JPH04185639A - Formation of insulating film and semiconductor device - Google Patents

Formation of insulating film and semiconductor device

Info

Publication number
JPH04185639A
JPH04185639A JP2314570A JP31457090A JPH04185639A JP H04185639 A JPH04185639 A JP H04185639A JP 2314570 A JP2314570 A JP 2314570A JP 31457090 A JP31457090 A JP 31457090A JP H04185639 A JPH04185639 A JP H04185639A
Authority
JP
Japan
Prior art keywords
insulating film
film
semiconductor device
layer
protective film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2314570A
Other languages
Japanese (ja)
Inventor
Masaaki Yamagami
山上 雅昭
Shunichi Fukuyama
俊一 福山
Tomoko Kobayashi
倫子 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2314570A priority Critical patent/JPH04185639A/en
Publication of JPH04185639A publication Critical patent/JPH04185639A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Paints Or Removers (AREA)
  • Silicon Polymers (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To form an insulation film excellent in levelness and oxygen plasma resistance by forming a specified protective film on an insulation film having organic groups. CONSTITUTION:A protective film comprising a silicon polymer of the formula [wherein l:m:n is (70-100):(15-0):(15-0)] is formed on an insulation film having organic groups (e.g. methyl ladder silicone resin film).

Description

【発明の詳細な説明】 〔概要〕 半導体集積回路の多層配線を構成する層間絶縁膜に関し
、 酸素プラズマ耐性に優れ、また基板表面の平坦化性が優
れた層間絶縁膜を実用化することを目的とし、 下記の一般式で表される硅素重合体を有機基を有する層
間絶縁膜の上層保護膜として使用し、半導体基板上の表
面段差を平坦化することを特徴として半導体装置を構成
する。
[Detailed Description of the Invention] [Summary] The purpose of the present invention is to commercialize an interlayer insulating film that has excellent resistance to oxygen plasma and flattening of the substrate surface, regarding an interlayer insulating film constituting multilayer wiring of a semiconductor integrated circuit. A semiconductor device is constructed in which a silicon polymer represented by the following general formula is used as an upper protective film of an interlayer insulating film having an organic group, and surface steps on a semiconductor substrate are flattened.

(Si047t) + (POa、2) 、 (BOs
/2)ゎ ・・・(1)こ\で、 1  : m : n 〜70〜100 : 15〜O
: 15〜0〔産業上の利用分野〕 本発明は半導体集積回路の多層化に使用する層間絶縁膜
の形成方法と、これを用いた半導体装置に関する。
(Si047t) + (POa, 2), (BOs
/2) ゎ ... (1) Here, 1: m: n ~70~100: 15~O
: 15-0 [Industrial Application Field] The present invention relates to a method for forming an interlayer insulating film used for multilayering a semiconductor integrated circuit, and a semiconductor device using the same.

本発明に係る層間絶縁膜はLSIやVLSIなど集積度
の高い半導体装置を形成する際に多層化に伴う段差の平
坦化性が優れており、また耐酸素プラズマ性に優れてい
る。
The interlayer insulating film according to the present invention has excellent ability to flatten steps caused by multilayering when forming highly integrated semiconductor devices such as LSI and VLSI, and also has excellent oxygen plasma resistance.

そのため、この絶縁膜の使用により信頼性の高い半導体
装置を実現することができる。
Therefore, by using this insulating film, a highly reliable semiconductor device can be realized.

〔従来の技術〕[Conventional technology]

半導体装置は集積度が向上してLSIやVLSIが実用
化されているが、これは単位素子の小形化により実現さ
れており、そのため配線の最小線幅がサブミクロン(S
ub−micron )のパターンが用いられている。
The degree of integration of semiconductor devices has improved and LSI and VLSI have been put into practical use, but this has been achieved by miniaturizing unit elements, and as a result, the minimum line width of wiring has become submicron (S).
ub-micron) pattern is used.

一方、配線の微細化による電気容量の減少を防ぐために
配線パターンの厚さは6000人〜1μmと高(する必
要があり、そのため段差は益々大きくなる傾向にある。
On the other hand, in order to prevent a decrease in capacitance due to miniaturization of wiring, the thickness of wiring patterns must be as high as 6,000 to 1 μm, and therefore, the steps tend to become larger and larger.

このため、多層配線を形成する上で、優れた平坦性が得
られる層間絶縁膜が必要になっている。
For this reason, there is a need for an interlayer insulating film that can provide excellent flatness when forming multilayer wiring.

