JPH04184710A - Fixed magnetic disk and manufacture thereof - Google Patents

Fixed magnetic disk and manufacture thereof

Info

Publication number
JPH04184710A
JPH04184710A JP31352290A JP31352290A JPH04184710A JP H04184710 A JPH04184710 A JP H04184710A JP 31352290 A JP31352290 A JP 31352290A JP 31352290 A JP31352290 A JP 31352290A JP H04184710 A JPH04184710 A JP H04184710A
Authority
JP
Japan
Prior art keywords
thin film
film
magnetic disk
iron oxide
crystal structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31352290A
Other languages
Japanese (ja)
Other versions
JP2538124B2 (en
Inventor
Akiyuki Fujii
映志 藤井
Hideo Torii
秀雄 鳥井
Masuzo Hattori
服部 益三
Masaki Aoki
正樹 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2313522A priority Critical patent/JP2538124B2/en
Publication of JPH04184710A publication Critical patent/JPH04184710A/en
Application granted granted Critical
Publication of JP2538124B2 publication Critical patent/JP2538124B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To make the fixed magnetic disk excellent in reliability and to make it possible to deal with high-density magnetic recording by a method wherein a thin film of an oxide having an NaCl-type crystal structure is formed on a disk substrate, a soft magnetic film of an/iron oxide of a spinel structure is formed thereon and further a magnetic thin film of an iron oxide containing cobalt and having the spinel structure is formed thereon. CONSTITUTION:An NiO film 8 oriented to 100 preferentially is formed as a ground layer on a disk substrate 7, a soft magnetic thin film 9 of an iron oxide such as Mn-Zn ferrite or Ni-Zn ferrite having a spinel structure is formed thereon and further a magnetic thin film 10 of a spinel-type iron oxide having a columnar structure and containing Co is formed as a magnetic layer. A plasma CVD method is employed for manufacture thereof. A disk manufactured according to this constitution is excellent in reliability in durability, hardness, etc. and makes it possible to execute high-density magnetic recording.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、信顛性に優れ、高密度磁気記録対応を可能に
する固定磁気ディスクおよびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a fixed magnetic disk that has excellent reliability and is compatible with high-density magnetic recording, and a method for manufacturing the same.

従来の技術 近年の高度情報社会において、記憶すべき情報の量は年
々増加の一途をたどり、記憶装置の大容量化、高密度化
に対する要望も高まっている。
2. Description of the Related Art In the recent advanced information society, the amount of information to be stored continues to increase year by year, and the demand for larger capacity and higher density storage devices is also increasing.

このような状況のもと、コンピュータ周辺機器として用
いられる固定磁気ディスクに用いられる記憶媒体は、従
来のアルミディスク基板上にガンマ酸化鉄系の針状磁性
粉などを塗布した塗布型から、めっき法やスパッタ法な
どによるCo−Ni/ Cr合金の薄膜型へと変化し、
高密度化が図られてきた。
Under these circumstances, the storage media used in fixed magnetic disks used as computer peripherals have changed from the conventional coating type, in which gamma iron oxide acicular magnetic powder is coated on an aluminum disk substrate, to the plating method. It changed to a thin film type of Co-Ni/Cr alloy by sputtering method, etc.
Efforts have been made to increase density.

発明が解決しようとする課題 しかし、Co −N i / Cr合金薄膜型はその構
成材料が合金であるため耐久性などに問題があり、固定
磁気ディスクの構造としては、(潤滑層/保護層/ C
o −N i磁性層/Cr層/ N i −Pめっき層
/アルミニウム基板)の5層構造になっており、製造工
程が複雑であるといった欠点がある。
Problems to be Solved by the Invention However, since the Co-Ni/Cr alloy thin film type is composed of an alloy, there are problems with durability, etc.; C
It has a five-layer structure (o-Ni magnetic layer/Cr layer/Ni-P plating layer/aluminum substrate), and has a drawback that the manufacturing process is complicated.

