JPH04186803A - Magnetic powder molded body and degreasing method thereof, and binder for magnetic powder molded body - Google Patents

Magnetic powder molded body and degreasing method thereof, and binder for magnetic powder molded body

Info

Publication number
JPH04186803A
JPH04186803A JP2314270A JP31427090A JPH04186803A JP H04186803 A JPH04186803 A JP H04186803A JP 2314270 A JP2314270 A JP 2314270A JP 31427090 A JP31427090 A JP 31427090A JP H04186803 A JPH04186803 A JP H04186803A
Authority
JP
Japan
Prior art keywords
magnetic powder
binder
molded body
hours
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2314270A
Other languages
Japanese (ja)
Inventor
Tadao Katahira
片平 忠夫
Wataru Tsuchiya
土屋 亙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP2314270A priority Critical patent/JPH04186803A/en
Publication of JPH04186803A publication Critical patent/JPH04186803A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the degreased molded bodies with high dimensional precision with the least deformation during the degreasing step by a method wherein a binder mainly comprising organic high molecules is composed of a fugacious material exceeding specific % of which is to be thermal-cracked by holding it at least for ten hours at the temperature lower than the Curie temperature of the title magnetic powder. CONSTITUTION:Within the magnetic powder molded body containing magnetic powder and a binder, the binder mainly comprising organic high molecules is composed of a fugacious material exceeding 70% of which is to be thermal-cracked by holding it at least for ten hours at the temperature lower than Curie temperature of the magnetic powder. For example, a mixture of 90wt.% of calcinated powder of Ni-Zn ferrite in the mean particle diameter of 0.5mum kneaded with 6wt.% of paraphine wax at the melting point of 60 deg.C, 2.5wt.% of polyisobutylene in the mean molecular weight of about 80.000, 1.5wt.% of ethylene-acetic acid vinyl copolymer in the mean molecular weight of about 120.000 with the acetic acid vinyl content of 11wt.% is extruded into pellets by an extruding machine. Finally, the extrusion-molded bodies out of the material in the state wherein the upper sides thereof are attracted to an Sr ferrite magnet are degreased.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は磁性材料の焼結体を製造する工程において、焼
結に供する成形体を磁性粉末と有機高分子化合物を主成
分とするバインダーと混合1混練。
Detailed Description of the Invention [Industrial Field of Application] The present invention is a process for producing a sintered body of a magnetic material, in which a molded body to be sintered is mixed with a binder mainly composed of magnetic powder and an organic polymer compound. Mixing 1 Kneading.

ペレット化した混和物を射出成形または押出成形した成
形体及び、このバインダーと、この成形体の脱脂方法に
関する。
The present invention relates to a molded product obtained by injection molding or extrusion molding of a pelletized mixture, a binder for the molded product, and a method for degreasing the molded product.

[従来の技術] 一般に、磁性材料の製品を粉末冶金法によ7て製造する
方法において、焼結に供する成形体は原粗粉末を圧縮成
形することにより圧粉体として得られている。これは通
常金型に充填した原料粉末を上下方向からパンチで加圧
するという方法であることから、得られる成形体の形状
としては1円柱1円筒のような比較的単純なものに限ら
れ、より複雑な形状の製品を得るには焼結上がりの製品
に切削、研削などの後加工を施す必要がある。
[Prior Art] Generally, in a method for manufacturing products of magnetic materials by a powder metallurgy method, a compact to be subjected to sintering is obtained as a green compact by compression molding raw coarse powder. This is a method in which the raw material powder filled in a mold is pressurized from above and below with a punch, so the shape of the molded product obtained is limited to a relatively simple one, such as one cylinder, and In order to obtain products with complex shapes, it is necessary to perform post-processing such as cutting and grinding on the sintered products.

このような問題点を解決すべく、従来法で得られない複
雑形状の成形体を得るための技術か種々検討されている
が、いわゆるエンジニアリングセラミックスなどを中心
とした窯業製品の分野では原料粉末に10〜20重量%
の有機高分子化合物を主成分としたバインダーを加え、
混合、混練し。
In order to solve these problems, various techniques are being considered to obtain molded bodies with complex shapes that cannot be obtained using conventional methods. 10-20% by weight
Adding a binder mainly composed of organic polymer compounds,
Mix and knead.

