419 A JPH04191419 A JP H04191419A JP 32411590 A JP32411590 A JP 32411590A JP 32411590 A JP32411590 A JP 32411590A JP H04191419 A JPH04191419 A JP H04191419A
Authority
JP
Japan
Prior art keywords
power
air
gas turbine
liquid air
generated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32411590A
Other languages
Japanese (ja)
Inventor
Kiichi Taga
田賀 喜一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP32411590A priority Critical patent/JPH04191419A/en
Publication of JPH04191419A publication Critical patent/JPH04191419A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To utilize effectively midnight power and improve efficiency of pack power generated in the daytime by expanding, by means of a gas turbine expander, high temperature and high pressure gas which is generated in such a way that liquid air or the like is manufactured and stored while utilizing midnight power and pressurized and gasified at the daytime to be burned, so that power may be generated. CONSTITUTION:Liquid air or liquid oxygen is manufactured and stored while utilizing midnight power, and pressurized by a pump in the daytime to lead into a gas turbine combustion chamber 2 after being gasified. Fuel is injected into the combustion chamber to be burned, and thus generated high temperature and high pressure gas is expanded by a gas turbine expander 1 so as to generate power. At this time, the combustion chamber 2, a power generator 3, and an air preheater 6 are connected to the expander 1. On the other hand, the liquid air in a liquid air tank 7 is pressurized by a pressurizing pump 8, vaporized and gasified by an evaporator 9, and then liquefied by an air liquefying device 10 while utilizing the midnight power.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 ピーク時の電力不足に対応して、コンパクトに効率よく
ピーク電力を供給するピーク発電所、地域暖冷房に適し
たコジェネシステムである。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field This is a cogeneration system suitable for a peak power plant and district heating and cooling that efficiently supplies peak power in a compact manner in response to power shortages during peak times.

(ロ)従来の技術 ピーク発電用としては、普通のガスタービンや揚水発電
所などがある。普通のガスタービンは簡便であるが、効
率が悪く、あまり普及していない。一方揚水発電所は深
夜電力を貯蔵するものであり、実用的な大規模電力貯蔵
法として優れている。これにより発電能力の増強のみな
らず、負荷の均一化による発電効率の上昇が計られてい
る。
(b) Conventional technology For peak power generation, there are ordinary gas turbines and pumped storage power plants. Ordinary gas turbines are simple but inefficient and are not widely used. On the other hand, pumped storage power plants store electricity late at night and are excellent as a practical large-scale electricity storage method. This not only increases power generation capacity, but also increases power generation efficiency by equalizing the load.

またガスタービンでも、深夜電力を利用して圧縮空気を
製造貯蔵し、これを昼間ピーク時に利用して、深夜電力
の有効利用と、昼間ピーク発電の効率、見かけ上である
が、の上昇を計るプラントが海外で設置され始めた。
In addition, with gas turbines, compressed air is produced and stored using late-night electricity, and this is used during daytime peak hours to effectively utilize late-night electricity and increase the efficiency of daytime peak power generation, although this may seem to be the case. Plants began to be installed overseas.

(ハ)発明が解決しようとする問題点 揚水発電所は水力であり、環境問題がなく望ましいが、
適地が、だんだん少なく、広大な土地を要し、補償その
たに多くの時間と費用が必要である。また、これは電力
を蓄えるだけで、発生は零であり、損失分だけマイナス
となる。
(c) Problems that the invention aims to solve Pumped storage power plants are hydroelectric and are desirable because they do not cause environmental problems, but
Suitable land is becoming increasingly scarce, requiring vast amounts of land, and compensation requires a lot of time and money. Moreover, this only stores electric power, and the generation is zero, and the loss is negative.

