JPH04186774A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH04186774A
JPH04186774A JP2314000A JP31400090A JPH04186774A JP H04186774 A JPH04186774 A JP H04186774A JP 2314000 A JP2314000 A JP 2314000A JP 31400090 A JP31400090 A JP 31400090A JP H04186774 A JPH04186774 A JP H04186774A
Authority
JP
Japan
Prior art keywords
impurity concentration
layer
conductivity type
source
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2314000A
Other languages
Japanese (ja)
Inventor
Masaaki Aoki
正明 青木
Tatsuya Ishii
達也 石井
Masabumi Miyamoto
宮本 正文
Shinpei Iijima
飯島 晋平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2314000A priority Critical patent/JPH04186774A/en
Publication of JPH04186774A publication Critical patent/JPH04186774A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent punchthrough of a MOS transistor miniaturized in a device size and to improve carrier mobility of an Si surface by setting a distance between the lower surface of second conductivity type source.drain impurity layer and the lower surface of a first conductivity type surface low impurity concentration layer shorter than a channel length between source and drain impurity layers. CONSTITUTION:A single crystalline Si layer 3 by an epitaxial grown is formed on a high impurity concentration semiconductor substrate region 1, and the thickness of a low impurity concentration layer 8 in the layer 3 is increased as compared with the depths of source, drain impurity layers 4, 5. The concentration of the layer 8 is set to one power or less of the impurity concentration of its lower side high impurity concentration layer 9. Further, in order to substantially completely suppress a punchthrough, a distance (a) between the lower surfaces of the layers 4, 5 and the lower surface of the layer 8 is set to half or less of a channel length L. Thus, bending of a band on the Si surface is alleviated, and carrier mobility is increased more.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、MOSトランジスタを半導体基板内に有する
半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device having a MOS transistor in a semiconductor substrate.

〔従来の技術〕[Conventional technology]

従来、MOS)−ランジスタ構造としてはセミコンダク
ター・デバイシズーフィジックス アンドテクノロジー
(S、M、S’z e著、1985)の図34に示され
ているような構造、すなわち第2図に示すような構造が
最も基本的な構造としてよく知られていた。
Traditionally, the MOS)-transistor structure is as shown in Figure 34 of Semiconductor Devices, Physics and Technology (S, M, S'ze, 1985), that is, as shown in Figure 2. The structure was well known as the most basic structure.

第2図はnチャネルMOSトランジスタの断面構造であ
り、ここで21はp型Si基板、22はフィールド酸化
膜、23.24はソース、ドレイン不純物層、25はポ
リSiゲート電極、26はゲート酸化膜である。
Figure 2 shows the cross-sectional structure of an n-channel MOS transistor, where 21 is a p-type Si substrate, 22 is a field oxide film, 23 and 24 are source and drain impurity layers, 25 is a poly-Si gate electrode, and 26 is a gate oxide film. It is a membrane.

この第2図の単純構造では、デバイス寸法を微細化した
時、パンチスルーを防止するためには基板不純物濃度を
増加する必要があり、これにより電気伝導度の低下とし
きい値電圧増加を生じると言う問題がある。
In the simple structure shown in Figure 2, when the device size is miniaturized, it is necessary to increase the substrate impurity concentration to prevent punch-through, which causes a decrease in electrical conductivity and an increase in threshold voltage. I have a problem to say.

この基本構造よりもチャネルの電気伝導度と動作電流を
増加できるMOSトランジスタ構造としては、特開昭6
1−32462号公報、特開昭63−169065号公
報、特開昭63−177470号公報にて論じられてい
るようにSi表面のチャネル部を低不純物濃度にした構
造があり、その断面構造を第3図に示す。
As a MOS transistor structure that can increase the electrical conductivity of the channel and the operating current compared to this basic structure,
As discussed in JP-A No. 1-32462, JP-A-63-169065, and JP-A-63-177470, there is a structure in which the channel portion of the Si surface has a low impurity concentration, and its cross-sectional structure is It is shown in Figure 3.

第3図においては、31はp型S1基板(またはウェル
)、32はフィールド酸化膜、33は31よりも一桁以
上、不純物濃度の低いp型Si層でありチャネル部とな
る。34.35はソース。
In FIG. 3, 31 is a p-type S1 substrate (or well), 32 is a field oxide film, and 33 is a p-type Si layer whose impurity concentration is one order of magnitude lower than that of 31, and serves as a channel portion. 34.35 is the sauce.

ドレインとなるn型高不純物濃度領域で、36はポリS
i電極、37はゲート酸化膜である。
36 is an n-type high impurity concentration region that becomes a drain.
The i-electrode 37 is a gate oxide film.

第3図において、p型Si基板31の不純物濃度を比較
的に高い値に設定することによって、ドレイン35から
ソース34への空乏層の伸びが抑制されるので、パンチ
スルーを防止することが可能となる6また、P型Si基
板31の高不純物濃度にもかかわらず、ゲート酸化膜3
7で被覆されたSi表面の不純物濃度は低不純物濃度チ
ャネル部33によって比較的低い値に設定されているの
で、チャネル部で高い表面移動度を得ることが可能とな
る。
In FIG. 3, by setting the impurity concentration of the p-type Si substrate 31 to a relatively high value, the extension of the depletion layer from the drain 35 to the source 34 is suppressed, making it possible to prevent punch-through. 6 Also, despite the high impurity concentration of the P-type Si substrate 31, the gate oxide film 3
Since the impurity concentration on the Si surface covered with 7 is set to a relatively low value by the low impurity concentration channel portion 33, it is possible to obtain high surface mobility in the channel portion.