射出成形もしくは押出成形した成形体を脱脂、焼結して
製品を得るという方法が工業的に行われ始めている。射
出成形、押出成形は有機高分子化合物即ちプラスチック
の成形法として発展を遂げてきたものであるが、製品を
後加工なして、しかも高い寸法精度で大量に生産するの
に適しているため、前述のような問題点の解決策として
注目すべきものがある。そして、近年のアトマイズ法に
代表される金属粉末の製造技術やバインダー配合技術の
発展に支えられて、この製法が金属の焼結製品にも適用
が試みられてきている。
BACKGROUND ART A method of obtaining a product by degreasing and sintering an injection molded or extrusion molded body has begun to be used industrially. Injection molding and extrusion molding have been developed as molding methods for organic polymer compounds, that is, plastics, and are suitable for mass production of products with high dimensional accuracy without post-processing. There are some noteworthy solutions to these problems. Supported by recent developments in metal powder manufacturing technology and binder compounding technology, typified by the atomization method, attempts have been made to apply this manufacturing method to sintered metal products.

この射出成形、押出成形による成形体を焼結に使用する
方法と従来の圧縮成形体を焼結する方法の相違点は成形
法が異なることは勿論であるが。
The difference between the method of using injection molded or extrusion molded bodies for sintering and the conventional method of sintering compression molded bodies is, of course, that the molding methods are different.

前者では成形体が多量のバインダーを含何するため焼結
する前に脱バインダー即ち脱脂を施す必要かあることで
ある。因みに後者では、成形体が全熱バインダーを含ま
ないか、含む場合でも極く少量なので直接焼結すること
かできる。
In the former case, since the molded body contains a large amount of binder, it is necessary to perform binder removal, that is, degreasing, before sintering. Incidentally, in the latter case, the molded body does not contain a total heat binder, or even if it does contain it, it is only in a very small amount, so it can be directly sintered.

[発明が解決しようとする課題] そしてこの脱脂方法は成形体を徐々に加熱してバインダ
ーを熱分解ガスとして揮散させるというのが従来の一般
的な方法であるが、この時の昇温速度はあまり大である
と熱分解ガスの発生が急激過ぎて、成形体に“ふくれ”
や“割れ”などの変形を引き起こすため5〜b 必要がある。従って、室温から600℃まで昇温する場
合を想定すると、脱脂工程に要する時間は約40〜12
0 Hr、  という長時間となってしまう。
[Problems to be Solved by the Invention] The conventional and common degreasing method is to gradually heat the molded body and volatilize the binder as pyrolysis gas, but the temperature increase rate at this time is If it is too large, the generation of pyrolysis gas will be too rapid and the molded product will “blister”.
5-b is necessary to cause deformation such as cracking and cracking. Therefore, assuming that the temperature is raised from room temperature to 600°C, the time required for the degreasing process is approximately 40 to 12
It takes a long time, 0 hours.

また殊に原料粉末か金属である場合は脱脂工程の雰囲気
か酸化性であると、金属か酸化されてしまい、製品か本
来具備すべき特性を発現することかできないことから、
脱脂工程の雰囲気は不活性もしくは還元性とする必要が
あり、所要時間と共に製造コスト低下を阻害する要因と
なっている。
In addition, especially when raw material powder or metal is used, if the atmosphere during the degreasing process is oxidizing, the metal will be oxidized and the product will not be able to exhibit its original characteristics.
The atmosphere in the degreasing process needs to be inert or reducing, which increases the time required and becomes a factor that hinders the reduction in manufacturing costs.

更にもう一つの重要な技術的な問題として、脱脂工程に
おける成形体の変形の原因に、バインダーの主成分であ
る有機高分子化合物が熱可塑性である場合、その特性に
起因する熱変形という現象がある。そして、この問題は
成形体か水平方向に中空部や、突起部を有する形状では
更に顕著になる。
Another important technical problem is that when the organic polymer compound that is the main component of the binder is thermoplastic, the cause of the deformation of the molded product during the degreasing process is the phenomenon of thermal deformation due to its properties. be. This problem becomes even more pronounced when the molded article has a horizontally hollow or protruding portion.

