JPH04191301A - Iron-based powder mixed material for powder meatallurgy - Google Patents

Iron-based powder mixed material for powder meatallurgy

Info

Publication number
JPH04191301A
JPH04191301A JP2318083A JP31808390A JPH04191301A JP H04191301 A JPH04191301 A JP H04191301A JP 2318083 A JP2318083 A JP 2318083A JP 31808390 A JP31808390 A JP 31808390A JP H04191301 A JPH04191301 A JP H04191301A
Authority
JP
Japan
Prior art keywords
powder
iron
based powder
zinc
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2318083A
Other languages
Japanese (ja)
Inventor
Kuniaki Ogura
邦明 小倉
Shigeaki Takagi
高城 重彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2318083A priority Critical patent/JPH04191301A/en
Publication of JPH04191301A publication Critical patent/JPH04191301A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an iron-based powder mixed material for powder metallurgy excellent in fluidity, high compressibility and formability by adding lead stearate and zinc olein to the iron-based powder or the mixed powder of iron-based powder and powder for alloy. CONSTITUTION:The lead stearate and the zinc olein are added as a lubricator to the iron-based powder or the mixed powder of iron-based powder and powder for alloy. Water atomized iron powder for powder metallurgy, alloy steel powder, etc., as the above-mentioned iron-based powder and graphite powder, electrolytic copper powder, etc., as the powder for alloy are used. The above-mentioned lubricator is used preliminarily mixing the iron-based powder, the mixed powder, etc., and this adding quantity is preferable to be 0.2-2.5wt.%. The iron-based powder mixed material for powder metallurgy obtd. with this has the excellent compressibility and formability together with the fluidity and is compacted in a die to obtain a good green compact. Further, at the time of heating for sintering this green compact, the above-mentioned lubricator is easily decomposed and separated.

Description

【発明の詳細な説明】 〔産業上の利用分野1 本発明は粉末冶金用鉄系粉末混合物に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application 1] The present invention relates to an iron-based powder mixture for powder metallurgy.

〔従来の技術] 粉末冶金用鉄系粉末混合物の流動性は圧縮性と成形性と
同様に、高密度、高強度の焼結体の製造に不可決の特性
である。すなわち、原料の粉末混合物が流動することが
複雑な形状の部品を成形する時に重要で、圧縮性と成形
性を損なわずに流動性を向上させる潤滑剤およびその添
加方法は、従来、種々検討されてきた。
[Prior Art] The fluidity of iron-based powder mixtures for powder metallurgy, like compressibility and formability, is an essential characteristic for producing high-density, high-strength sintered bodies. In other words, the fluidity of the raw powder mixture is important when molding parts with complex shapes, and various studies have been conducted on lubricants and methods of adding them that improve fluidity without impairing compressibility and moldability. It's here.

例えば、特公昭63−16441号公報にはステアリン
酸亜鉛を加熱溶融して添加する方法が、特開昭52−3
3810号公報には有機液体潤滑剤を含有するマイクロ
カプセルを固体潤滑剤で被覆したものを添加する方法が
示されている。
For example, Japanese Patent Publication No. 63-16441 describes a method of heating and melting zinc stearate and adding it.
No. 3810 discloses a method of adding microcapsules containing an organic liquid lubricant coated with a solid lubricant.

しかし、ステアリン酸亜鉛を用いる方法では、流動性の
改善は認められるものの、圧縮性はステアリン酸亜鉛を
常温で混合添加した場合より僅かしか向上していない。
However, in the method using zinc stearate, although the fluidity is improved, the compressibility is only slightly improved compared to the case where zinc stearate is mixed and added at room temperature.

また、マイクロカプセルを固体潤滑剤で被覆して用いる
方法では、圧縮性の向上はわずかで、流動性も30秒1
50g以上であり、20秒750g以下の実用的な流動
性が得られていない。
In addition, with the method of using microcapsules coated with a solid lubricant, the compressibility improved only slightly and the fluidity decreased by 30 seconds.
50 g or more, and practical fluidity of 750 g or less for 20 seconds has not been obtained.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、上述のように従来技術では困難であった、流
動性と圧縮性及び成形性の向上を同時に可能しようとす
るものである。
The present invention aims to simultaneously improve fluidity, compressibility, and moldability, which has been difficult with the prior art as described above.