第4図は従来の固定磁気ディスクであるCo−N i 
/ Cr合金の薄膜型の固定磁気ディスクの断面構造を
示す。図において1はアルミニウム基板、2はN1−P
めっき層、3はCr層、4はCo−Ni磁性層、5は保
護層、6は潤滑層である。
Figure 4 shows a conventional fixed magnetic disk, Co-Ni.
/ Shows the cross-sectional structure of a thin-film type fixed magnetic disk made of Cr alloy. In the figure, 1 is an aluminum substrate, 2 is N1-P
The plating layer 3 is a Cr layer, 4 is a Co-Ni magnetic layer, 5 is a protective layer, and 6 is a lubricating layer.

上記従来の固定磁気ディスクはCo−N1m性層4が面
内記録媒体であるため、さらに記録密度を上げるために
記録波長を短くしていくと減磁界の影響で記録が困難に
なってくる。
Since the above-mentioned conventional fixed magnetic disk has a Co-N1m layer 4 as a longitudinal recording medium, if the recording wavelength is shortened in order to further increase the recording density, recording becomes difficult due to the influence of the demagnetizing field.

そこで、磁気記録方式の上で、上記欠点を改善した記録
方式である垂直記録を可能とする磁気記録媒体として、
磁気ヘッドとその媒体が接触状態となるものではあるが
、Co−Cr1膜媒体などの研究が盛んになされてきた
。しかし第4図に示すCo  Ni/Cr合金の薄膜型
の記録媒体の場合と同様、Co−Cr1[膜媒体にも合
金であるために信転性に問題があり、Co−Cr1[膜
の表面にアモルファスカーボン膜やCO酸化物のような
保護層5を設けなくてはならないという課題がある。
Therefore, as a magnetic recording medium that enables perpendicular recording, which is a recording method that improves the above drawbacks on the magnetic recording method,
Although the magnetic head and its medium are in contact with each other, research has been actively conducted on Co--Cr1 film media. However, as in the case of the Co-Ni/Cr alloy thin-film type recording medium shown in FIG. There is a problem in that a protective layer 5 such as an amorphous carbon film or CO oxide must be provided.

一方、固定磁気ディスク装置において1.磁気ヘッドの
磁気ディスクに対する走行高さ(フライングバイト)を
できるだけ低くすることは、磁気ヘッドと磁気ディスク
スペーシングによる出力の損失(スペーシング損失)を
軽減するため、記録密度向上につながるものであり、最
近では高記録密度を可能にするために、0.05〜0.
1μm程度のフライングハイド量での走行が必要とされ
ている。
On the other hand, in a fixed magnetic disk device, 1. Reducing the running height of the magnetic head relative to the magnetic disk (flying bite) as much as possible reduces the output loss (spacing loss) caused by the magnetic head and magnetic disk spacing, which leads to improved recording density. Recently, in order to enable high recording density, 0.05 to 0.
It is required to run with a flying hide amount of about 1 μm.

しかしながら、上記従来のCo−Ni/Cr合金の薄膜
型記録媒体、Co−CrWI膜型記録媒体いずれにおい
ても、耐久性などに問題があるため、信転性確保のため
薄膜媒体表面に保護層5(数100人)を形成しなけれ
ばならず、したがってどうしてもスペーシング損失が増
えてしまうという課題が残る。
However, both the conventional Co-Ni/Cr alloy thin-film recording medium and the Co-CrWI film-type recording medium have problems with durability, so a protective layer is added to the surface of the thin film medium to ensure reliability. (several 100 people), and the problem remains that the spacing loss inevitably increases.

本発明は上記課題を解決するものであり、信顛性に優れ
、かつ高密度磁気記録対応が可能である垂直磁気記録の
成分を有する固定磁気ディスクとその製造方法を提供す
ることを目的とするものである。
The present invention is intended to solve the above problems, and aims to provide a fixed magnetic disk having a perpendicular magnetic recording component that has excellent reliability and is compatible with high-density magnetic recording, and a method for manufacturing the same. It is something.