そこで1本発明の技術課題は前述の有機高分子化合物の
熱可塑性という特性に起因する脱脂工程における変形の
問題に対処するものであり8寸法精度に優れた脱脂成形
体を提供することにある。
Therefore, one technical problem of the present invention is to provide a degreased molded article with excellent dimensional accuracy, which deals with the above-mentioned problem of deformation in the degreasing process due to the thermoplastic property of the organic polymer compound.

[課題を解決するための手段] 本発明によれば、磁性粉末とバインダーとを含む磁性粉
末成形体において、前記バインダーは有機高分子を主成
分として含み、該磁性粉末のキュリー温度以下の温度で
少なくとも10時間保持することによって70%以上が
熱分解して揮散する物質からなることを特徴とする磁性
粉末成形体。
[Means for Solving the Problems] According to the present invention, in a magnetic powder compact containing a magnetic powder and a binder, the binder contains an organic polymer as a main component, and the magnetic powder is heated at a temperature equal to or lower than the Curie temperature of the magnetic powder. 1. A magnetic powder molded body comprising a substance at least 70% of which thermally decomposes and volatilizes when held for at least 10 hours.

本発明によれば、前記磁性粉末成形体に含まれる前記バ
インダーを加熱して揮散させる脱脂方法において、前記
磁性粉末成形体は支持台に磁気的に吸着された状態で脱
脂されることを特徴とする磁性粉末成形体の脱脂方法が
得られる。
According to the present invention, in the degreasing method of heating and volatilizing the binder contained in the magnetic powder compact, the magnetic powder compact is degreased while being magnetically attracted to a support. A method for degreasing a magnetic powder compact is obtained.

本発明によれば、磁性粉末と混合され射出成形  ゛又
は押出成形によって磁性粉末成形体を製造するためのバ
インダーにおいて、前記バインダーは有機高分子を主成
分として含み、該磁性粉末のキュリー温度以下の温度で
少なくとも10時間保持することによって70%以上が
熱分解して揮散する物質からなることを特徴とする磁性
粉末成形体用バインダーが得られる。
According to the present invention, in a binder mixed with a magnetic powder to produce a magnetic powder compact by injection molding or extrusion molding, the binder contains an organic polymer as a main component and has a temperature lower than the Curie temperature of the magnetic powder. A binder for a magnetic powder molded body is obtained, which is characterized in that 70% or more of the binder is composed of a substance that thermally decomposes and volatilizes when maintained at the temperature for at least 10 hours.

従来、前述の脱脂工程での熱変形の問題に対処する方法
としては成形体を粉末に埋め込む方法などがとられてき
た。この方法は成形体の重量を粉末で支えようというも
のであるが1本発明者らは使用する粉末が磁性材である
場合に限定すると。
Conventionally, a method of embedding a molded body in powder has been used as a method to deal with the above-mentioned problem of thermal deformation in the degreasing process. Although this method aims to support the weight of the molded body with powder, the present inventors limit the method to the case where the powder used is a magnetic material.

成形体を磁気的に吸着することにより自重による変形を
防止し得ることに着目した。しかし、磁性材料には周知
のように熱的特性の一つとして、キュリー温度というそ
れ以上の温度では磁気的な性質を全く消失してしまう温
度が存在する。つまり脱脂温度以下のキュリー温度を有
する磁性材では支持台に吸着することができないことに
なる。
We focused on the fact that deformation due to its own weight can be prevented by magnetically adsorbing the molded body. However, as is well known, magnetic materials have one of their thermal properties, the Curie temperature, above which the magnetic properties are completely lost. In other words, a magnetic material having a Curie temperature below the degreasing temperature cannot be adsorbed to the support base.