[課題を解決するための手段1 本発明は上記課題を解決するために、鉄系粉末、又は鉄
系粉末と合金用粉末との混合粉末に、ステアリン酸鉛又
はオレイン酸亜鉛を添加したことを特徴どする粉末冶金
用鉄系粉末混合物を提供するもので、ステアリン酸鉛又
はオレイン酸亜鉛の添加量が、鉄系粉末、又は鉄系粉末
と合金用粉末との混合粉末に対して0.2〜2.5重量
%であることが好ましい。
[Means for Solving the Problems 1] In order to solve the above problems, the present invention provides that lead stearate or zinc oleate is added to an iron-based powder or a mixed powder of an iron-based powder and an alloying powder. The present invention provides an iron-based powder mixture for powder metallurgy, in which the amount of lead stearate or zinc oleate added is 0.2 to the iron-based powder or the mixed powder of iron-based powder and alloying powder. It is preferably 2.5% by weight.

〔作用〕[Effect]

潤滑剤で金属粉末粒子表面をコーティングする理由は、
金属粉末と混合させた時の潤滑剤の偏析を防ぎ、加圧成
形時に各金属粉末粒子間の接触点、及び金属粉末粒子と
金型内面との接触点で均一に効果的に潤滑作用を起こさ
せ、流動性、圧縮性、成形性の向上をはかるためである
The reason for coating the surface of metal powder particles with lubricant is
It prevents segregation of the lubricant when mixed with metal powder, and causes a uniform and effective lubrication effect at the contact points between each metal powder particle and the contact point between the metal powder particle and the inner surface of the mold during pressure molding. This is to improve fluidity, compressibility, and moldability.

本発明においては、潤滑剤はステアリン酸鉛もしくはオ
レイン酸亜鉛を用いる。これ等の潤滑剤は、鉄系粉末、
又は鉄系粉末と合金用粉末との混合粉末に予め混合され
て用いられ、型内での加圧成形時の摩擦熱により溶融し
金属粉末表面をコーティングして、金属粉末間の潤滑及
び金型おもにダイ内面との間で潤滑作用をする。
In the present invention, lead stearate or zinc oleate is used as the lubricant. These lubricants include iron-based powder,
Alternatively, it is used by pre-mixing a mixed powder of iron-based powder and alloying powder, and is melted by the frictional heat during pressure molding in the mold and coats the metal powder surface, providing lubrication between the metal powders and molding. Mainly acts as a lubricant with the inner surface of the die.

ステアリン酸鉛もしくはオレイン酸亜鉛を用いる理由は
、これ等の潤滑剤の融点が75℃以上。
The reason why lead stearate or zinc oleate is used is that the melting point of these lubricants is 75°C or higher.

90℃以下で、融点が90℃より上では摩擦熱による潤
滑剤の溶融潤滑作用が弱くなり、金属粉末間の潤滑及び
金型おもにダイ内面との間の潤滑作用が低下するからで
ある。また融点が75℃未満では金属粉末と予め混合さ
れた混合物の流動性が得られなくなるからである。
This is because if the temperature is below 90°C and the melting point is above 90°C, the melting lubrication effect of the lubricant due to frictional heat will be weakened, and the lubrication effect between the metal powders and the lubrication effect between the mold and the inner surface of the die will be reduced. Further, if the melting point is lower than 75°C, the fluidity of the mixture pre-mixed with the metal powder cannot be obtained.

また、融点以外にこれらは構成元素の大半がC10、H
で構成されるため、混合物の成形体を加熱焼結する時に
潤滑剤が容易に分解し成形体から離脱するからである。
In addition to the melting point, most of the constituent elements are C10, H
This is because when the molded body of the mixture is heated and sintered, the lubricant easily decomposes and separates from the molded body.

潤滑剤の添加量が過少な場合は流動性が劣り、過多な場
合は圧縮性や成形性が低下することは従来から知られて
いる通りで、本発明におけるステアリン酸鉛又はオレイ
ン酸亜鉛の添加量は前記金属粉末に対し0.2〜2.5
重量%が好ましく、従来のステアリン酸亜鉛などに比べ
圧縮性や成形性が優れるため、より少ない潤滑剤添加量
で成形が可能になり経済的である利点がある。
It has been known that if the amount of lubricant added is too small, the fluidity will be poor, and if it is too much, the compressibility and formability will be reduced. The amount is 0.2 to 2.5 based on the metal powder.
% by weight is preferable, and since it has superior compressibility and moldability compared to conventional zinc stearate, etc., it has the advantage of being economical because it can be molded with a smaller amount of lubricant added.