尚、第3図に示すように、従来、低不純物濃度チャネル
部33がソース、ドレインn型高不純物濃度領域34.
35より浅く形成されているが、ソース、ドレイン領域
34,35より低不純物濃度チャネル部33を深く形成
すると、この深く形成された低不純物濃度チャネル部3
3の内部でドレイン35からソース34へ空乏層の伸び
てしまい、パンチスルーを防止することができなくなる
と当業者が考えていたものと推定される。
As shown in FIG. 3, conventionally, the low impurity concentration channel portion 33 is the source and drain n-type high impurity concentration regions 34.
However, if the low impurity concentration channel part 33 is formed deeper than the source and drain regions 34 and 35, this deeply formed low impurity concentration channel part 3
It is presumed that those skilled in the art thought that the depletion layer would extend from the drain 35 to the source 34 inside the transistor 3, making it impossible to prevent punch-through.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述したように第3図のMO5構造によって、パンチス
ルー防止とチャネル部でのキャリアの高移動度を一応達
成することが可能であるが、チャネル部でのキャリアの
高移動度化は充分なものではないことが本発明者等の検
討により明らかとされた。
As mentioned above, with the MO5 structure shown in Figure 3, it is possible to prevent punch-through and achieve high carrier mobility in the channel part, but the high carrier mobility in the channel part is not sufficient. It has become clear through studies by the inventors that this is not the case.

すなわち、第2図に示した従来の単純なMOSトランジ
スタ構造でパンチスルーを防止する場合と比較して、第
3図に示した従来のMOSトランジスタ構造では低不純
物濃度チャネル層33によってSi表面の電界が緩和さ
れ、またSi表面のエネルギーバンドの曲がり緩やかと
なり、電気伝導度が向上し高速に動作する。
That is, compared to the conventional simple MOS transistor structure shown in FIG. 2 in which punch-through is prevented, in the conventional MOS transistor structure shown in FIG. is relaxed, and the energy band on the Si surface curves gently, improving electrical conductivity and allowing high-speed operation.

第4図は、第2図および第3図のMO8構造のSi表面
のエネルギーバンドの曲がりを示したものであり、第3
図のMO8構造の方がチャネル表面でキャリアが移動可
能なn型反転層の幅が拡大されており、キャリア移動化
が改善される。
Figure 4 shows the bending of the energy band of the Si surface of the MO8 structure in Figures 2 and 3.
In the MO8 structure shown in the figure, the width of the n-type inversion layer in which carriers can move on the channel surface is expanded, and carrier movement is improved.

しかしながら、第4図に示したように第3図の場合のキ
ャリアが移動可能なn型反転層の幅も充分なものではな
く、キャリア移動度の改善に余地のあることが明らかと
されたものである。
However, as shown in FIG. 4, the width of the n-type inversion layer in which carriers can move in the case of FIG. 3 is not sufficient, and it is clear that there is room for improvement in carrier mobility. It is.

従って、本発明の目的はデバイス寸法が微細化されたM
OSトランジスタ構造において、パンチスルーを防止す
るとともに、Si表面のキャリア移動度を更に改善する
ことにある。
Therefore, an object of the present invention is to
The object of the present invention is to prevent punch-through and further improve carrier mobility on the Si surface in an OS transistor structure.

かくして、本発明の具体的な目的は、特にチャネル長1
μm以下の低不純物濃度チャネルトランジスタに関して
、パンチスルーを防止しながら従来よりも高速に動作で
きるデバイス構造を提供することである。
Thus, a specific object of the present invention is that, in particular, the channel length 1
It is an object of the present invention to provide a device structure that can operate at higher speeds than conventional ones while preventing punch-through regarding a channel transistor with a low impurity concentration of .mu.m or less.

一方、第3図に示した低不純物濃度チャネル層33を有
する従来のMOSトランジスタ構造では、ソース、ドレ
イン高不純物濃度層34.35が低不純物濃度チャネル
層33よりも深く形成されているため、ソース、ドレイ
ン高不純物濃度層34゜35の下面が直接、高不純物濃
度Si基板31に接していた。このため、ソース、ドレ
イン高不純物濃度層34.35と高不純物濃度Si基板
31との間のリーク電流が大きいと言う問題を有してい
た。
On the other hand, in the conventional MOS transistor structure having the low impurity concentration channel layer 33 shown in FIG. The lower surfaces of the drain high impurity concentration layers 34 and 35 were in direct contact with the high impurity concentration Si substrate 31. Therefore, there was a problem in that the leakage current between the source/drain high impurity concentration layers 34 and 35 and the high impurity concentration Si substrate 31 was large.

従って、発明の他の目的は、ソース、ドレイン高不純物
濃度層のリーク電流を低減したMOSトランジスタ構造
を提供することである。
Therefore, another object of the invention is to provide a MOS transistor structure in which the leakage current of the source and drain high impurity concentration layers is reduced.

さらに、これまでの低不純物濃度チャネル層を有するM
OSトランジスタ構造では、低不純物濃度チャネル層の
導電型がその下の高不純物濃度のSi基板の導電型と同
一であるのに加え、この低不純物濃度チャネル層が少量
の反対導電型不純物を含む場合が多かった。そして、反
対導電型不純物が低不純物濃度チャネル層に含まれてい
るため、低温動作でI−V特性にキングが生じるとの問
題があった。
Furthermore, M with a conventional low impurity concentration channel layer
In an OS transistor structure, when the conductivity type of the low impurity concentration channel layer is the same as that of the underlying high impurity concentration Si substrate, this low impurity concentration channel layer contains a small amount of impurity of the opposite conductivity type. There were many. Furthermore, since the opposite conductivity type impurity is contained in the low impurity concentration channel layer, there is a problem that a king occurs in the IV characteristic at low temperature operation.

従って、本発明の他の一つの目的は、低温動作でI−V
特性にキングが生じるのを防止し、低温特性の良好な低
不純物濃度チャネルを有するMOSトランジスタを提供
することである。
Therefore, another object of the present invention is to
It is an object of the present invention to provide a MOS transistor having a low impurity concentration channel that prevents the occurrence of a king in characteristics and has good low temperature characteristics.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明の代表的な実施例は
第1図に示すように、高不純物濃度の半導体基板領域(
またはウェル領域)1上に、ノンドープSiのエピタキ
シャル成長によって単結晶Si層3を形成し、この成長
層3中の低不純物濃度層8の厚さをソース、ドレイン不
純物層4,5の深さより厚くしたものである。
In order to achieve the above object, a typical embodiment of the present invention has a semiconductor substrate region with a high impurity concentration (
(or well region) 1, a single crystal Si layer 3 is formed by epitaxial growth of non-doped Si, and the thickness of the low impurity concentration layer 8 in this grown layer 3 is made thicker than the depth of the source and drain impurity layers 4 and 5. It is something.