課題を解決するための手段 上記目的を達成するために本発明は、ディスク基板上に
NaCl型結晶構造を有する酸化物薄膜と、その上にス
ピネル型結晶構造の酸化鉄軟磁性膜とさらにその上にコ
バルトを含むスピネル型結晶構造の酸化鉄磁性薄膜を形
成した3層構造の固定磁気ディスクであり、また前記固
定磁気ディスクをプラズマの活性さとCVD反応を利用
した製造方法により作製するものである。
Means for Solving the Problems In order to achieve the above objects, the present invention provides an oxide thin film having an NaCl type crystal structure on a disk substrate, an iron oxide soft magnetic film having a spinel type crystal structure on the thin oxide film, and a soft magnetic film of iron oxide having a spinel type crystal structure on the disk substrate. This is a fixed magnetic disk with a three-layer structure in which an iron oxide magnetic thin film with a spinel-type crystal structure containing cobalt is formed, and the fixed magnetic disk is manufactured by a manufacturing method that utilizes plasma activation and CVD reaction.

作用 したがって本発明によれば、下地層として用いている酸
化物薄膜がNaCl型結晶構造の(100)に完全配向
しており、またスピネル型結晶構造の酸化鉄軟磁性薄膜
およびコバルトを含むスピネル型結晶構造の酸化鉄磁性
薄膜も上記酸化物薄膜の配向性の影響を受けて(100
)の配向性が向上しているため、耐久性や硬度などの信
顛性に優れ、かつ高密度磁気記録ができる。
Therefore, according to the present invention, the oxide thin film used as the underlayer is completely oriented in the (100) direction of the NaCl type crystal structure, and the iron oxide soft magnetic thin film has the spinel type crystal structure and the spinel type containing cobalt. The crystalline iron oxide magnetic thin film is also affected by the orientation of the oxide thin film (100
) has improved orientation, so it has excellent reliability such as durability and hardness, and enables high-density magnetic recording.

実施例 以下、本発明の一実施例について図面を参照しながら説
明する。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例における固定磁気ディスクの
構成を示すものであり、図において7はディスク基板、
8はNiO膜、9はMn−Znフェライト膜層、10は
COフェライト膜、11は潤滑層である。
FIG. 1 shows the configuration of a fixed magnetic disk in an embodiment of the present invention, and in the figure, 7 is a disk substrate;
8 is a NiO film, 9 is a Mn-Zn ferrite film layer, 10 is a CO ferrite film, and 11 is a lubricating layer.

第2図は本発明の一実施例において固定磁気ディスクの
製造に使用するプラズマCVD装置の概略図を示すもの
であり、図において12は反応チャンバー、13は電極
、14は反応チャンバー内を低圧に保つための排気系で
、15は高周波電源(13,56MHz) 、16〜2
0は原料の入った気化器で、21〜25はキャリアガス
の気化器16〜20内への導入の有無を制御するための
第1のバルブ、26〜30は原料ガスとキャリアガスの
反応チャンバー11内への導入の有無を制御するための
第2のバルブ、31はキャリアガスボンベ(窒素)、3
2は反応ガスボンベ(酸素)、33は基板回転機構のつ
いた基板加熱ヒーターである。
FIG. 2 shows a schematic diagram of a plasma CVD apparatus used for manufacturing a fixed magnetic disk in one embodiment of the present invention. In the figure, 12 is a reaction chamber, 13 is an electrode, and 14 is a device that maintains a low pressure inside the reaction chamber. 15 is a high frequency power supply (13,56MHz), 16-2
0 is a vaporizer containing the raw material, 21 to 25 are first valves for controlling whether or not carrier gas is introduced into the vaporizers 16 to 20, and 26 to 30 are reaction chambers for the raw material gas and carrier gas. a second valve for controlling the presence or absence of introduction into 11; 31 is a carrier gas cylinder (nitrogen);
2 is a reactive gas cylinder (oxygen), and 33 is a substrate heater equipped with a substrate rotation mechanism.

次に本実施例の固定磁気ディスクの製造方法を第2図に
もとづき説明する。
Next, the method of manufacturing the fixed magnetic disk of this embodiment will be explained based on FIG.