なお、本発明における鉄系粉末としては、粉末冶金用水
アトマイズ鉄粉、合金銅粉等が、合金用粉末としては、
黒鉛粉、電解銅粉が使用される。
In addition, the iron-based powder in the present invention includes water atomized iron powder for powder metallurgy, alloy copper powder, etc., and the alloy powder includes:
Graphite powder and electrolytic copper powder are used.

〔実施例〕〔Example〕

実施例1.2 比較例1〜9 粉末冶金用水アトマイズ鉄粉に、実施例1としてオレイ
ン酸亜鉛を、実施例2としてステアリン酸鉛をそれぞれ
0.5重量%加えて粉末混合物とし、これを120℃で
10分間加加熱台した。
Example 1.2 Comparative Examples 1 to 9 0.5% by weight of zinc oleate as Example 1 and 0.5% by weight of lead stearate as Example 2 were added to water atomized iron powder for powder metallurgy to form a powder mixture. The mixture was heated on a heating stand at ℃ for 10 minutes.

また、比較例1としてオレイン酸、比較例2としてオレ
イン酸鉛、比較例3としてオレイン酸銅、比較例4とし
てオレイン酸ニッケル、比較例5としてステアリン酸、
比較例6としてステアリン酸亜鉛、比較例7としてステ
アリン酸銅、比較例8としてステアリン酸ニッケル、比
較例9としてワックスのエチレン・ビスステアリン酸ア
マイドを、実施例1と同一の方法で鉄粉と混合した。
In addition, oleic acid as Comparative Example 1, lead oleate as Comparative Example 2, copper oleate as Comparative Example 3, nickel oleate as Comparative Example 4, stearic acid as Comparative Example 5,
Zinc stearate as Comparative Example 6, copper stearate as Comparative Example 7, nickel stearate as Comparative Example 8, and ethylene bisstearamide wax as Comparative Example 9 were mixed with iron powder in the same manner as in Example 1. did.

第1表に実施例1.2.比較例1〜9に用いた潤滑剤の
融点と、その鉄粉との加熱混合物の流動層、7 t /
 c rr1″の成形圧力での圧粉密度及び圧粉抗折力
を示す。
Table 1 shows Examples 1.2. The melting point of the lubricant used in Comparative Examples 1 to 9 and the fluidized bed of the heated mixture with iron powder, 7 t/
The green powder density and green powder transverse rupture strength at a molding pressure of cr rr1'' are shown.

実施例1.2は融点が75℃以上、90℃以下のため、
比較例16に示す従来の潤滑剤より優れた流動層、圧粉
密度及び圧粉体抗折力が得られた。特に、オレイン酸亜
鉛は圧粉密度の向上が著しく、かっ80kgf/crn
″以上の圧粉体抗折力の向上が得られた。
Example 1.2 has a melting point of 75°C or higher and 90°C or lower, so
A fluidized bed, green powder density, and green compact transverse rupture strength superior to those of the conventional lubricant shown in Comparative Example 16 were obtained. In particular, zinc oleate has a remarkable improvement in green density, reaching 80 kgf/crn.
The transverse rupture strength of the green compact was improved by more than 20%.

しかし、比較例1.2.3.4はいずれも融点が75℃
未満のため流動性が得られず、比較例16に示す従来の
ステアリン酸亜鉛より劣るものであった。また、比較例
5.6.7.8.9は融点が90℃を越えるため、流動
層、圧縮性、圧粉体抗折力の同時向上が得られなかった
However, in Comparative Examples 1, 2, 3, and 4, the melting point was 75°C.
Since the amount of zinc stearate was less than that, fluidity could not be obtained, and the result was inferior to the conventional zinc stearate shown in Comparative Example 16. Furthermore, since the melting point of Comparative Example 5.6.7.8.9 exceeded 90° C., it was not possible to simultaneously improve the fluidized bed, compressibility, and transverse rupture strength of the green compact.