ここで汎用の磁性材料のキュリー温度について見てみる
と、ハード材の例として、Sm−Co系では約850℃
、Sr−フェライトでは約450℃、ソフト材の例とし
て、パーマロイでは約230℃、Mn−Znフェライト
では約120℃である。従って脱脂を120℃以下で行
えるバインダー組成を採用すれば1本発明は殆どの磁性
材に適用し得ることとなる。
Looking at the Curie temperature of general-purpose magnetic materials, as an example of hard materials, the Sm-Co type is approximately 850°C.
, about 450°C for Sr-ferrite, about 230°C for permalloy, and about 120°C for Mn-Zn ferrite, as examples of soft materials. Therefore, if a binder composition that can be degreased at 120° C. or lower is adopted, the present invention can be applied to most magnetic materials.

本発明者らはかかる観点からバインダー組成を検討した
結果、融点の低いパラフィン系のワックス、天井温度(
重合速度と解重合速度か等しくなる温度)の低い有機高
分子化合物を適宜組み合わせること、また必ずしも脱脂
率は100%にならなくとも焼結工程には支障かなく、
むしろ保形性の向上のために、ある程度バインダーを成
形体に残存させた方か良い結果が得られるので、前記以
外の有機高分子化合物をもバインダー成分として加える
ことによって、前述の目的に沿うものが得られることを
見出し1本発明をなすにいったものである。
The present inventors studied the binder composition from this point of view, and found that paraffin wax with a low melting point, ceiling temperature (
By appropriately combining organic polymer compounds with a low temperature (at which the polymerization rate and depolymerization rate are equal), and even if the degreasing rate is not necessarily 100%, it does not interfere with the sintering process.
Rather, better results can be obtained by leaving a certain amount of binder in the molded product in order to improve shape retention, so by adding organic polymer compounds other than those mentioned above as binder components, it is possible to achieve the above-mentioned purpose. The present invention was based on the discovery that the following could be obtained.

ここで1本発明において、バインダー成分として使用し
得る物質は、融点か120℃以下のパラフィン系のワッ
クス、天井温度が120℃以下の有機高分子化合物など
であり、後者の具体的な物質の例としてはポリイソブチ
レン(天井温度:50℃)などが挙げられる。また保形
性を付与する有機高分子化合物としては特に限定される
ものではなく、汎用のものが使用可能であるが1本発明
の場合のように粉末を多量に充填する上で、エチレン−
酢酸ビニル共重合体などは最も好ましいものである。
Here, in the present invention, substances that can be used as a binder component include paraffin waxes with a melting point of 120°C or lower, organic polymer compounds with a ceiling temperature of 120°C or lower, and specific examples of the latter substances. Examples include polyisobutylene (ceiling temperature: 50°C). Furthermore, the organic polymer compound that imparts shape retention is not particularly limited, and general-purpose compounds can be used; however, when filling a large amount of powder as in the case of the present invention, ethylene-
Most preferred are vinyl acetate copolymers.

[実施例] 以下2本発明の実施例について図面を参照して説明する
[Embodiments] Two embodiments of the present invention will be described below with reference to the drawings.

〈実施例−1〉 平均粒径が0.5μ麿のNi−Znフェライトの仮焼粉
:90重量%に対し、融点60℃のパラフィンワックス
=6重量%、平均分子量が約80.000のポリイソブ
チレン=2.5重量%、酢酸ビニル含量が11重量%で
あって、平均分子量が約120,000のエチレン−酢
酸ビニル共重合体:1.5重量%を夫々秤量し、加圧ニ
ーダ−で20分間混練した。
<Example-1> Ni-Zn ferrite calcined powder with an average particle size of 0.5 μm: 90% by weight, paraffin wax with a melting point of 60°C = 6% by weight, and polyamide with an average molecular weight of about 80,000. Weighed 2.5% by weight of isobutylene and 1.5% by weight of an ethylene-vinyl acetate copolymer with a vinyl acetate content of 11% by weight and an average molecular weight of about 120,000, and mixed them in a pressure kneader. The mixture was kneaded for 20 minutes.

この混和物を回転刃を装備した押出機により径。This mixture is processed by an extruder equipped with a rotating blade.

約4關、長さ:約5 mmのペレットとした。The pellets had a length of about 4 mm and a length of about 5 mm.

この原料を押出成形機を用いて第1図に示した断面形状
に押し出し、切断工程を経て長さ3ol111の成形体
とした。
This raw material was extruded into the cross-sectional shape shown in FIG. 1 using an extrusion molding machine, and a molded article having a length of 3 ol and 111 mm was obtained through a cutting process.