深夜電力によって圧縮空気を貯蔵するガスタービンは、
日本では地盤が悪く、海外のようここ地盤のよい、鉱山
の廃坑の利用の適地が少なく、また高圧で貯蔵し、使用
時に一定圧に減圧する損失の多い方法を避けるためには
、ヘッド用の大量の加圧水で一定圧とすることが必要で
、日本でも計画されているが、実現までには色々問題が
あるのではなかろうかつぎにコジェネは近年発達したが
、深夜電力を利用して、炭酸ガス問題のない水力や原子
力を、少しでも増加して、環境対策に役立てるようにな
っていない。
A gas turbine that stores compressed air using late-night electricity is
In Japan, the ground is poor, while in other countries, where the ground is good, there are few suitable sites for the use of abandoned mine shafts.In addition, in order to avoid the lossy method of storing at high pressure and reducing the pressure to a constant pressure during use, it is necessary to It is necessary to maintain a constant pressure with a large amount of pressurized water, and there are plans to do so in Japan, but there will probably be many problems before it becomes a reality.Cogeneration, which has developed in recent years, uses late-night electricity to produce carbon dioxide. Hydropower and nuclear power, which do not have gas problems, have not been increased even slightly to make them useful for environmental measures.

(ニ)問題を解決するための手段 本発明を図面によって説明すると、第1図において、こ
れは全体系統図であって、1はガスタービンのエキスパ
ンダーである。
(d) Means for Solving the Problems The present invention will be explained with reference to the drawings. Fig. 1 is an overall system diagram, and numeral 1 indicates an expander of a gas turbine.

ただし、この場合はコンプレ・ンサーを必要とせず、燃
焼室とエキスパンダー1より成っている。2は燃焼室で
ある。3は発電機である。4は燃料配管である。5は高
圧空気配管である。6は空気予熱機であり、エキスパン
ダー1の排カスと熱交換して加熱する。7は液体空気タ
ンクであり、極低温の断熱構造で、LNGタンクと同様
な構造とする。
However, in this case, there is no need for a compressor, and the engine consists of a combustion chamber and an expander 1. 2 is a combustion chamber. 3 is a generator. 4 is a fuel pipe. 5 is a high pressure air pipe. 6 is an air preheater, which exchanges heat with waste waste from the expander 1 to heat it. 7 is a liquid air tank, which has a cryogenically insulated structure similar to that of an LNG tank.

8は加圧ポンプであり、圧力を百気圧以上に上昇する。8 is a pressure pump that increases the pressure to over 100 atmospheres.

9は蒸発器であり、熱交換によって、液体空気を蒸発せ
しめ気体化する。
Reference numeral 9 denotes an evaporator, which evaporates and gasifies liquid air by heat exchange.

10は空気液化装置であって、深夜電力を利用して、空
気を液化する。11は冷熱蓄熱槽であって、蒸発器9で
発生する冷熱を蓄えるものである。これは砕石やセラミ
ック、煉瓦の成型品などで構成する。12は温熱蓄熱槽
であり、空気液化装置10でコンプレッサーの作動で発
生する熱を蓄える。これは温水槽などで構成する。
10 is an air liquefaction device that liquefies air using late-night electricity. Reference numeral 11 denotes a cold heat storage tank, which stores the cold heat generated in the evaporator 9. This will consist of crushed stone, ceramics, and molded bricks. Reference numeral 12 denotes a thermal storage tank, which stores heat generated by the operation of the compressor in the air liquefaction device 10. This consists of a hot water tank, etc.

(ホ)作用 普通力゛スタービンはエキスパンダーとコンプレッサー
より成立し、高温圧力ガスがエキスパンダーで膨張して
発生する動力の内、約60%が、同軸で駆動されるコン
プレッサーに消費され、残りの約40%が有効出力とし
て出てくるのである。
(e) Normal operating power: The turbine is made up of an expander and a compressor. Of the power generated when high-temperature gas expands in the expander, approximately 60% is consumed by the compressor driven coaxially, and the remaining approximately 40% is consumed by the compressor, which is driven coaxially. % comes out as effective output.

このためコンプレッサーの動力削減がカスタービンの効
率改善の鍵となっている。
Therefore, reducing the power of the compressor is the key to improving the efficiency of the cast turbine.

深夜電力を利用して圧縮空気を製造して、これを鉱山の
廃坑に蓄えて、昼間ピーク時にカスタービンの燃焼空気
とし・で利用するシステムでは、昼間のピーク時に限定
すると、コンプレッサーの動力が不要で、発電効率が7
0%程度の高い値となる。
In a system that uses late-night electricity to produce compressed air, stores it in an abandoned mine shaft, and uses it as combustion air for the Kasturbine during the daytime peak hours, compressor power is not required during the daytime peak hours. So, the power generation efficiency is 7
The value is as high as 0%.