またプロセス温度を下げ、しきい値電圧制御用のチャネ
ル・イオン打ち込みを行なわないようにすることで、エ
ピタキシャル成長層3中の表面低不純物濃度層8の濃度
は、その下側の高不純物濃度層9 (高不純物濃度の半
導体基板領域1とその上の不純物オートドープ領域とに
より形成される層)の不純物濃度の一桁以下に設定され
たものである。
Furthermore, by lowering the process temperature and not performing channel ion implantation for threshold voltage control, the concentration of the surface low impurity concentration layer 8 in the epitaxial growth layer 3 can be reduced by lowering the concentration of the lower high impurity concentration layer 9. The impurity concentration is set to one digit or less of the impurity concentration (layer formed by the semiconductor substrate region 1 with high impurity concentration and the impurity autodoped region thereon).

さらにチャネル長1μm以下の微細化されたMOSトラ
ンジスタにおいてそのパンチスルーをほぼ完全に抑止す
るため、ソース、ドレイン不純物層4.5の下面と表面
低不純物濃度層8の下面の間の距離aをチャネル長りよ
り小さく設定する。
Furthermore, in order to almost completely suppress punch-through in a miniaturized MOS transistor with a channel length of 1 μm or less, the distance a between the lower surface of the source/drain impurity layer 4.5 and the lower surface of the surface low impurity concentration layer 8 is Set it to be smaller than the length.

具体的な一例としては、この距離aはチャネル長りの半
分以下とする。
As a specific example, this distance a is less than half the channel length.

また、高不純物濃度層9の不純物濃度を1o1@C!I
+””以上の十分高い値とすることにより、接合空乏層
の高不純物濃度層9への広がりを実質的にほとんど0に
することができる。
Also, the impurity concentration of the high impurity concentration layer 9 is set to 1o1@C! I
By setting the value to a sufficiently high value of +"" or more, the spread of the junction depletion layer to the high impurity concentration layer 9 can be substantially reduced to almost zero.

また低温特性を良好とするために、表面低不純物濃度層
8の導電型をその下の高不純物濃度層9の導電型と同一
にし、表面低不純物濃度層8が反対導電型不純物を実質
的にほとんど含まないようにしたものである。
In addition, in order to improve the low-temperature characteristics, the conductivity type of the surface low impurity concentration layer 8 is made the same as the conductivity type of the high impurity concentration layer 9 below, so that the surface low impurity concentration layer 8 substantially eliminates impurities of the opposite conductivity type. It is designed to contain almost no amount.

〔作用〕[Effect]

本発明の代表的な実施例によるMOSトランジスタ構造
においては、第1図に示すように表面低不純物濃度層8
がソース、ドレイン不純物層4゜5の深さよりも深く形
成されている。
In a MOS transistor structure according to a typical embodiment of the present invention, as shown in FIG.
is formed deeper than the depth of the source and drain impurity layers 4.5.

従って、第3図の従来のMOSトランジスタ構造よりも
表面低不純物濃度層8が厚く形成されている。このため
、第3図の従来例よりも表面電界が緩和される。
Therefore, the surface low impurity concentration layer 8 is formed thicker than in the conventional MOS transistor structure shown in FIG. Therefore, the surface electric field is more relaxed than in the conventional example shown in FIG.

従って、第4図に示すようにSi表面でのバンドの曲が
りがより緩やかになり、チャネル表面でキャリアが移動
可能なn型反転層の幅が更に拡大されるので、表面散乱
が減少する結果、キャリア移動度をより大きくすること
ができる。この効果はフォノン散乱より表面散乱の強ま
る低温でより顕著である。
Therefore, as shown in FIG. 4, the band bending at the Si surface becomes more gradual, and the width of the n-type inversion layer in which carriers can move on the channel surface is further expanded, resulting in a reduction in surface scattering. Carrier mobility can be further increased. This effect is more pronounced at low temperatures where surface scattering is stronger than phonon scattering.

第5図と第6図にデバイス特性測定結果を示したように
、動作電流、電気伝導度ともに従来より向上でき、また
低電圧動作に不可欠なより低いしきい値電圧が実現でき
た。
As shown in FIG. 5 and FIG. 6, the device characteristic measurement results show that both the operating current and electrical conductivity were improved compared to the conventional device, and a lower threshold voltage, which is essential for low-voltage operation, was achieved.

また本発明の代表的な実施例では、ソース、ドレイン不
純物層4,5と高不純物濃度層9との直接接触が表面低
不純物濃度層8によって避けられているので、従来問題
であった不純物層4,5のリーク電流を大幅に低減する
ことができる。
Further, in the typical embodiment of the present invention, direct contact between the source and drain impurity layers 4 and 5 and the high impurity concentration layer 9 is avoided by the surface low impurity concentration layer 8, so that the impurity layer 4 and 5 can be significantly reduced.

また本発明の代表的な実施例では、ソース、ドレイン不
純物層4,5の接合の空乏層の下側への伸びが高不純物
濃度層9によって妨げられ、空乏層の下側への伸びは高
々aの長さになる。この下側への伸びの制限により、横
方向、すなわちチャネル方向への空乏層の伸びも高々a
の長さに抑えられる。具体的な実施例では距離aはチャ
ネル長しの半分以下としているので、結局、ドレイン空
乏層とソース空乏層の接触が避けられ、パンチスルーが
防止できる。このようにしてチャネル長1μm以下の微
細化されたMoSトランジスタにおいて正常動作が実現
できる。
Further, in a typical embodiment of the present invention, the downward extension of the depletion layer at the junction of the source and drain impurity layers 4 and 5 is prevented by the high impurity concentration layer 9, and the downward extension of the depletion layer is at most It will be the length of a. Due to this restriction on downward extension, the depletion layer may extend in the lateral direction, that is, in the channel direction, at most a
The length can be kept to . In the specific embodiment, the distance a is set to less than half the channel length, so that contact between the drain depletion layer and the source depletion layer can be avoided, and punch-through can be prevented. In this way, normal operation can be achieved in a miniaturized MoS transistor with a channel length of 1 μm or less.