次にこの成形体の上側をS「フェライト磁石に吸着させ
た状態で脱脂炉に装入し、室温から80℃までの領域を
50℃/Hr、80℃から120℃までの領域を5℃/
Hrという昇温速度て昇温し。
Next, the upper side of this molded body was adsorbed to an S ferrite magnet and charged into a degreasing furnace.
The temperature is raised at a heating rate of Hr.

その後は120℃で12時間保持するという条件で脱脂
を行った。この時のバインダー残量は17%であった。
Thereafter, degreasing was performed under the condition of holding at 120° C. for 12 hours. The remaining binder amount at this time was 17%.

またこの時Srフェライト磁石は後で外す便宜を考慮し
て、多孔質のアルミナ板を介して吸着させた。
Further, at this time, the Sr ferrite magnet was adsorbed through a porous alumina plate in consideration of the convenience of removing it later.

この脱脂体を1.150℃て211r、  という条件
で焼結し、焼結体を得た。□この焼結体の寸法を第1表
に示す。
This degreased body was sintered under the conditions of 1.150°C and 211r to obtain a sintered body. □The dimensions of this sintered body are shown in Table 1.

〈実施例−2〉 水アトマイズ法で作製した平均粒径・11μmのFe−
50Co粉末を実施例−1と同様にしてバインダーと混
練し、ペレット状の原料を得た。
<Example-2> Fe- with an average particle size of 11 μm produced by water atomization method
50Co powder was kneaded with a binder in the same manner as in Example-1 to obtain a pellet-like raw material.

この原料を射出成形機を用いて第2図に示した形状に成
形した。この成形体を第3図に示17た両側に磁石1,
1を有する支持台2に設置した実施例−1と同様の条件
で脱脂し、引き続き1,200℃×3H「、という条件
で焼結を施した。この焼結体の寸法を第2表に示す。
This raw material was molded into the shape shown in FIG. 2 using an injection molding machine. This molded body is placed on both sides of the molded body shown in FIG.
The sintered body was degreased under the same conditions as in Example 1, and was then sintered at 1,200°C x 3 hours.The dimensions of this sintered body are shown in Table 2. show.

〈比較例−1〉 実施例−1と同様に調整したNi−Znフェライト粉末
:90重量%に対し7平均分子量が約140.000の
メタクリル酸ブチル:3重量%、酢酸ビニル含量が11
%であって、平均分子量か約120゜000のエチレン
−酢酸ビニル共重合体:2重量%。
<Comparative Example-1> Ni-Zn ferrite powder prepared in the same manner as in Example-1: 90% by weight, butyl methacrylate with a 7 average molecular weight of about 140.000: 3% by weight, and vinyl acetate content of 11% by weight.
% of ethylene-vinyl acetate copolymer having an average molecular weight of about 120°,000: 2% by weight.

融点60℃のパラフィンワックス:4重量%、フタル酸
ジブチル=1重量%を夫々秤量した。この後の工程は実
施例−1と同様にして押出成形体を得た。この成形体を
アルミナ板の上に載せ、脱脂炉に装入し、室温から20
0℃までの領域を50℃/Hr、200℃から320℃
までの領域を5℃/Hr、  という昇温速度で昇温し
、その後は320℃で12時間保持するという条件で脱
脂を行った。
Paraffin wax with a melting point of 60°C: 4% by weight and dibutyl phthalate = 1% by weight were weighed. The subsequent steps were carried out in the same manner as in Example-1 to obtain an extrusion molded product. This molded body was placed on an alumina plate, charged into a degreasing furnace, and heated for 20 minutes from room temperature.
50℃/Hr in the area up to 0℃, 200℃ to 320℃
Degreasing was carried out under the conditions that the temperature was raised at a temperature increase rate of 5° C./Hr in the region up to 100° C., and then held at 320° C. for 12 hours.

この脱脂体を1.150℃x2Hr、 という条件で焼
結し焼結体を得た。この焼結体の寸法を第1表に示す。
This degreased body was sintered under the following conditions: 1.150°C x 2 hours to obtain a sintered body. The dimensions of this sintered body are shown in Table 1.