また、情報処理の高速化により信号の周波数はGHzに
まで及んでいるが、このように高速な信号を処理する半
導体装置の絶縁膜は、信号の伝播遅延時間(τ)を低減
するため、関係式(2)から明らかなように誘電率の小
さな材料を用いて形成する必要がある。
In addition, as information processing speeds up, signal frequencies have reached GHz, and the insulating films of semiconductor devices that process such high-speed signals are required to reduce the signal propagation delay time (τ). As is clear from equation (2), it is necessary to use a material with a small dielectric constant.

τ;εI/2/c        ・・・(2)ニーで
、 εは絶縁膜の誘電率、 Cは光の速度、 である。
τ; εI/2/c (2) where ε is the dielectric constant of the insulating film, and C is the speed of light.

従来、眉間絶縁膜の材料としては無機絶縁材料や有機高
分子材料が使用されてきた。
Conventionally, inorganic insulating materials and organic polymer materials have been used as materials for the glabellar insulating film.

すなわち、二酸化硅素(SiOz) 、窒化硅素(Si
sN4)、燐硅酸ガラス(略称PSG )などの無機材
料は気相成長法(略称CVD法)などを用いて形成され
ているが、CVD法による場合は、下地と相似形に形成
されるために、基板面の凹凸がそのま\再現され、この
上に形成される配線の断線や絶縁不良の原因となる。
That is, silicon dioxide (SiOz), silicon nitride (Si
Inorganic materials such as sN4) and phosphosilicate glass (abbreviated as PSG) are formed using a vapor phase growth method (abbreviated as CVD method), but when using the CVD method, they are formed in a similar shape to the base. Moreover, the irregularities on the substrate surface are reproduced as they are, causing disconnection and poor insulation of the wiring formed thereon.

また、無機材料は一般に誘電率が大きいと云う問題があ
る。
Another problem is that inorganic materials generally have a large dielectric constant.

また、ポリイミド、オルガノシロキサン樹脂などの有機
高分子材料はスピンコード法などにより形成されており
、基板面の平坦化には有効であるが、多層配線工程にお
ける酸素(0□)プラズマ処理によって有機基が酸化さ
れ、クラックを生じると云う問題がある。
In addition, organic polymer materials such as polyimide and organosiloxane resins are formed by spin coding, etc., and are effective for flattening the substrate surface, but organic polymer materials such as polyimide and organosiloxane resins are There is a problem in that it is oxidized and cracks occur.

このため、有機高分子材料を使用する場合は、この上に
02プラスマ処理によって化学変化を生じない無機膜を
形成する必要がある。
Therefore, when an organic polymer material is used, it is necessary to form an inorganic film thereon that does not undergo chemical changes by 02 plasma treatment.

そこで、CVD法により上層保護膜が作られ、膜のスト
レスの問題から酸化膜が用いられているか、良好な膜質
を得るためには反応を高温で行う必要があり、この際に
高分子膜の酸化あるいは分解の進行によりガスが発生す
ると云う問題や酸化によりクラックが発生すると云う問
題がある。
Therefore, the upper protective film is made by the CVD method, and an oxide film is used due to the problem of stress on the film.In order to obtain good film quality, it is necessary to carry out the reaction at high temperature, and at this time, the polymer film is There is a problem that gas is generated due to the progress of oxidation or decomposition, and a problem that cracks are generated due to oxidation.

例えば、ポリイミド系の樹脂は酸素プラズマによる酸化
があり、また400℃程度の温度で熱分解が起こる。
For example, polyimide resins are oxidized by oxygen plasma and thermally decomposed at temperatures of about 400°C.

また、塗布・乾燥の終わった高分子膜は平坦であるが、
加熱硬化時に膜厚が減少するために下層の配線段差を完
全に平坦化することはできず、その上にCVD法により
上層保護膜を形成しても段差の平坦化は困難であった。
In addition, the polymer film is flat after coating and drying, but
Since the film thickness decreases during heat curing, it is not possible to completely flatten the lower wiring level difference, and even if an upper layer protective film is formed thereon by CVD, it is difficult to flatten the level difference.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

以上記したように、半導体集積回路の形成に使用する層
間絶縁層は、平坦化性が優れていること\、酸素プラズ
マ耐性に優れていることが必要である。
As described above, the interlayer insulating layer used for forming a semiconductor integrated circuit needs to have excellent planarization properties and oxygen plasma resistance.

そこで、有機高分子材料をスピンコードして平坦な絶縁
膜を形成した後、CVD法により無機膜を形成して上層
保護膜とすることが行われている。
Therefore, after a flat insulating film is formed by spin-coding an organic polymer material, an inorganic film is formed by a CVD method to form an upper protective film.