また本発明の代表的な実施例では、表面低不純物濃度チ
ャネル層8に反対導電型不純物が実質的に含まれないよ
うにしたので、ゲースレンらが“Temperatur
e dependent threshold beh
aviorof depletion trade M
QSFETs−Characterizationan
d 51m1ation”と題する論文(Solid−
5tate Elect、。
Furthermore, in the representative embodiment of the present invention, since the surface low impurity concentration channel layer 8 is substantially free of impurities of opposite conductivity type, Goeslen et al.
e dependent threshold beh
avioof depletion trade M
QSFETs-Characterization
d 51m1ation” (Solid-
5tate Elect.

vol、 22. p、 423.1979)で論じて
いるような不純物イオンのフリーズアウトによる特性劣
化を避けることができる。
vol, 22. It is possible to avoid characteristic deterioration due to freeze-out of impurity ions as discussed in J.P., 423.1979).

なお本発明のMOSトランジスタ構造をイオン打ち込み
法などの従来法で実現しようとすると。
Note that if one attempts to realize the MOS transistor structure of the present invention using a conventional method such as ion implantation.

イオン飛程の統計的ゆらぎと打ち込み後の熱処理による
イオン不純物のため不純物プロファイルがだれ、実現困
難である。本実施例の急俊なプロファイルは、本実施例
の製法、すなわちエピタキシャル成長法の適用により初
めて実現できる。
This is difficult to achieve because the impurity profile is distorted due to statistical fluctuations in the ion range and ion impurities due to post-implant heat treatment. The sharp profile of this example can only be achieved by applying the manufacturing method of this example, that is, the epitaxial growth method.

〔実施例〕〔Example〕

本発明の第一の実施例を、第1図により説明する。 A first embodiment of the present invention will be described with reference to FIG.

第1図において1は不純物濃度5 X 10”C!11
−’以上のp型高不純物濃度基板またはウェル領域であ
り、ボロンのイオンの打ち込みによって形成したもので
ある。3はp型高不純物濃度基板またはウェル1上に、
減圧エピタキシャル成長法で形成したSi単結晶層であ
る。この成長ではノンドープSiを850℃から100
0℃の温度で結晶成長させ、層厚を50から200nm
とした。
In Figure 1, 1 is the impurity concentration 5 x 10”C!11
-' or higher p-type high impurity concentration substrate or well region, and is formed by boron ion implantation. 3 is on the p-type high impurity concentration substrate or well 1,
This is a Si single crystal layer formed by a low pressure epitaxial growth method. In this growth, non-doped Si was grown from 850°C to 100°C.
Crystal growth is performed at a temperature of 0°C, with a layer thickness of 50 to 200 nm.
And so.

エピタキシャル成長時とその後の工程での加熱のため高
不純物濃度NlからSi単結晶層3へ不純物が拡散し、
Si表面の低不純物濃度層(高濃度層より一桁濃度が低
い)はエピタキシャル成長層3より狭くなり、8で示す
領域となる。一方、最終的な高不純物濃度層9は、当初
の高不純物濃度層1とその上のSi単結晶層3中の不純
物拡散層とにより形成されることとなる。本実施例では
プロセス時の加熱量を極力おさえた結果、デバイス完成
時の低不純物濃度層8の表面濃度を10110l7”以
下に抑えることができた。このようなエピタキシャル成
長により、従来のイオン打ち込み法では困難な急俊なプ
ロファイルが実現できる。
Due to heating during epitaxial growth and subsequent steps, impurities diffuse from the high impurity concentration Nl into the Si single crystal layer 3.
The low impurity concentration layer (concentration is one order of magnitude lower than the high concentration layer) on the Si surface is narrower than the epitaxial growth layer 3, and becomes a region indicated by 8. On the other hand, the final high impurity concentration layer 9 is formed by the initial high impurity concentration layer 1 and the impurity diffusion layer in the Si single crystal layer 3 above it. In this example, as a result of suppressing the amount of heat during the process as much as possible, the surface concentration of the low impurity concentration layer 8 when the device was completed was able to be suppressed to 10110l7" or less. Due to this epitaxial growth, it was possible to Difficult and rapid profiles can be achieved.

エピタキシャル成長後は、LOCO5法により高圧酸化
を特に行なってフィールド酸化膜2を形成した。次いで
、ゲート酸化膜7とポリSiゲート層6を形成し、EB
リソグラフィー技術によって約0.1μmのゲート長に
微細加工した。このゲート電極をマスクとして砒素イオ
ンを打ち込んで、ソース、ドレインとなるn+不純物層
4,5を形成した。イオン活性化の熱処理はRTA(R
apid Thermal Annealing)法に
よって行ない、深さ30〜50nmの浅い接合を形成し
た。そしてp型表面低不純物濃度層8の厚さがソース、
ドレイン不純物層4,5の接合深さよりも厚くなるよう
にし、表面低不純物濃度層8の下面とソース。
After the epitaxial growth, field oxide film 2 was formed by particularly performing high-pressure oxidation using the LOCO5 method. Next, a gate oxide film 7 and a poly-Si gate layer 6 are formed, and an EB
The gate length was microfabricated to approximately 0.1 μm using lithography technology. Using this gate electrode as a mask, arsenic ions were implanted to form n+ impurity layers 4 and 5 that would become sources and drains. Heat treatment for ion activation is RTA (R
A shallow junction with a depth of 30 to 50 nm was formed using the apid thermal annealing method. The thickness of the p-type surface low impurity concentration layer 8 is the source,
It is made to be thicker than the junction depth of the drain impurity layers 4 and 5, and is connected to the lower surface of the surface low impurity concentration layer 8 and the source.

ドレイン不純物層4,5の下面の間の距離aをチャネル
長りより小さく設定する。具体的な例としては、この距
離aをチャネル長りの半分以下としてパンチスルーの発
生を防止した。
The distance a between the lower surfaces of drain impurity layers 4 and 5 is set smaller than the channel length. As a specific example, the distance a was set to less than half the channel length to prevent punch-through.

以下、出来るかぎりプロセス温度を下げて、配線構造と
バッジベージ3ン膜を形成し、本実施例のMOSトラン
ジスタを作成した。
Thereafter, the process temperature was lowered as much as possible to form a wiring structure and a badge-base film, thereby producing the MOS transistor of this example.