比較例10〜15 実施例1と同一の鉄粉に実施例1と同様の方法で、ただ
し、潤滑剤に含有炭素量の異なる脂肪酸の亜鉛石鹸を、
比較例10としてカプリル酸亜鉛、比較例11としてカ
プリン酸亜鉛、比較例12としてラウリン酸亜鉛、比較
例13としてミリスチン酸亜鉛、比較例14としてパル
ミチン酸亜鉛、比較例15としてベヘン酸亜鉛を用いた
Comparative Examples 10 to 15 The same method as in Example 1 was applied to the same iron powder as in Example 1, except that fatty acid zinc soap with a different carbon content was used as a lubricant.
Zinc caprylate was used as Comparative Example 10, zinc caprate was used as Comparative Example 11, zinc laurate was used as Comparative Example 12, zinc myristate was used as Comparative Example 13, zinc palmitate was used as Comparative Example 14, and zinc behenate was used as Comparative Example 15. .

第2表に比較例10〜15に用いた潤滑剤の融点と、そ
の鉄粉との混合物の流動層、7 t / c rrI″
の成形圧力での圧粉密度及び圧粉体抗折力を示す。いず
れも、融点が130℃前後で90℃以上あるため、圧縮
性の向上がなかった。
Table 2 shows the melting points of the lubricants used in Comparative Examples 10 to 15 and the fluidized bed of the mixture with iron powder, 7 t/c rrI''
The green density and transverse rupture strength of the green compact at the molding pressure are shown. In either case, the melting point was around 130°C and higher than 90°C, so there was no improvement in compressibility.

実施例3 比較例16〜17 実施例1と同様に鉄粉に潤滑剤を添加し、常温で10分
間混合した。ただし、潤滑剤は実施例3としてオレイン
酸亜鉛、比較例16として従来のステアリン亜鉛、比較
例17としてオレイン酸のマイクロカプセルを20重量
%のステアリン酸亜鉛で被覆したものを添加した。
Example 3 Comparative Examples 16-17 A lubricant was added to iron powder in the same manner as in Example 1, and the mixture was mixed at room temperature for 10 minutes. However, the lubricants used were zinc oleate in Example 3, conventional zinc stearate in Comparative Example 16, and oleic acid microcapsules coated with 20% by weight of zinc stearate in Comparative Example 17.

第3表に、実施例3、比較例16〜17に用いた潤滑剤
の鉄粉との混合物の流動層、7 t / c tT1″
の成形圧力での圧粉密度及び圧粉体抗折力を示す。実施
例3はオレイン酸亜鉛を用いているため、常温混合にて
も高い圧縮性、圧粉体抗折力の向上が得られ、かつ流動
性も向上した。比較例17は流動性がきわめて劣った。
Table 3 shows the fluidized bed of the mixture of lubricant and iron powder used in Example 3 and Comparative Examples 16 to 17, 7 t/ct T1''
The green density and transverse rupture strength of the green compact at the molding pressure are shown. In Example 3, since zinc oleate was used, high compressibility and improvement in transverse rupture strength of the green compact were obtained even when mixed at room temperature, and fluidity was also improved. Comparative Example 17 had extremely poor fluidity.

実施例4〜8 実施例1と同様の方法で、ただし、オレイン酸亜鉛の添
加量を実施例4は0,2重量%、実施例5は0.3重量
%、実施例6は1.0重量%、実施例7は1.5重量%
、実施例8は2.0重量%とした。
Examples 4 to 8 Same method as Example 1, except that the amount of zinc oleate added was 0.2% by weight in Example 4, 0.3% by weight in Example 5, and 1.0% in Example 6. % by weight, Example 7 is 1.5% by weight
In Example 8, the content was 2.0% by weight.

第4表に実施例4〜8に用いた潤滑剤の融点と、その混
合物の流動層、7 t / c rn”の成形圧力での
圧粉密度及び圧粉体抵抗力を示した。いずれも流動層、
圧粉密度及び圧粉体抗折力が向上した。
Table 4 shows the melting points of the lubricants used in Examples 4 to 8, and the compact density and compact resistance of the mixtures in a fluidized bed and at a molding pressure of 7 t/crn''. fluidized bed,
The compact density and transverse rupture strength of the compact were improved.

なお、オレイン酸亜鉛に替えてステアリン酸鉛を用いて
もほぼ同様な結果が得られた。
Note that almost similar results were obtained even when lead stearate was used in place of zinc oleate.