出発原料として、鉄アセチルアセトナート〔Fe (C
5Ht Ox )! 〕、マンガンアセチルアセトナー
ト[Mn (Cs Hy Ox )3 〕、亜鉛アセチ
ルアセトナート(Zn (C5Ht Ox ) z  
・2H,0)、にけっるアセチルアセトナート(Ni(
Cs Ht Ox )*  ・XHz○〕およびコバル
トアセチルアセトナート(Co (Cs H,O□)、
〕を使用し、気化器16にマンガンアセチルアセトナー
ト、気化器18に脱水処理を行った亜鉛アセチルアセト
ナート(空気中100°Cで2時間)、気化器19にコ
バルトアセチルアセトナート、気化器20に鉄アセチル
アセトナートを入れ、それぞれ185℃、130°C1
70℃、120”C1135°Cに加熱し保持しておく
。第1のバルブ21および第2のバルブ26を開き、窒
素キャリアガス(流量205CCM)とともにニッケル
アセチルアセチナートの蒸気を、反応ガスとしての酸素
(流量35CCM)とともに排気系14により減圧され
た反応チャンバー12内に導入し、プラズマを発生(電
力1.5W/cd)させ、4分間減圧下(0,10To
rr)で反応を行い、400℃に加熱したガラス等より
なるディスク基板7 (120回転/分)上にNiO膜
8を成膜し、第1のバルブ21および第2のバルブ26
を閉じる。
As a starting material, iron acetylacetonate [Fe (C
5HtOx)! ], manganese acetylacetonate [Mn (Cs Hy Ox)3], zinc acetylacetonate (Zn (C5Ht Ox) z
・2H,0), nickel acetylacetonate (Ni(
Cs Ht Ox )* ・XHz○] and cobalt acetylacetonate (Co (Cs H, O□),
), manganese acetylacetonate was placed in the vaporizer 16, dehydrated zinc acetylacetonate (in air at 100°C for 2 hours) was placed in the vaporizer 18, cobalt acetylacetonate was placed in the vaporizer 19, and vaporizer 20 was used. Add iron acetylacetonate to 185°C and 130°C1 respectively.
The temperature is heated to 70°C, 120"C and 1135°C and maintained. The first valve 21 and the second valve 26 are opened and nickel acetylacetinate vapor is introduced as a reaction gas together with nitrogen carrier gas (flow rate 205CCM). Oxygen (flow rate: 35 CCM) is introduced into the reaction chamber 12, which is depressurized by the exhaust system 14, to generate plasma (power: 1.5 W/cd), and then heated under reduced pressure (0.10 To
rr), a NiO film 8 is formed on a disk substrate 7 made of glass or the like heated to 400° C. (120 rotations/min), and a NiO film 8 is formed on the first bulb 21 and the second bulb 26.
Close.

引き続き、真空を破らずに第1のバルブ22.23.2
5および第2のバルブ27.28.30を開き、窒素キ
ャリアガス(気化器17側に流量4 SCCM、気化器
18側に流量75CCM、気化器20側に流量155C
CM )とともにマンガンアセチルアセトナートの蒸気
と亜鉛アセチルアセトナートの蒸気と鉄アセチルアセト
ナートの蒸気を、反応ガスとしての酸素(流量5SCC
M )とともに、排気系14により減圧された反応チャ
ンバー12内に導入し、プラズマを発生(電力1.5 
W/cii)させ、6分間減圧下(0,09Torr)
で反応を行い、400℃に加熱したディスク基板7 (
120回転/分)上にMn−Znフェライト膜9を成膜
し、第1のバルブ22.23および第2のバルブ27.
28を閉じる。
Continue to open the first valve 22.23.2 without breaking the vacuum.
5 and second valves 27, 28, and 30, and nitrogen carrier gas (flow rate 4 SCCM to the vaporizer 17 side, flow rate 75 CCM to the vaporizer 18 side, flow rate 155 CCM to the vaporizer 20 side).
CM), manganese acetylacetonate vapor, zinc acetylacetonate vapor, and iron acetylacetonate vapor with oxygen as a reaction gas (flow rate 5 SCC).
M) is introduced into the reaction chamber 12, which is depressurized by the exhaust system 14, to generate plasma (power: 1.5
W/cii) for 6 minutes under reduced pressure (0.09 Torr)
Disk substrate 7 (
A Mn-Zn ferrite film 9 is formed on the first bulb 22.23 and the second bulb 27.
Close 28.