本実施例によれば、表面低不純物濃度層8がン−ス、ド
レイン不純物M4,5 (深さ30〜50nm)よりも
厚いので、第4図に示すように従来よりも表面でのバン
ドの曲がりが緩やかになった。
According to this embodiment, since the surface low impurity concentration layer 8 is thicker than the source and drain impurities M4,5 (depth 30 to 50 nm), the band width at the surface is more pronounced than in the conventional case, as shown in FIG. The curve has become gentler.

この結果、表面キャリア移動度が向上し、第5図に示す
ように77にの低温動作時での動作電流は第2図の従来
型トランジスタの2.5倍、第3図の従来型の低不純物
濃度チャネルトランジスタの1.25倍に増加した。第
6図に示すように、電気伝導度も大幅に向上し、しきい
値電圧の低減も図れた。77にでのしきい値電圧は約0
.2V であり、CMOSデバイスの77に動作のほぼ
適正値である。
As a result, the surface carrier mobility is improved, and as shown in Fig. 5, the operating current of the 77 at low temperature operation is 2.5 times that of the conventional transistor shown in Fig. 2, and lower than that of the conventional transistor shown in Fig. 3. The impurity concentration increased to 1.25 times that of the channel transistor. As shown in FIG. 6, the electrical conductivity was significantly improved and the threshold voltage was also reduced. The threshold voltage at 77 is approximately 0.
.. 2V, which is approximately the appropriate value for operation in a CMOS device 77.

また本実施例のゲート長りは約0.1μmであり、この
トランジスタにドレイン電圧0.5V から1.5vを
印加したとき、接合空乏層の伸びは効果的に高不純物濃
度層9に妨げられる。不純物層接合と高濃度層の間には
長さaの表面低不純物濃度層8があり、距離aはチャネ
ル長しの半分以下なので、ドレインとソースそれぞれの
空乏層の接触が避けられ、パンチスルーが防止できる。
Furthermore, the gate length of this example is approximately 0.1 μm, and when a drain voltage of 0.5V to 1.5V is applied to this transistor, the expansion of the junction depletion layer is effectively prevented by the highly impurity concentration layer 9. . There is a surface low impurity concentration layer 8 with a length a between the impurity layer junction and the high concentration layer, and since the distance a is less than half of the channel length, contact between the depletion layers of the drain and source can be avoided, resulting in punch-through. can be prevented.

本実施例によればまた、ソース、ドレイン不純物層4,
5が高不純物濃度層8に直接接触していないので、ソー
ス、ドレイン不純物層4,5のリーク電流が低レベルに
抑えられる。
According to this embodiment, source and drain impurity layers 4,
Since the impurity layer 5 is not in direct contact with the high impurity concentration layer 8, the leakage current of the source and drain impurity layers 4 and 5 can be suppressed to a low level.

また本実施例によれば、表面低不純物濃度チャネル8が
p型不純物のボロンのみを含み、n型不純物を実質的に
ほとんど含まないように作成したので、不純物イオンの
キャリアフリーズアウトに起因する低温特性不良も生じ
なかった。
Furthermore, according to this embodiment, the surface low impurity concentration channel 8 is formed so as to contain only boron, which is a p-type impurity, and substantially no n-type impurity. No characteristic defects occurred.

上記の実施例ではnチャネルMO5)−ランジスタの実
施結果を述べたが、pチャネルMOSトランジスタの場
合にも同様にして本発明が実現できることは勿論である
In the above embodiments, the results of implementing an n-channel MO5)-transistor have been described, but it goes without saying that the present invention can be similarly implemented in the case of a p-channel MOS transistor.

本発明の第二の実施例を第7図に示す。これは本発明に
よるCMOSデバイスである。ここで91はSi基!、
93 [:鈍物濃度5 X 10”a+1−3以上の高
不純物濃度pウェルであり、94は不純物濃度5 X 
10”Ql−3以上のnウェルである。
A second embodiment of the invention is shown in FIG. This is a CMOS device according to the invention. Here 91 is Si group! ,
93 [: A p-well with a high impurity concentration of 5×10”a+1-3 or higher, and 94 has an impurity concentration of 5×
It is an n-well of 10"Ql-3 or more.

これらのウェル形成後、Si表面にノンドープSiの減
圧エビタキシャルタキシャル成長を行なって形成した単
結晶薄膜が907である。エピタキシャル温度は850
〜1000℃、膜厚は50〜200nmであり、その表
面濃度を10170−3以下の低濃度とした。ここでS
iの成長温度とその後のプロセス温度をできる限りおさ
えて、下側の高濃度層からの不純物拡散を防いでいる。
After forming these wells, a single crystal thin film 907 was formed by performing low-pressure epitaxial growth of non-doped Si on the Si surface. Epitaxial temperature is 850
The temperature was 1000° C., the film thickness was 50 to 200 nm, and the surface concentration was as low as 10170-3 or less. Here S
The growth temperature of i and the subsequent process temperature are kept as low as possible to prevent impurity diffusion from the lower high concentration layer.

92はLOCO8法により高圧酸化で形成したフィール
ド酸化膜である。99はゲート酸化膜、98は燐を高濃
度にドープしたポリシリコンゲート、906はボロンを
高濃度にドープしたポリシリコンゲートであり、EBク
リソラフィーの適用により、それぞれ約0.1μmのゲ
ート長に加工されている。901はサイドウオール酸化
物、96.97はn中不純物層、904,905はp+
不純物層であり、RTAの適用でそれぞれ30〜50n
m、および50〜100 n mの深さに浅く形成され
ている。この結果、p型表面低不純物濃度層903はp
+不純物層904,905より厚くなり、n型表面低不
純物濃度層95はn÷不純物層96.97より厚くなっ
た。そして表面低不純物層の下面とソース、ドレイン不
純物層の下面の間の距離をチャネル長以下、具体的には
その半分以下としてパンチスルーを防止した。902は
不純物層およびポリシリコンゲート上に形成したTiS
i2層である。すなわち本実施例はサリサイド構造を採
用している。
92 is a field oxide film formed by high pressure oxidation using the LOCO8 method. 99 is a gate oxide film, 98 is a polysilicon gate doped with a high concentration of phosphorous, and 906 is a polysilicon gate doped with a high concentration of boron, each of which has a gate length of approximately 0.1 μm by application of EB chrysography. Processed. 901 is a sidewall oxide, 96.97 is an n-type impurity layer, 904 and 905 are p+
impurity layer, and by applying RTA, each layer is 30 to 50n.
m, and shallowly formed at a depth of 50 to 100 nm. As a result, the p-type surface low impurity concentration layer 903
+ impurity layers 904 and 905, and n-type surface low impurity concentration layer 95 was thicker than n÷ impurity layer 96.97. Punch-through was prevented by setting the distance between the bottom surface of the surface low impurity layer and the bottom surface of the source and drain impurity layers to be less than or equal to the channel length, specifically, less than half of the channel length. 902 is TiS formed on the impurity layer and the polysilicon gate.
This is the i2 layer. That is, this embodiment employs a salicide structure.