く比較例−2〉 実施例−2と同様に調整したFe−50Co粉末を比較
例−2と同様のバインダー組成としてペレット状の原料
とした。二の原料を実施例−2と同様にして射出成形体
とした。この成形体をアルミナ板に載せ、比較例−1と
同し条件で脱脂し。
Comparative Example-2> Fe-50Co powder prepared in the same manner as in Example-2 was used as a pellet-like raw material with the same binder composition as in Comparative Example-2. The second raw material was made into an injection molded article in the same manner as in Example-2. This molded body was placed on an alumina plate and degreased under the same conditions as Comparative Example-1.

引き続き1,200℃X3Hr、  という条件で焼結
を施した。この焼結体の寸法を第2表に示す。
Subsequently, sintering was performed at 1,200°C for 3 hours. The dimensions of this sintered body are shown in Table 2.

第1表から本発明の実施例1に係る焼結体は。Table 1 shows the sintered bodies according to Example 1 of the present invention.

比較例1に係る焼結体よりも極めて変形か極めて少ない
ことが判明した。
It was found that the sintered body of Comparative Example 1 was significantly less deformed than the sintered body of Comparative Example 1.

一方、第2表から1本発明の実施例2に係る焼結体は、
比較例2に係る焼結体よりも変形が極めて少ないことが
判明した。
On the other hand, from Table 2, the sintered body according to Example 2 of the present invention is as follows:
It was found that the deformation was significantly less than that of the sintered body according to Comparative Example 2.

以  下  余  白 第  1  表 第  2  表 (n = 20) [発明の効果] 以上、詳しく説明したように本発明によれば粉末冶金に
よる磁性材の製品を複雑形状で変形なく得ることが可能
になり、磁性材料の用途拡大に寄与するところは極めて
太き(工業上非常に有益である。
Table 1 Table 2 (n = 20) [Effects of the Invention] As explained in detail above, according to the present invention, it is possible to obtain magnetic products with complex shapes and without deformation by powder metallurgy. This greatly contributes to the expansion of the applications of magnetic materials (very industrially useful).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例−1及び比較例−1に於ける押
出成形体の断面形状を示す図である。 第2図は本発明の実施例−2及び比較例−2に於ける射
出成形体の形状を示す図である。 第3図は本発明の実施例−2に於lする成形体の支持台
の形状を示す図であり、斜線を施した部分ユは吸着用の
磁石を示す図である。 図中、1は磁場印加用の磁石、2は支持台本体である。 第1図 第2図 第3図 手続補正書(自発) 平成e年り月−20′日
FIG. 1 is a diagram showing the cross-sectional shapes of extrusion molded bodies in Example-1 of the present invention and Comparative Example-1. FIG. 2 is a diagram showing the shapes of injection molded bodies in Example-2 of the present invention and Comparative Example-2. FIG. 3 is a diagram showing the shape of a support base for a molded body in Example-2 of the present invention, and the hatched portions represent magnets for attraction. In the figure, 1 is a magnet for applying a magnetic field, and 2 is a support body. Figure 1 Figure 2 Figure 3 Procedural amendment (voluntary) Heisei e year - 20'

Claims (3)