さらに引き続き、真空を破らずに第1のバルブ24およ
び第2のバルブ29を開き、窒素キャリアガス(流量7
SCCM)とともにコバルトアセチルアセトナートの蒸
気を鉄アセチルアセトナートの蒸気とともに反応チャン
バー12内に導入し、プラズマ中(電力1.5W/d)
で8分間減圧下(0,07Torr)で反応を行い、M
 n −Z nフェライト膜9上にCOフェライト膜1
0を成膜し、Coフェライト/Mn−Znフェライト/
 N i Oの3層膜を形成する。
Then, without breaking the vacuum, the first valve 24 and the second valve 29 are opened and the nitrogen carrier gas (flow rate 7
Cobalt acetylacetonate vapor is introduced into the reaction chamber 12 along with iron acetylacetonate vapor (SCCM), and a plasma is generated (power: 1.5 W/d).
The reaction was carried out under reduced pressure (0.07 Torr) for 8 minutes at
CO ferrite film 1 on n-Z n ferrite film 9
Co ferrite/Mn-Zn ferrite/
A three-layer film of N i O is formed.

そして、その3層膜を形成したディスク基板7を反応チ
ャンバー12から取り出し、裏面にも同様の方法で、同
じ構成の3層膜を形成し、両面に磁性薄膜面をもつCo
フェライト/Mn  Znフェライトディスク/ N 
i Oディスクを作製した。
Then, the disk substrate 7 on which the three-layer film was formed was taken out from the reaction chamber 12, and a three-layer film with the same structure was formed on the back side in the same manner.
Ferrite/Mn Zn Ferrite disk/N
An iO disk was prepared.

次に、このディスクを300℃の空気中で3時間熱処理
を行った後、フッソ系有機物の潤滑剤の入った液槽(図
示せず)に沈めて潤滑層11を塗布することによって、
固定磁気ディスクを作製した。
Next, this disk is heat-treated in air at 300° C. for 3 hours, and then submerged in a liquid tank (not shown) containing a fluorine-based organic lubricant to apply a lubricant layer 11.
A fixed magnetic disk was fabricated.

作製した本実施例の固定磁気ディスクは、ギャップ長(
GL)が0.25μm、トランク幅(Tw)が10μm
のMIGヘッドを用いて、50mAのヘッド電流値を選
んで電磁変換特性の評価を行った。
The manufactured fixed magnetic disk of this example had a gap length (
GL) is 0.25μm, trunk width (Tw) is 10μm
The electromagnetic conversion characteristics were evaluated using a MIG head of 50 mA and a head current value of 50 mA.

固定磁気ディスクを360Or、p、+nの速度で回転
させ、ディスクの中心から20.0Mの円周トラックで
評価を行った。なお、固定磁気ディスクと磁気ヘッドの
相対速度は7.5/secであり、磁気ヘッドのフライ
ングハイドは0.15μmであった。
A fixed magnetic disk was rotated at a speed of 360 Or, p, +n, and evaluation was performed on a circumferential track of 20.0M from the center of the disk. Note that the relative speed between the fixed magnetic disk and the magnetic head was 7.5/sec, and the flying hide of the magnetic head was 0.15 μm.

次に比較のために、HC=lOkOeで、Ms= 80
0e+nu / ccのCr層3とCo−Ni磁性層4
とからなる磁性層膜厚が800人で、その上に保護層5
としてカーボン膜を600人形成し、本発明と同様の潤
滑層6を設けた従来のCo −N i / Cr合金の
薄膜型の固定磁気ディスク(アルミニウム基板で面内方
向に磁化配向したもの)と、ガラスディスク基板上に直
接Coフェライト磁性膜(作製条件は3層膜の場合と同
じ)を形成した構造のCoフェライト薄膜固定磁気ディ
スクを用意し、本実施例の固定磁気ディスクと同じ条件
で電磁変換特性を測定した。
Next, for comparison, HC=lOkOe and Ms=80
Cr layer 3 and Co-Ni magnetic layer 4 of 0e+nu/cc
The thickness of the magnetic layer consisting of is 800 mm, and a protective layer 5
A conventional Co-Ni/Cr alloy thin-film type fixed magnetic disk (aluminum substrate with magnetization oriented in the in-plane direction) was prepared by forming 600 carbon films as described above, and provided with a lubricating layer 6 similar to the present invention. A Co ferrite thin film fixed magnetic disk having a structure in which a Co ferrite magnetic film (manufacturing conditions are the same as for the three-layer film) was formed directly on a glass disk substrate was prepared, and electromagnetic treatment was performed under the same conditions as the fixed magnetic disk of this example. The conversion characteristics were measured.