本実施例によれば、nチャネルMOSトランジスタのチ
ャネル部にp型の表面低不純物濃度層を、PチャネルM
OSトランジスタのチャネル部にn型の表面低不純物濃
度層を形成し、この表面低不純物濃度層の厚さをソース
、ドレイン不純物層深さより厚くしたので、第一の実施
例と同様に表面でのバンドの曲がりを緩和し、表面ポテ
ンシャルの低下と表面電界の緩和が図れた。この結果、
pnnチャネルMOSトランジスタキャリア移動度が向
上し電気伝導度の大幅な向上が実現し、従来よりもずっ
と高速のCMOSデバイスが実現できた。この高速化と
同時にしきい値も低下し、pn両チャネルMOS)−ラ
ンジスタの77にでのしきい値は約0.2vという適正
値を示した。
According to this embodiment, a p-type surface low impurity concentration layer is formed in the channel part of an n-channel MOS transistor,
An n-type surface low impurity concentration layer is formed in the channel portion of the OS transistor, and the thickness of this surface low impurity concentration layer is made thicker than the depth of the source and drain impurity layers, so that the surface impurity concentration is reduced as in the first embodiment. The bending of the band was relaxed, the surface potential was lowered, and the surface electric field was relaxed. As a result,
PNN channel MOS transistor carrier mobility has been improved and electrical conductivity has been significantly improved, making it possible to realize CMOS devices that are much faster than conventional ones. At the same time as this increase in speed, the threshold value was also lowered, and the threshold value at 77 of the pn dual channel MOS transistor showed an appropriate value of about 0.2V.

第−の実施例と同様にして、不純物層リークと低温特性
不良も防止できた。このように本発明により、従来より
も高速かつ高性能のCMOSデバイスが実現できる。
In the same manner as in the second embodiment, impurity layer leakage and poor low-temperature characteristics were also prevented. As described above, according to the present invention, a CMOS device that is faster and has higher performance than the conventional one can be realized.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、デバイス寸法が微細化されたMOS)
−ランジスタ構造において、パンチスルーを防止すると
ともに、Si表面のキャリア移動度を更に改善すること
ができる。
According to the present invention, a MOS with miniaturized device dimensions)
- In the transistor structure, punch-through can be prevented and carrier mobility on the Si surface can be further improved.

本発明によれば、ソース、ドレイン高不純物濃度層のリ
ーク電流を低減したMOSトランジスタ構造を提供する
ことができる。
According to the present invention, it is possible to provide a MOS transistor structure in which leakage current in the source and drain high impurity concentration layers is reduced.

本発明によれば、低温動作でI−V特性にキンクが生じ
るのを防止し、低温特性の良好な低不純物濃度チャネル
を有するMOS)−ランジスタを提供することができる
According to the present invention, it is possible to provide a MOS transistor which prevents a kink from occurring in the IV characteristics during low temperature operation and has a low impurity concentration channel with good low temperature characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第一の実施例によるMOSトランジス
タの構造図を示す図。 第2図および第3図は従来のMOSトランジスタの構造
図を示す図、 第4図は第1図、第2図、第3図のMOSトランジスタ
のSi表面のバンド構造を示す図、第5図は第1図、第
2図、第3図のMOSトランジスタの動作電流性能を示
す図。 第6図は第1図、第2図、第3図のMOSトランジスタ
の電気伝導度改善効果を示す図、第7図は本発明の第二
の実施例によるCMOSデバイスを示す図である。 1・・・高不純物濃度基板、2・・フィールド酸化膜、
3・・・エビタキシャルタキシャル成長した単結晶Si
薄膜、4・・・ソース不純物層、5・・・ドレイン不第
1図 第2図 第3図 M4図 !Δ)へw厖 x      w厭滋披郵
FIG. 1 is a diagram showing a structural diagram of a MOS transistor according to a first embodiment of the present invention. Figures 2 and 3 are diagrams showing the structure of conventional MOS transistors, Figure 4 is a diagram showing the band structure of the Si surface of the MOS transistors in Figures 1, 2, and 3, and Figure 5 is a diagram showing the structure of a conventional MOS transistor. 3 is a diagram showing the operating current performance of the MOS transistors shown in FIGS. 1, 2, and 3. FIG. FIG. 6 is a diagram showing the electrical conductivity improvement effect of the MOS transistors shown in FIGS. 1, 2, and 3, and FIG. 7 is a diagram showing a CMOS device according to a second embodiment of the present invention. 1...High impurity concentration substrate, 2...Field oxide film,
3...Ebitaxially grown single crystal Si
Thin film, 4... Source impurity layer, 5... Drain impurity Figure 1 Figure 2 Figure 3 Figure M4! Δ) to

Claims (1)