然し、この方法では平坦性が充分ではなく、上層保護膜
の形成にあたって絶縁膜よりガスが発生したり、分解が
生じたりすることが問題で、この解決が課題である。
However, this method does not provide sufficient flatness, and there are problems in that gas is generated or decomposition occurs from the insulating film during the formation of the upper protective film, and it is a problem to solve this problem.

〔課題を解決するための手段〕[Means to solve the problem]

上記の課題は下記の一般式で表される硅素重合体を有機
基を有する層間絶縁膜の上層保護膜として使用し、半導
体基板上の表面段差を平坦化することを特徴として半導
体装置を構成することにより解決することができる。
To solve the above problem, a semiconductor device is constructed by using a silicon polymer represented by the following general formula as an upper protective film of an interlayer insulating film having an organic group, and flattening the surface level difference on a semiconductor substrate. This can be solved by

(Si(Li2) + (POszz) w、 (BO
3/2)。 ・・・(1)ニーで、 l;m;n=70〜lOO:15〜0:15〜0〔作用
〕 本発明は平坦性が優れ、また耐02プラズマ耐性の優れ
た層間絶縁層を得る方法として、上層保護膜に硅素重合
体を用いるものである。
(Si(Li2) + (POszz) w, (BO
3/2). ...(1) At the knee, l;m;n=70~lOO:15~0:15~0 [Function] The present invention provides an interlayer insulating layer with excellent flatness and excellent 02 plasma resistance. As a method, a silicon polymer is used for the upper protective film.

ニーで、一般式(1)で表される硅素重合体は02プラ
ズマ等の活性化学種による化学変化を受けても劣化して
クラックを発生することはない。
The silicon polymer represented by the general formula (1) does not deteriorate and generate cracks even when subjected to chemical changes caused by active chemical species such as 02 plasma.

また、下層を保護するのに充分な6000Å以上の膜厚
で使用することができる。
Further, it can be used with a film thickness of 6000 Å or more, which is sufficient to protect the underlying layer.

そのため、多層配線形成工程において、有機基をもつ絶
縁膜の破損を完全に防ぐことができる。
Therefore, damage to the insulating film having organic groups can be completely prevented in the multilayer wiring formation process.

また、この材料はスピンコード法によって成膜できるた
め、CVD法のように高温を必要とせず、また大掛かり
な装置を必要としない。
Further, since this material can be formed into a film by the spin code method, it does not require high temperatures unlike the CVD method, and does not require large-scale equipment.

また、スピンコード法により下層絶縁層の平坦化ができ
るので、更に高い平坦性を得ることができる。
Further, since the lower insulating layer can be flattened by the spin code method, even higher flatness can be obtained.

〔実施例〕〔Example〕

合成例1: 11のフラスコ中で、テトラアセトキシシラン132 
gをテトラヒドロフラン(略称THF)500  mf
に溶解し、これにトリエチル硼酸73gを加え、3時間
に亙って加熱還流した後、溶媒のTHFを留去してエス
テル交換反応生成物を得た。
Synthesis Example 1: In 11 flasks, 132 tetraacetoxysilane
g to tetrahydrofuran (abbreviation THF) 500 mf
73 g of triethyl boric acid was added thereto, and after heating under reflux for 3 hours, the solvent THF was distilled off to obtain a transesterification reaction product.

これにメタノール30m1を加え、30分間に亙って室
温で攪拌した後、イオン交換水20mfを滴下し、50
℃で3時間加熱して加水分解させると共に重縮合させた
After adding 30 ml of methanol to this and stirring at room temperature for 30 minutes, 20 mf of ion-exchanged water was added dropwise, and 50 ml of methanol was added.
The mixture was heated at ℃ for 3 hours to cause hydrolysis and polycondensation.

反応終了後、溶液中のメタノールと水とを除き、得られ
た平均分子量1.2 XIO”の樹脂をブチルセルソル
ブに溶解して樹脂溶液を得た。
After the reaction was completed, methanol and water in the solution were removed, and the resulting resin having an average molecular weight of 1.2 XIO'' was dissolved in butyl cellosolve to obtain a resin solution.

合成例2: II!のフラスコ中で、テトラアセトキシシラン132
gをTHF500 rnlに溶解し、これにトリメチル
燐酸70gを加え、塩化水素ガスを含むN2を溶液中に
導入しながら、3時間に亙って加熱還流した後、溶媒の
THFを留去してエステル交換反応生成物を得た。
Synthesis example 2: II! Tetraacetoxysilane 132 in a flask of
g was dissolved in 500 rnl of THF, 70 g of trimethyl phosphoric acid was added thereto, and while N2 containing hydrogen chloride gas was introduced into the solution, the mixture was heated under reflux for 3 hours, and then the THF as a solvent was distilled off to dissolve the ester. An exchange reaction product was obtained.