ただし、この時は燃焼室2に一定の規定圧で供給するた
め、この規定圧より相当高く蓄圧して、使用時に一定圧
に減圧する、損失の多い方法によるか、または別の海水
や河川、湖沼水などの水柱により、規定圧に加圧する大
規模で厄介な方法となる。
However, in this case, in order to supply the combustion chamber 2 at a constant specified pressure, it is necessary to accumulate the pressure considerably higher than this specified pressure and reduce the pressure to a constant pressure during use, which is a method with high loss, or to use another method such as seawater, rivers, etc. This is a large-scale and cumbersome method of pressurizing a water column, such as lake water, to a specified pressure.

本発明では、空気を液化するので、その体積は、大気圧
の空気の数百分の一程度となり、加圧は必要なく、−1
63°Cの極低温の近年発達したLNGタンクを、その
まま利用出来る。第1図の液体空気タンク7が、これで
ある。
In the present invention, since the air is liquefied, its volume is approximately one hundredth of that of air at atmospheric pressure, and there is no need for pressurization.
LNG tanks, which have been developed in recent years and have a cryogenic temperature of 63°C, can be used as is. This is the liquid air tank 7 shown in FIG.

つぎに液体空気の昇圧はタービンポンプで可能で、コン
プレッサーと異なり、小動力で効率よく高圧まで加圧で
きる。これは液体で高密度、小体積であるためで、加圧
ポンプ8で示される。
Next, the pressure of liquid air can be increased using a turbine pump, which, unlike a compressor, can efficiently increase the pressure to high pressure with a small amount of power. This is because it is a liquid with high density and small volume, and is indicated by a pressurizing pump 8.

このため普通のガスタービンでは、コンプレッサーでの
昇圧はlO気圧程度であり、試験的な特殊なもので、3
0気圧程度であるが、本発明では100気圧以上に効率
よく昇圧できて、ガスタービンのエキスパンダー1で、
充分に膨張できて、低温まで動力化され、空気液化の動
力を別途とすれは、80%程度の発電効率まで可能性が
ある。
For this reason, in a normal gas turbine, the pressure increase in the compressor is about 10 atmospheres, and this is a special experimental type.
Although the pressure is approximately 0 atm, the present invention can efficiently increase the pressure to over 100 atm, and the expander 1 of the gas turbine can
If it can be expanded sufficiently, powered down to low temperatures, and separately powered for air liquefaction, it is possible to achieve a power generation efficiency of about 80%.

また百気圧以上の圧力のため、再熱サイクルも有利に利
用され、効率上昇に役立てられる。さらに液体空気の蒸
発器9は熱交換器であり、循環空気などの2次媒体によ
り、冷熱蓄熱槽11と熱交換して、液体空気を蒸発せし
め、冷熱蓄熱槽11の温度を下げ、冷熱が蓄積される。
Furthermore, since the pressure is over 100 atmospheres, reheating cycles are also advantageously used to increase efficiency. Further, the liquid air evaporator 9 is a heat exchanger, which exchanges heat with the cold heat storage tank 11 using a secondary medium such as circulating air, evaporates the liquid air, lowers the temperature of the cold heat storage tank 11, and cools the cold heat storage tank 11. Accumulated.

この冷熱は、空気液化装置10の吸入空気の予冷に使用
できて、コンプレッサーの動力消費を減じ、液体空気製
造の電力原単位を低下せしめられる。また立地条件によ
っては、LNGの冷熱を空気液化に利用して、電力消費
を減する可能性もある。
This cold energy can be used to pre-cool the intake air of the air liquefaction device 10, reducing the power consumption of the compressor and lowering the power consumption rate for liquid air production. Depending on the location, the cold energy of LNG may also be used to liquefy air, reducing power consumption.

さらに余剰の冷熱は地域冷房に活用でき、本発明は地域
冷房のコジェネプラントに適している。
Furthermore, surplus cooling energy can be utilized for district cooling, and the present invention is suitable for a cogeneration plant for district cooling.

また空気液化装置10のコンプレッサーの圧縮廃熱を蓄
える温熱蓄熱槽12の熱やエキスパンダー1の廃熱など
も、やはり地域暖房の給湯、暖房用に利用でき、冷熱と
相持って地域暖冷房のコジェネプラントとして適性があ
るのではなかろうか。
In addition, the heat of the thermal storage tank 12 that stores the compressed waste heat of the compressor of the air liquefaction device 10 and the waste heat of the expander 1 can also be used for hot water supply and space heating for district heating, and together with cold energy, they can be used to co-generate district heating and cooling. I think it might be suitable as a plant.