【特許請求の範囲】 1、第一導電型の高不純物濃度半導体領域と、該第一導
電型の高不純物濃度半導体領域上に形成された第一導電
型の表面低不純物濃度層と、該第一導電型の表面低不純
物濃度層中に成形された第二導電型のソース、ドレイン
不純物層と、 該第二導電型のソース、ドレイン不純物層の間の上記表
面低不純物濃度層の表面上に形成された絶縁ゲートとを
具備してなり、 上記第一導電型の上記表面低不純物濃度層の不純物濃度
が上記第一導電型の上記高不純物濃度半導体領域の不純
物濃度より一桁以上小さく設定され、 上記第一導電型の上記表面低不純物濃度層は上記第二導
電型の上記ソース、ドレイン不純物層より深く形成され
、 上記第二導電型の上記ソース、ドレイン不純物層の下面
と上記第一導電型の上記表面低不純物濃度層の下面との
間の距離が上記第二導電型の上記ソース、ドレイン不純
物層の間のチャネル長より小さく設定されてなることを
特徴とする半導体装置。 2、上記チャネル長が1μm以下であることを特徴とす
る請求項1記載の半導体装置。 3、上記距離は上記チャネル長の半分以下に設定されて
いることを特徴とする請求項1乃至2のいずれかに記載
の半導体装置。 4、上記第一導電型の上記表面低不純物濃度層は第二導
電型不純物を実質的に含まないことを特徴とする請求項
1乃至3のいずれかに記載の半導体装置。 5、上記第一導電型の上記表面低不純物濃度層は上記第
一導電型の上記高不純物濃度半導体領域上のエピタキシ
ャル成長により形成されてなることを特徴とする請求項
4記載の半導体装置。
[Claims] 1. A high impurity concentration semiconductor region of a first conductivity type, a surface low impurity concentration layer of a first conductivity type formed on the high impurity concentration semiconductor region of the first conductivity type, and the first conductivity type high impurity concentration semiconductor region; A source/drain impurity layer of a second conductivity type formed in a surface low impurity concentration layer of one conductivity type, and a surface of the low surface impurity concentration layer between the source/drain impurity layers of the second conductivity type. an insulated gate formed, and the impurity concentration of the surface low impurity concentration layer of the first conductivity type is set to be at least one order of magnitude lower than the impurity concentration of the high impurity concentration semiconductor region of the first conductivity type. , the surface low impurity concentration layer of the first conductivity type is formed deeper than the source and drain impurity layers of the second conductivity type, and the lower surface of the source and drain impurity layers of the second conductivity type and the first conductivity A semiconductor device characterized in that a distance between the lower surface of the surface low impurity concentration layer of the mold is set smaller than a channel length between the source and drain impurity layers of the second conductivity type. 2. The semiconductor device according to claim 1, wherein the channel length is 1 μm or less. 3. The semiconductor device according to claim 1, wherein the distance is set to less than half the channel length. 4. The semiconductor device according to claim 1, wherein the surface low impurity concentration layer of the first conductivity type does not substantially contain impurities of the second conductivity type. 5. The semiconductor device according to claim 4, wherein the surface low impurity concentration layer of the first conductivity type is formed by epitaxial growth on the high impurity concentration semiconductor region of the first conductivity type.
JP2314000A 1990-11-21 1990-11-21 Semiconductor device Pending JPH04186774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2314000A JPH04186774A (en) 1990-11-21 1990-11-21 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2314000A JPH04186774A (en) 1990-11-21 1990-11-21 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH04186774A true JPH04186774A (en) 1992-07-03

Family

ID=18048012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2314000A Pending JPH04186774A (en) 1990-11-21 1990-11-21 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH04186774A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011103314A1 (en) * 2010-02-18 2011-08-25 Suvolta, Inc. Electronic devices and systems, and methods for making and using the same
JP2013507000A (en) * 2009-09-30 2013-02-28 スボルタ,インコーポレーテッド Electronic device and system, and manufacturing method and usage thereof
US8970289B1 (en) * 2012-01-23 2015-03-03 Suvolta, Inc. Circuits and devices for generating bi-directional body bias voltages, and methods therefor
US8976575B1 (en) 2013-08-29 2015-03-10 Suvolta, Inc. SRAM performance monitor
US8988153B1 (en) 2013-03-09 2015-03-24 Suvolta, Inc. Ring oscillator with NMOS or PMOS variation insensitivity
US8994415B1 (en) 2013-03-01 2015-03-31 Suvolta, Inc. Multiple VDD clock buffer
JP2016516298A (en) * 2013-03-14 2016-06-02 インテル・コーポレーション Nanowire transistor leakage reduction structure
US9449967B1 (en) 2013-03-15 2016-09-20 Fujitsu Semiconductor Limited Transistor array structure
US9680470B2 (en) 2011-02-18 2017-06-13 Mie Fujitsu Semiconductor Limited Digital circuits having improved transistors, and methods therefor
US9786703B2 (en) 2013-05-24 2017-10-10 Mie Fujitsu Semiconductor Limited Buried channel deeply depleted channel transistor
US9793172B2 (en) 2011-05-16 2017-10-17 Mie Fujitsu Semiconductor Limited Reducing or eliminating pre-amorphization in transistor manufacture
US9812550B2 (en) 2012-06-27 2017-11-07 Mie Fujitsu Semiconductor Limited Semiconductor structure with multiple transistors having various threshold voltages
US9853019B2 (en) 2013-03-15 2017-12-26 Mie Fujitsu Semiconductor Limited Integrated circuit device body bias circuits and methods
US9865596B2 (en) 2010-04-12 2018-01-09 Mie Fujitsu Semiconductor Limited Low power semiconductor transistor structure and method of fabrication thereof
US9893148B2 (en) 2013-03-14 2018-02-13 Mie Fujitsu Semiconductor Limited Method for fabricating a transistor device with a tuned dopant profile
US9922977B2 (en) 2010-06-22 2018-03-20 Mie Fujitsu Semiconductor Limited Transistor with threshold voltage set notch and method of fabrication thereof
US9953974B2 (en) 2011-12-09 2018-04-24 Mie Fujitsu Semiconductor Limited Tipless transistors, short-tip transistors, and methods and circuits therefor
US9966130B2 (en) 2011-05-13 2018-05-08 Mie Fujitsu Semiconductor Limited Integrated circuit devices and methods
US10325986B2 (en) 2009-09-30 2019-06-18 Mie Fujitsu Semiconductor Limited Advanced transistors with punch through suppression