このようにして得られた本実施例の固定磁気ディスクと
従来のCo−Ni/Cr合金薄膜固定磁気ディスクおよ
びCoフェライト薄膜固定磁気ディスクの再生出力と記
録密度または記録波長との関係を比較して第3図に示す
The relationship between the reproduction output and recording density or recording wavelength of the thus obtained fixed magnetic disk of this example, a conventional Co-Ni/Cr alloy thin film fixed magnetic disk, and a Co ferrite thin film fixed magnetic disk was compared. It is shown in Figure 3.

第3図において、横軸が記録密度または記録波長で、縦
軸が再生出力である。また、同図中(a)が本実施例の
固定磁気ディスク、(b)が比較のための従来のCo−
Ni/Cr合金薄膜固定磁気ディスク、(C)が同じく
他の従来のCoフェライト薄膜固定磁気ディスク(Co
フェライト単層膜)の特性をそれぞれ示している。
In FIG. 3, the horizontal axis represents recording density or recording wavelength, and the vertical axis represents reproduction output. In the figure, (a) is the fixed magnetic disk of this embodiment, and (b) is the conventional Co-magnetic disk for comparison.
The Ni/Cr alloy thin film fixed magnetic disk (C) is the same as another conventional Co ferrite thin film fixed magnetic disk (Co
ferrite single layer film).

第3図から本実施例の固定磁気ディスクは従来のCo 
−N i / Cr合金薄膜固定磁気ディスクやCoフ
ェライト薄膜固定磁気ディスクと比較して全体的に再生
出力が高くなっており、高記録密度化対応が可能である
ことがわかる。
As shown in Fig. 3, the fixed magnetic disk of this embodiment is different from the conventional Co
It can be seen that the overall reproduction output is higher than that of a -N i /Cr alloy thin film fixed magnetic disk or a Co ferrite thin film fixed magnetic disk, and that it is possible to support higher recording densities.

なお、本実施例の固定磁気ディスクの記録信号の再生波
形をオシロスコープで観察すると、垂直磁気記録成分を
含むことの特徴であるグイパルス波形を示している。
Note that when the reproduced waveform of the recording signal of the fixed magnetic disk of this embodiment is observed with an oscilloscope, it shows a gui pulse waveform, which is characterized by including a perpendicular magnetic recording component.

電磁変換特性の測定終了後、本実施例の固定磁気ディス
クを破壊して高分解能の走査型電子顕微鏡(SEM)を
用いて、その表面および破断面を観察した結果、その3
層膜は柱状構造を有し、膜厚約4500人でコラム径は
500〜900人であることがわかった。
After the measurement of the electromagnetic conversion characteristics, the fixed magnetic disk of this example was broken and its surface and fractured surface were observed using a high-resolution scanning electron microscope (SEM). Part 3
It was found that the layer film had a columnar structure, with a film thickness of about 4500 mm and a column diameter of 500 to 900 mm.

比較のためにガラスディスク基板上に前記実施例と同じ
条件で成膜したNiO膜およびMn−Znフェライト膜
およびCoフェライト膜を作製し、SEMにより同様に
観察した結果、NiO膜は膜厚が1000人、Mn−Z
nフェライト膜は膜厚が1500人、Coフェライト膜
は膜厚が2000人であった。
For comparison, a NiO film, a Mn-Zn ferrite film, and a Co ferrite film were formed on a glass disk substrate under the same conditions as in the above example, and similarly observed by SEM. As a result, the NiO film had a thickness of 1000 mm person, Mn-Z
The thickness of the n-ferrite film was 1500 mm, and the thickness of the Co ferrite film was 2000 mm.