なお空気液化を少し進めると、酸素液化プラントとなる
ので、本発明も、液体酸素利用のものとなり、その容積
が1ノ5程度に小さくなり、液体空気タンク7の大きさ
が、大幅に縮小できる。ただし燃焼温度が上がりすぎる
ので温度調整のため水噴射を必要とする。
Note that if air liquefaction is advanced a little, it becomes an oxygen liquefaction plant, so the present invention also uses liquid oxygen, and the volume is reduced to about 1 to 5, and the size of the liquid air tank 7 can be significantly reduced. . However, since the combustion temperature rises too much, water injection is required to adjust the temperature.

このため作動ガスは炭酸カスと水蒸気の混合ガスとなる
Therefore, the working gas becomes a mixed gas of carbon dioxide scum and water vapor.

(へ)発明の効果 深夜電力が活用され、深夜電力が原子力、水力など、非
化石エネルギーによるものが多いとすれは、炭酸ガスに
関係しないものであり、これによって昼間ピークの電力
が、高効率に発生できて、炭酸ガス問題に有利である本
発明は鉱山の廃坑のあるような地方ではなく、都心に立
地できるので、コジェネプラントとして適している。さ
らに廃温熱のみならず、廃冷熱が地域暖冷房に活用され
、冷房用の冷凍機も不要となる長所がある。
(f) Effects of the invention If late-night electricity is utilized and most of the late-night electricity comes from non-fossil energy sources such as nuclear power and hydropower, this is not related to carbon dioxide gas, and as a result, daytime peak electricity can be used with high efficiency. The present invention, which is advantageous in solving the carbon dioxide problem, is suitable as a cogeneration plant because it can be located in the city center rather than in rural areas where there are abandoned mine shafts. Furthermore, not only waste heat but also waste cold energy is utilized for district heating and cooling, which has the advantage of eliminating the need for a refrigerator for cooling.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は全体系統図、1はカスタービンのエキスパンダ
ー、7は液体空気タンク、10は空気液化装置である。
FIG. 1 is an overall system diagram, where 1 is an expander of a cast turbine, 7 is a liquid air tank, and 10 is an air liquefier.

Claims (1)

【特許請求の範囲】[Claims] 深夜電力を利用して、液体空気または液体酸素を製造貯
蔵し、昼間に、これをポンプにより高圧に昇圧して後に
、気化せしめてガスタービン燃焼室に導き、これに燃料
を噴射して燃焼せしめ、高温高圧ガスを得て、ガスター
ビンエキスパンダーで膨張せしめて動力を発生する、液
体空気ガスタービン。
Liquid air or liquid oxygen is produced and stored using electricity late at night, and during the day, it is boosted to high pressure by a pump, then vaporized and introduced into the gas turbine combustion chamber, where it is injected with fuel and combusted. A liquid air gas turbine that generates power by obtaining high-temperature, high-pressure gas and expanding it in a gas turbine expander.
JP32411590A 1990-11-26 1990-11-26 Liquid air gas turbine Pending JPH04191419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32411590A JPH04191419A (en) 1990-11-26 1990-11-26 Liquid air gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32411590A JPH04191419A (en) 1990-11-26 1990-11-26 Liquid air gas turbine

Publications (1)

Publication Number Publication Date
JPH04191419A true JPH04191419A (en) 1992-07-09

Family

ID=18162324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32411590A Pending JPH04191419A (en) 1990-11-26 1990-11-26 Liquid air gas turbine

Country Status (1)