これにメタノール30 mj7を加え、室温で30分間
に亙って攪拌した。
To this was added 30 mj7 of methanol, and the mixture was stirred at room temperature for 30 minutes.

これに更にイオン交換水20 mfを滴下し、50℃で
3時間加熱して加水分解させると共に重縮合を行った。
Further, 20 mf of ion-exchanged water was added dropwise to this, and the mixture was heated at 50° C. for 3 hours to cause hydrolysis and polycondensation.

反応終了後、得られた反応混合物から、減圧して溶液中
のメタノールと水とを除き、得られた平均分子量が1.
2 XIO”の樹脂をブチルセルソルブに溶解して樹脂
溶液を得た。
After the reaction is completed, methanol and water in the solution are removed from the resulting reaction mixture under reduced pressure, and the resulting average molecular weight is 1.
2XIO'' resin was dissolved in butyl cellosolve to obtain a resin solution.

実施例1: 第−層のAf層配線施したSi基板上にメチルシルセス
キオキサン樹脂を300Orpm、 30秒の条件でス
ピンコード法により塗布して厚さが0.8μmの塗膜を
作り、250℃で30分の熱処理を行った。
Example 1: A coating film with a thickness of 0.8 μm was made by applying methylsilsesquioxane resin on a Si substrate with wiring of the -th layer Af layer by a spin code method under the conditions of 300 rpm and 30 seconds. Heat treatment was performed at 250°C for 30 minutes.

次に、合成例1で得た樹脂溶液を、メチルラダーシリコ
ーン樹脂層上にスピンコード法により塗布して厚さが0
.5μmの塗膜を形成した。
Next, the resin solution obtained in Synthesis Example 1 was applied onto the methyl ladder silicone resin layer by a spin cord method until the thickness was 0.
.. A coating film of 5 μm was formed.

この塗膜を150℃で30分間乾燥して溶剤を除去した
後、250℃で30分の熱処理を施した。
After drying this coating film at 150°C for 30 minutes to remove the solvent, it was heat-treated at 250°C for 30 minutes.

この時、第−層配線により生じた段差は0.1μm以下
に平坦化されていた。
At this time, the level difference caused by the -th layer wiring was flattened to 0.1 μm or less.

続いて、従来法のレジストを用いた工程によってスルー
ホールを形成したが、02プラズマによるレジストの剥
離の際にも、メチルラダーシリコーン樹脂層には酸化に
よるクラックの発生は認められなかった。
Subsequently, through-holes were formed by a conventional process using a resist, but no cracks due to oxidation were observed in the methyl ladder silicone resin layer even when the resist was peeled off using 02 plasma.

スルーホールを形成した後、このスルーホール部へのA
fの埋め込みと第二層目のAI!配線を行い、保護層と
して1.3μmのP2O層を形成した後、電極取り出し
用の窓開けを行って半導体装置を得た。
After forming the through hole, connect A to this through hole part.
Embedding f and second layer AI! After wiring was performed and a 1.3 μm thick P2O layer was formed as a protective layer, a window for taking out the electrodes was opened to obtain a semiconductor device.

実施例2: 実施例1と同様にしてシリコーン樹脂層まで形成したS
i基板上に、合成例2で調製した樹脂溶液をスピンコー
ド法により塗布し0.5μmの塗膜を作り、250℃で
30分の熱処理を施した。
Example 2: S formed up to the silicone resin layer in the same manner as in Example 1
The resin solution prepared in Synthesis Example 2 was applied onto the i-substrate by a spin code method to form a 0.5 μm coating film, and heat treatment was performed at 250° C. for 30 minutes.

この時、第−層配線により生じた段差は0.1μm以下
に平坦化されていた。
At this time, the level difference caused by the -th layer wiring was flattened to 0.1 μm or less.

続いて、従来法のレジストを用いた工程によってスルー
ホールを形成したが、0.プラズマによるレジストの剥
離の際にも、メチルラダーシリコーン樹脂層には酸化に
よるクラックの発生は認められなかった。
Subsequently, through-holes were formed by a process using a conventional resist, but the results were 0. Even when the resist was removed by plasma, no cracks due to oxidation were observed in the methyl ladder silicone resin layer.

スルーホールを形成した後、このスルーホール部へのA
l1の埋め込みと第二層目のl配線を行い、保護層とし
て1.3μmのPSG層を形成した後、電極取り出し用
の窓開けを行って半導体装置を得た。
After forming the through hole, connect A to this through hole part.
After embedding l1 and forming a second layer l wiring, and forming a 1.3 μm thick PSG layer as a protective layer, a window for taking out an electrode was opened to obtain a semiconductor device.