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013507000A (en) * 2009-09-30 2013-02-28 スボルタ,インコーポレーテッド Electronic device and system, and manufacturing method and usage thereof
US11887895B2 (en) 2009-09-30 2024-01-30 United Semiconductor Japan Co., Ltd. Electronic devices and systems, and methods for making and using the same
US11062950B2 (en) 2009-09-30 2021-07-13 United Semiconductor Japan Co., Ltd. Electronic devices and systems, and methods for making and using the same
US8975128B2 (en) 2009-09-30 2015-03-10 Suvolta, Inc. Electronic devices and systems, and methods for making and using the same
US10325986B2 (en) 2009-09-30 2019-06-18 Mie Fujitsu Semiconductor Limited Advanced transistors with punch through suppression
US10224244B2 (en) 2009-09-30 2019-03-05 Mie Fujitsu Semiconductor Limited Electronic devices and systems, and methods for making and using the same
US10217668B2 (en) 2009-09-30 2019-02-26 Mie Fujitsu Semiconductor Limited Electronic devices and systems, and methods for making and using the same
US10074568B2 (en) 2009-09-30 2018-09-11 Mie Fujitsu Semiconductor Limited Electronic devices and systems, and methods for making and using same
WO2011103314A1 (en) * 2010-02-18 2011-08-25 Suvolta, Inc. Electronic devices and systems, and methods for making and using the same
US9865596B2 (en) 2010-04-12 2018-01-09 Mie Fujitsu Semiconductor Limited Low power semiconductor transistor structure and method of fabrication thereof
US9922977B2 (en) 2010-06-22 2018-03-20 Mie Fujitsu Semiconductor Limited Transistor with threshold voltage set notch and method of fabrication thereof
US9680470B2 (en) 2011-02-18 2017-06-13 Mie Fujitsu Semiconductor Limited Digital circuits having improved transistors, and methods therefor
US9985631B2 (en) 2011-02-18 2018-05-29 Mie Fujitsu Semiconductor Limited Digital circuits having improved transistors, and methods therefor
US9838012B2 (en) 2011-02-18 2017-12-05 Mie Fujitsu Semiconductor Limited Digital circuits having improved transistors, and methods therefor
US9966130B2 (en) 2011-05-13 2018-05-08 Mie Fujitsu Semiconductor Limited Integrated circuit devices and methods
US9793172B2 (en) 2011-05-16 2017-10-17 Mie Fujitsu Semiconductor Limited Reducing or eliminating pre-amorphization in transistor manufacture
US9953974B2 (en) 2011-12-09 2018-04-24 Mie Fujitsu Semiconductor Limited Tipless transistors, short-tip transistors, and methods and circuits therefor
US10573644B2 (en) 2011-12-09 2020-02-25 Mie Fujitsu Semiconductor Limited Tipless transistors, short-tip transistors, and methods and circuits therefor
US11145647B2 (en) 2011-12-09 2021-10-12 United Semiconductor Japan Co., Ltd. Tipless transistors, short-tip transistors, and methods and circuits therefor
US8970289B1 (en) * 2012-01-23 2015-03-03 Suvolta, Inc. Circuits and devices for generating bi-directional body bias voltages, and methods therefor
US10217838B2 (en) 2012-06-27 2019-02-26 Mie Fujitsu Semiconductor Limited Semiconductor structure with multiple transistors having various threshold voltages
US9812550B2 (en) 2012-06-27 2017-11-07 Mie Fujitsu Semiconductor Limited Semiconductor structure with multiple transistors having various threshold voltages
US10014387B2 (en) 2012-06-27 2018-07-03 Mie Fujitsu Semiconductor Limited Semiconductor structure with multiple transistors having various threshold voltages
US8994415B1 (en) 2013-03-01 2015-03-31 Suvolta, Inc. Multiple VDD clock buffer
US8988153B1 (en) 2013-03-09 2015-03-24 Suvolta, Inc. Ring oscillator with NMOS or PMOS variation insensitivity
JP2016516298A (en) * 2013-03-14 2016-06-02 インテル・コーポレーション Nanowire transistor leakage reduction structure
US9893148B2 (en) 2013-03-14 2018-02-13 Mie Fujitsu Semiconductor Limited Method for fabricating a transistor device with a tuned dopant profile
US9825130B2 (en) 2013-03-14 2017-11-21 Intel Corporation Leakage reduction structures for nanowire transistors
US9449967B1 (en) 2013-03-15 2016-09-20 Fujitsu Semiconductor Limited Transistor array structure
US9853019B2 (en) 2013-03-15 2017-12-26 Mie Fujitsu Semiconductor Limited Integrated circuit device body bias circuits and methods
US9786703B2 (en) 2013-05-24 2017-10-10 Mie Fujitsu Semiconductor Limited Buried channel deeply depleted channel transistor
US9991300B2 (en) 2013-05-24 2018-06-05 Mie Fujitsu Semiconductor Limited Buried channel deeply depleted channel transistor
US8976575B1 (en) 2013-08-29 2015-03-10 Suvolta, Inc. SRAM performance monitor

Similar Documents

Publication Publication Date Title
JP4553173B2 (en) Manufacturing method of semiconductor device having ultra-thin epichannel by decaborane doping
KR100414736B1 (en) A method for forming a transistor of a semiconductor device
US7470593B2 (en) Method for manufacturing a cell transistor of a semiconductor memory device
US6762469B2 (en) High performance CMOS device structure with mid-gap metal gate
JPH04186774A (en) Semiconductor device
JP4271920B2 (en) Semiconductor device CMOS and method of manufacturing the same
KR101486425B1 (en) Method of fabricating semiconductor device having dual gate
JPH09135025A (en) Fabrication of semiconductor device
JPH08153873A (en) Semiconductor device and fabrication thereof
US20060263992A1 (en) Method of forming the N-MOS and P-MOS gates of a CMOS semiconductor device
US5786252A (en) Method of manufacturing a semiconductor device, and semiconductor device manufactured by such a method
US5973370A (en) Preventing boron penetration through thin gate oxide of P-channel devices in advanced CMOS technology
KR100574172B1 (en) Method for fabricating semiconductor device
KR20090057566A (en) A semiconductor device and method for the same
KR20050056399A (en) Method for manufacturing semiconductor devices
JP4615755B2 (en) Manufacturing method of semiconductor device
JPH0346238A (en) Manufacture of semiconductor device
JP3145929B2 (en) Method for manufacturing semiconductor device
JP3014138B2 (en) Semiconductor device
KR100601917B1 (en) Method for making cmos transistor
JP3425883B2 (en) Method for manufacturing semiconductor device
JP4833527B2 (en) Insulated gate semiconductor device and driving method thereof
JPH11243065A (en) Manufacture of semiconductor device and formation of conductive silicon film
JPH0818047A (en) Misfet and its manufacturing method
JP3008579B2 (en) Method for manufacturing semiconductor device