Country Link
JP (1) JPH04191419A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07198144A (en) * 1993-12-30 1995-08-01 Kawasaki Heavy Ind Ltd Device for producing high-temperature high-pressure gas for driving turbine
US6920759B2 (en) 1996-12-24 2005-07-26 Hitachi, Ltd. Cold heat reused air liquefaction/vaporization and storage gas turbine electric power system
CN101865033A (en) * 2009-01-05 2010-10-20 通用电气公司 Method for expanding compressor discharge bleed air
EP2397668A2 (en) 2010-06-17 2011-12-21 Air Products and Chemicals, Inc. Method and system for periodic cooling, storing, and heating of atmospheric gas
EP2397669A2 (en) 2010-06-17 2011-12-21 Air Products and Chemicals, Inc. Method and system for periodic cooling, storing and heating with multiple regenerators
WO2012047572A2 (en) 2010-09-27 2012-04-12 Air Products And Chemicals, Inc. Method and system to produce electric power
JP2018168745A (en) * 2017-03-29 2018-11-01 株式会社神戸製鋼所 Compressed air storage power generation device
JP2018168746A (en) * 2017-03-29 2018-11-01 株式会社神戸製鋼所 Compressed air storage power generation device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07198144A (en) * 1993-12-30 1995-08-01 Kawasaki Heavy Ind Ltd Device for producing high-temperature high-pressure gas for driving turbine
US6920759B2 (en) 1996-12-24 2005-07-26 Hitachi, Ltd. Cold heat reused air liquefaction/vaporization and storage gas turbine electric power system
CN101865033A (en) * 2009-01-05 2010-10-20 通用电气公司 Method for expanding compressor discharge bleed air
EP2397668A2 (en) 2010-06-17 2011-12-21 Air Products and Chemicals, Inc. Method and system for periodic cooling, storing, and heating of atmospheric gas
EP2397669A2 (en) 2010-06-17 2011-12-21 Air Products and Chemicals, Inc. Method and system for periodic cooling, storing and heating with multiple regenerators
WO2012047572A2 (en) 2010-09-27 2012-04-12 Air Products And Chemicals, Inc. Method and system to produce electric power
JP2018168745A (en) * 2017-03-29 2018-11-01 株式会社神戸製鋼所 Compressed air storage power generation device
JP2018168746A (en) * 2017-03-29 2018-11-01 株式会社神戸製鋼所 Compressed air storage power generation device
CN110462181A (en) * 2017-03-29 2019-11-15 株式会社神户制钢所 Compressed-air energy storage power generator
US10794279B2 (en) 2017-03-29 2020-10-06 Kobe Steel, Ltd. Compressed air energy storage power generation device
US10954852B2 (en) 2017-03-29 2021-03-23 Kobe Steel, Ltd. Compressed air energy storage power generation device

Similar Documents

Publication Publication Date Title
Liu et al. Performance analysis of a novel combined cooling, heating and power system based on carbon dioxide energy storage
US4329842A (en) Power conversion system utilizing reversible energy of liquefied natural gas
US9217423B2 (en) Energy storage system using supercritical air
CN102758689B (en) Ultra-supercritical air energy storage/release system
US10100979B2 (en) Liquid air as energy storage
CN108533476A (en) A kind of heat pump supercritical air energy storage system
Kaneko et al. Utilization of the cryogenic exergy of LNG by a mirror gas-turbine
RU2009106714A (en) METHOD AND DEVICE FOR EFFICIENT AND LOW-TOXIC OPERATION OF POWER PLANTS, AND ALSO FOR ACCUMULATION AND ENERGY CONVERSION
US4227374A (en) Methods and means for storing energy
CN105736056B (en) Liquid air energy storage system
Najjar et al. Using novel compressed‐air energy storage systems as a green strategy in sustainable power generation–a review
CN108240242A (en) A kind of Novel cold-storage liquefied air energy-storing and power-generating system
Łaciak et al. Possibilities of Liquefied Natural Gas (LNG) use for power generation
Nabil et al. Review of energy storage technologies for compressed-air energy storage
CN116006292A (en) Liquefied air energy storage system coupling LNG cold energy, ORC technology and natural heat source and working method of liquefied air energy storage system
JPH04191419A (en) Liquid air gas turbine
JPH04127850A (en) Liquid air storage power generating system
Oshima et al. The utilization of LH2 and LNG cold for generation of electric power by a cryogenic type Stirling engine
US10508596B2 (en) System and method for liquid air energy storage
CN104420996A (en) Liquid air energy accumulation system
JPH0333890B2 (en)
US10690013B2 (en) System and method for liquid air energy storage
US11598261B2 (en) Re-condensing power cycle for fluid regasification
JPH11159342A (en) Energy storage type gas turbine generation system
Chen et al. Application Status and Development Prospect of Liquid Air Energy Storage