実施例9〜11 比較例18〜20 鉄系粉末に実施例1と同様の方法でオレイン酸亜鉛を潤
滑剤として加えた。ただし、実施例9は鉄粉に合金用粉
末として黒鉛粉末を0.8重量%添加して混合粉末とし
、実施例10は鉄粉に合金用粉末として電解銅粉を1.
0重量%加えて混合粉末とし、実施例11は鉄粉に替え
て1,0重量%Ni、0.3重量%Cu、0.2重量%
MOを合金化した鉄系粉末を用いた。
Examples 9-11 Comparative Examples 18-20 Zinc oleate was added as a lubricant to iron-based powder in the same manner as in Example 1. However, in Example 9, 0.8% by weight of graphite powder was added as an alloying powder to the iron powder to form a mixed powder, and in Example 10, 1.8% by weight of electrolytic copper powder was added to the iron powder as an alloying powder.
0% by weight was added to make a mixed powder, and in Example 11, 1.0% by weight Ni, 0.3% by weight Cu, and 0.2% by weight were added in place of iron powder.
Iron-based powder alloyed with MO was used.

また、実施例9〜11に用いたオレイン酸亜鉛に賛えて
ステアリン酸亜鉛を用いて比較例18〜20とした。各
実施例は比較例に比し、いずれも第5表に示すような高
い圧縮性と圧粉体抗折力が流動性と合わせて得られた。
Moreover, in addition to the zinc oleate used in Examples 9 to 11, zinc stearate was used in Comparative Examples 18 to 20. As compared to the comparative example, each of the examples achieved high compressibility and transverse rupture strength of the green compact as shown in Table 5, together with fluidity.

[発明の効果] 本発明は流動性に優れた高圧縮性、高成形性の粉末冶金
用鉄系粉末混合物を提供することができ、高密度、高強
度の焼結部品の製造を作業性よく達成することが可能と
なる。
[Effects of the Invention] The present invention can provide an iron-based powder mixture for powder metallurgy that has excellent fluidity, high compressibility, and high formability, and facilitates the production of high-density, high-strength sintered parts. It becomes possible to achieve this.

Claims (1)

【特許請求の範囲】 1 鉄系粉末、又は鉄系粉末と合金用粉末との混合粉末
に、ステアリン酸鉛又はオレイン酸亜鉛を添加したこと
を特徴とする粉末冶金用鉄系粉末混合物。 2 ステアリン酸鉛又はオレイン酸亜鉛の添加量が、鉄
系粉末、又は鉄系粉末と合金用粉末との混合粉末に対し
て0.2〜2.5重量%である請求項1記載の粉末冶金
用鉄系粉末混合物。
[Scope of Claims] 1. An iron-based powder mixture for powder metallurgy, characterized in that lead stearate or zinc oleate is added to an iron-based powder or a mixed powder of an iron-based powder and an alloying powder. 2. Powder metallurgy according to claim 1, wherein the amount of lead stearate or zinc oleate added is 0.2 to 2.5% by weight based on the iron-based powder or the mixed powder of iron-based powder and alloying powder. Iron-based powder mixture for use.
JP2318083A 1990-11-26 1990-11-26 Iron-based powder mixed material for powder meatallurgy Pending JPH04191301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2318083A JPH04191301A (en) 1990-11-26 1990-11-26 Iron-based powder mixed material for powder meatallurgy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2318083A JPH04191301A (en) 1990-11-26 1990-11-26 Iron-based powder mixed material for powder meatallurgy

Publications (1)

Publication Number Publication Date
JPH04191301A true JPH04191301A (en) 1992-07-09

Family

ID=18095292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2318083A Pending JPH04191301A (en) 1990-11-26 1990-11-26 Iron-based powder mixed material for powder meatallurgy

Country Status (1)

Country Link
JP (1) JPH04191301A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006025187A1 (en) * 2004-08-30 2006-03-09 Nippon Mining & Metals Co., Ltd. Metal powder for powder metallurgy mainly containing iron and iron-base sintered material
JPWO2006025188A1 (en) * 2004-08-30 2008-07-31 日鉱金属株式会社 Iron-based sintered metal powder and metal powder for powder metallurgy
CN102649156A (en) * 2012-03-09 2012-08-29 成都邦普合金材料有限公司 Method for adding hard alloy mixture paraffin wax shaping agent
CN103602849A (en) * 2013-10-10 2014-02-26 铜陵新创流体科技有限公司 Copper-based alloy sliding-bearing material and preparation method thereof
CN104550920A (en) * 2014-12-25 2015-04-29 铜陵市经纬流体科技有限公司 Iron-based powder metallurgy material used for high-hardness valve and preparation method of iron-based powder metallurgy material
CN107598157A (en) * 2017-09-20 2018-01-19 建德市易通金属粉材有限公司 Auto parts machinery bonds mixed powder and preparation method thereof with segregation-free iron copper carbon