〔発明の効果〕〔Effect of the invention〕

このように、硅素重合体を高分子樹脂よりなる絶縁膜の
上層保護膜として使用することにより、従来法により形
成した無機膜と同等の保護効果を得ることができ、また
高い平坦性も得られるために信頼性の高い半導体集積回
路を形成することができる。
In this way, by using a silicon polymer as a protective film on top of an insulating film made of polymer resin, it is possible to obtain a protective effect equivalent to that of an inorganic film formed by conventional methods, and also to obtain high flatness. Therefore, a highly reliable semiconductor integrated circuit can be formed.

6壬6 壬

Claims (2)

【特許請求の範囲】[Claims] (1)有機基を有する絶縁膜の上に下記の一般式で表さ
れる硅素重合体からなる保護膜を形成することを特徴と
する絶縁膜の形成方法。 (SiO_4_/_2)_l(PO_5__/_2)_
m(BO_3_/_2)_n…(1)こゝで、 l:m:n=70〜100:15〜0:15〜0
(1) A method for forming an insulating film, which comprises forming a protective film made of a silicon polymer represented by the following general formula on an insulating film having an organic group. (SiO_4_/_2)_l(PO_5_/_2)_
m(BO_3_/_2)_n...(1) Here, l:m:n=70~100:15~0:15~0
(2)配線パターンを覆う有機基を有する絶縁膜と、該
絶縁膜上に形成され表面が平坦化されてなる請求項1に
記載の保護膜とを有することを特徴とする半導体装置。
(2) A semiconductor device comprising: an insulating film having an organic group that covers a wiring pattern; and a protective film according to claim 1, which is formed on the insulating film and whose surface is planarized.
JP2314570A 1990-11-20 1990-11-20 Formation of insulating film and semiconductor device Pending JPH04185639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2314570A JPH04185639A (en) 1990-11-20 1990-11-20 Formation of insulating film and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2314570A JPH04185639A (en) 1990-11-20 1990-11-20 Formation of insulating film and semiconductor device

Publications (1)

Publication Number Publication Date
JPH04185639A true JPH04185639A (en) 1992-07-02

Family

ID=18054873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2314570A Pending JPH04185639A (en) 1990-11-20 1990-11-20 Formation of insulating film and semiconductor device

Country Status (1)

Country Link
JP (1) JPH04185639A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009545649A (en) * 2006-08-04 2009-12-24 ダウ・コーニング・コーポレイション Silicone resin and silicone composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009545649A (en) * 2006-08-04 2009-12-24 ダウ・コーニング・コーポレイション Silicone resin and silicone composition

Similar Documents

Publication Publication Date Title
US5602060A (en) Process for the production of semiconductor devices
US6395649B1 (en) Low dielectric constant polyorganosilicon coatings generated from polycarbosilanes
EP0517475B1 (en) Process for coating a substrate with a silica precursor
US6743471B2 (en) Process for preparing insulating material having low dielectric constant
US6177143B1 (en) Electron beam treatment of siloxane resins
EP1328571B1 (en) A process for preparing organic silicate polymer
KR20020075876A (en) Polycarbosilane Adhesion Promoters for Low Dielectric Constant Polymeric Materials
KR20050018629A (en) Etch-stop resins
JP3819391B2 (en) Method for producing organic silicate polymer, and method for producing insulating film using the same
JPH04185639A (en) Formation of insulating film and semiconductor device
JPH0386725A (en) Production of insulator and production of semiconductor device
JPH07242747A (en) Organosilicon polymer and semiconductor device
JPH04125929A (en) Insulating film forming method of semiconductor device and semiconductor device
KR100508901B1 (en) Organic silicate polymer and insulation film comprising the same
JPH01313528A (en) Organosilicon polymer, its production and semiconductor device prepared by using same
JP2705078B2 (en) Method for planarizing semiconductor element surface
JPH0439371A (en) Formation of insulating film and semiconductor device having insulating film
JPS62290139A (en) High-temperature resin composition
JPH04359056A (en) Resin composition and method for forming layer insulating film
KR100515584B1 (en) Organic silicate polymer and insulation film comprising the same
JPH02192729A (en) Manufacture of insulating layer
JPH05267479A (en) Manufacture of semiconductor device
JPH04185640A (en) Production of organosilicon polymer and semiconductor device
JPH0263057A (en) Photosensitive heat resistant resin composition and production of integrated circuit
JPH07133350A (en) Polyperfluoroalkylenesiloxane resin, its production, and production of insulating interlayer film