【特許請求の範囲】[Claims] 1.磁性粉末とバインダーとを含む磁性粉末成形体にお
いて, 前記バインダーは有機高分子を主成分として含み,該磁
性粉末のキュリー温度以下の温度で少なくとも10時間
保持することによって70%以上が熱分解して揮散する
物質からなることを特徴とする磁性粉末成形体。
1. In a magnetic powder compact containing a magnetic powder and a binder, the binder contains an organic polymer as a main component, and 70% or more of the binder is thermally decomposed by being held at a temperature below the Curie temperature of the magnetic powder for at least 10 hours. A magnetic powder compact characterized by being made of a volatile substance.
2.第1請求項記載の磁性粉末成形体に含まれる前記バ
インダーを加熱して揮散させる脱脂方法において, 前記磁性粉末成形体は支持台に磁気的に吸着された状態
で脱脂されることを特徴とする磁性粉末成形体の脱脂方
法。
2. In the degreasing method of heating and volatilizing the binder contained in a magnetic powder compact according to claim 1, the magnetic powder compact is degreased while being magnetically attracted to a support. A method for degreasing magnetic powder compacts.
3.磁性粉末と混合され射出成形又は押出成形によって
磁性粉末成形体を製造するためのバインダーにおいて, 前記バインダーは有機高分子を主成分として含み,該磁
性粉末のキュリー温度以下の温度で少なくとも10時間
保持することによって70%以上が熱分解して揮散する
物質からなることを特徴とする磁性粉末成形体用バイン
ダー。
3. A binder mixed with magnetic powder to produce a magnetic powder compact by injection molding or extrusion molding, wherein the binder contains an organic polymer as a main component and is maintained at a temperature below the Curie temperature of the magnetic powder for at least 10 hours. A binder for a magnetic powder compact, characterized in that 70% or more of the binder is composed of a substance that is thermally decomposed and volatilized.
JP2314270A 1990-11-21 1990-11-21 Magnetic powder molded body and degreasing method thereof, and binder for magnetic powder molded body Pending JPH04186803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2314270A JPH04186803A (en) 1990-11-21 1990-11-21 Magnetic powder molded body and degreasing method thereof, and binder for magnetic powder molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2314270A JPH04186803A (en) 1990-11-21 1990-11-21 Magnetic powder molded body and degreasing method thereof, and binder for magnetic powder molded body

Publications (1)

Publication Number Publication Date
JPH04186803A true JPH04186803A (en) 1992-07-03

Family

ID=18051341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2314270A Pending JPH04186803A (en) 1990-11-21 1990-11-21 Magnetic powder molded body and degreasing method thereof, and binder for magnetic powder molded body

Country Status (1)

Country Link
JP (1) JPH04186803A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5567757A (en) * 1995-07-18 1996-10-22 Rjf International Corporation Low specific gravity binder for magnets
JP5915920B1 (en) * 2014-03-13 2016-05-11 日立金属株式会社 Manufacturing method of dust core

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5567757A (en) * 1995-07-18 1996-10-22 Rjf International Corporation Low specific gravity binder for magnets
WO1997004468A1 (en) * 1995-07-18 1997-02-06 Rjf International Corporation Low specific gravity binder for magnets
JP5915920B1 (en) * 2014-03-13 2016-05-11 日立金属株式会社 Manufacturing method of dust core

Similar Documents

Publication Publication Date Title
JPH0647684B2 (en) Degreasing method for injection molded products
JPH0525506A (en) Production of injection-molded and sintered pure iron having high strength
JPH04186803A (en) Magnetic powder molded body and degreasing method thereof, and binder for magnetic powder molded body
EP0523651B1 (en) Method for making high strength injection molded ferrous material
JP2743090B2 (en) How to control the carbon content of metal injection products
JPH0313503A (en) Method for degreasing molding for powder metallurgy, binder and supercritical fluid
WO1994020242A1 (en) Process for manufacturing powder injection molded parts
JPH0647682B2 (en) Manufacturing method of sintered metal
JPH06287055A (en) Production of sintered article of ceramic
JPH06158109A (en) Method for dewaxing and sintering molded body of metal or ceramic powder
JP2793919B2 (en) Method for producing raw material compound for metal powder injection molding
JP2949130B2 (en) Method for producing porous metal filter
JPH01131052A (en) Production of sintered material
JPH01215907A (en) Manufacture of metal sintered compact
JPH03191001A (en) Raw material for forming
JPS60230957A (en) Manufacture of permanent magnet
JPH02153857A (en) Production of sintered material
JPS5899171A (en) Non-oxide ceramic composition and manufacture of non-oxide ceramic sintered body therefrom
JP2001348602A (en) Composition as powder material for sintering and method for producing the sintered product
JPH0313505A (en) Method of degreasing powder formed body
JPH0823042B2 (en) Metal injection molding method
JPH01247504A (en) Method for degreasing green compact
JPH10317005A (en) Manufacture of powder injection molded sintered body
JPS5832202B2 (en) Granulation method of Mo metal powder
JPH0825178B2 (en) Method of manufacturing injection molded body