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006025187A1 (en) * 2004-08-30 2006-03-09 Nippon Mining & Metals Co., Ltd. Metal powder for powder metallurgy mainly containing iron and iron-base sintered material
JPWO2006025187A1 (en) * 2004-08-30 2008-07-31 日鉱金属株式会社 Iron-based sintered metal powder and metal powder for powder metallurgy
JPWO2006025188A1 (en) * 2004-08-30 2008-07-31 日鉱金属株式会社 Iron-based sintered metal powder and metal powder for powder metallurgy
US7666245B2 (en) 2004-08-30 2010-02-23 Nippon Mining & Metals Co., Ltd. Metallic powder for powder metallurgy whose main component is iron and iron-based sintered body
US7691172B2 (en) 2004-08-30 2010-04-06 Nippon Mining & Metals Co., Ltd. Metallic powder for powder metallurgy whose main component is iron and iron-based sintered body
JP4745240B2 (en) * 2004-08-30 2011-08-10 Jx日鉱日石金属株式会社 Metal powder for powder metallurgy mainly composed of iron and iron-based sintered body
JP4745239B2 (en) * 2004-08-30 2011-08-10 Jx日鉱日石金属株式会社 Metal powder for powder metallurgy mainly composed of iron and iron-based sintered body
CN102649156A (en) * 2012-03-09 2012-08-29 成都邦普合金材料有限公司 Method for adding hard alloy mixture paraffin wax shaping agent
CN103602849A (en) * 2013-10-10 2014-02-26 铜陵新创流体科技有限公司 Copper-based alloy sliding-bearing material and preparation method thereof
CN104550920A (en) * 2014-12-25 2015-04-29 铜陵市经纬流体科技有限公司 Iron-based powder metallurgy material used for high-hardness valve and preparation method of iron-based powder metallurgy material
CN107598157A (en) * 2017-09-20 2018-01-19 建德市易通金属粉材有限公司 Auto parts machinery bonds mixed powder and preparation method thereof with segregation-free iron copper carbon

Similar Documents

Publication Publication Date Title
JP3004725B2 (en) Method for producing lubricating metallurgical powder composition
US20010035069A1 (en) Powder composition
US5135566A (en) Iron base powder mixture and method
WO2001032337A1 (en) Lubricating agent for mold at elevated temperature, iron-based powder composition for elevated temperature compaction with lubricated mold and high density formed product from iron-based powder composition, and method for producing high density iron-based sintered compact
JP2002504188A (en) Manufacturing method for high density high carbon sintered metal powder steel parts
US5217683A (en) Steel powder composition
TW513484B (en) Lubricant composite and process for the preparation thereof
JPH04191301A (en) Iron-based powder mixed material for powder meatallurgy
JP5750076B2 (en) Powder for molding and method for producing the same
JP4483595B2 (en) Iron-based powder mixture for high-strength sintered parts
JPH10504353A (en) Iron-based powder containing chromium, molybdenum and manganese
US5926686A (en) Sintered products having improved density
US4474732A (en) Fully dense wear resistant alloy
US4430295A (en) Articles produced from iron powder compacts containing hypereutectic copper phosphide powder
JP2001181701A (en) Method for producing high strength/high density ferrous sintered body
JP4507348B2 (en) High-density iron-based powder molded body and method for producing high-density iron-based sintered body
JP4770667B2 (en) Iron-based powder mixture for warm mold lubrication molding
JP6760504B2 (en) Powder mixture for powder metallurgy and its manufacturing method
JPS591764B2 (en) Iron-copper composite powder and its manufacturing method
US5951737A (en) Lubricated aluminum powder compositions
JP2010156059A (en) Iron-based powdery mixture for warm die lubrication molding
JP3931503B2 (en) Lubricant for warm mold lubrication, high-density iron-based powder molded body, and method for producing high-density iron-based sintered body
JPH0456702A (en) Raw material powder for powder metallurgy and manufacture thereof
JPH0751721B2 (en) Low alloy iron powder for sintering
JPWO2019188833A1 (en) Alloy steel powder for powder metallurgy and iron-based mixed powder for powder metallurgy