さらに、電子線マイクロアナライザー(EPMA)によ
りMn−Znフェライト膜およびCoフェライト膜の組
成を分析した結果、それぞれMn/Zn/Fe−7/3
/20、Co/Fe=1/19であった。
Furthermore, as a result of analyzing the composition of the Mn-Zn ferrite film and Co ferrite film using an electron beam microanalyzer (EPMA), the compositions of the Mn-Zn ferrite film and Co ferrite film were respectively Mn/Zn/Fe-7/3.
/20, Co/Fe=1/19.

次に、Mn−Znフェライト膜およびCOフェライトM
lの磁気特性について振動試料型磁気測定装置(VSM
)により測定を行った。その結果、Mn−Znフェライ
ト膜はHc =450e、 Ms=320emu /c
c、 G oフェライト膜はHe土= 1.2KOe 
SM s =280emu/ccであった。
Next, Mn-Zn ferrite film and CO ferrite M
Vibrating sample magnetometer (VSM)
). As a result, the Mn-Zn ferrite film has Hc = 450e, Ms = 320emu/c
c, Go ferrite film is He soil = 1.2KOe
SM s =280 emu/cc.

また、X線回折による結晶構造の解析を行った結果、下
地層として用いているNiO膜はNaCl型結晶構造の
(100)に完全配向しており、Mn−Znフェライト
膜およびCoフェライト膜のいずれの膜も、NiO膜の
配向性の影響を受けて下地層を設けない場合と比較して
スピネル型結晶構造における(100)の配向性は向上
していた。
Furthermore, as a result of analyzing the crystal structure by X-ray diffraction, it was found that the NiO film used as the underlayer was completely oriented in the (100) direction of the NaCl type crystal structure, and that both the Mn-Zn ferrite film and the Co ferrite film were completely oriented. The (100) orientation in the spinel crystal structure of the film was also improved compared to the case where no underlayer was provided due to the influence of the orientation of the NiO film.

本実施例の固定磁気ディスクが従来のCo−N i /
 Cr合金薄膜磁気ディスクより短波長域の高記録密度
側で再生出力が高い値を示す原因は、垂直磁気記録成分
を含んでいるからであり、またCoフェライト薄膜固定
磁気ディスクより高い再生出力を示すのは、下地層とし
て軟磁性材料を用いていることよりCoフェライト磁性
層と馬蹄形の磁路を形成することによって反磁界の影響
が低減されているためであると考えられる。
The fixed magnetic disk of this embodiment is a conventional Co-N i /
The reason why the reproduction output shows a higher value on the high recording density side in the short wavelength range than the Cr alloy thin film magnetic disk is because it contains a perpendicular magnetic recording component, and it also shows a higher reproduction output than the Co ferrite thin film fixed magnetic disk. This is considered to be because the influence of the demagnetizing field is reduced by forming a horseshoe-shaped magnetic path with the Co ferrite magnetic layer by using a soft magnetic material as the underlayer.

また本発明の他の実施例として同様の成膜方法を用いて
、下地膜にNi−Znフェライト、Mnフェライト、N
iフェライトまたはZnフェライトをそれぞれ成膜し、
Coフェライト/ N i −ZnフェライトNi01
Coフエライト/ M nフェライトNi01Coフエ
ライト/NiフエライトNiOまたはCoフェライト/
 Z nフェライトNiOの3層膜ディスクを作製し、
電磁変換特性の評価を行ったその結果、本実施例のCo
フェライト/ M n −Z nフェライトの3層膜よ
りなる固定磁気ディスクの場合と同様に、従来のCo−
Ni/ Cr合金薄膜固定磁気ディスクと比較して全体
的に再生出力が高くなった。
Further, as another embodiment of the present invention, using the same film forming method, Ni-Zn ferrite, Mn ferrite, N
Forming a film of i-ferrite or Zn-ferrite, respectively,
Co ferrite/Ni-Zn ferrite Ni01
Co ferrite/M n ferrite Ni01Co ferrite/Ni ferrite NiO or Co ferrite/
A three-layer film disk of Zn ferrite NiO was prepared,
As a result of evaluating the electromagnetic conversion characteristics, the Co
As in the case of fixed magnetic disks made of three-layer films of ferrite/Mn-Zn ferrite, conventional Co-
The overall reproduction output was higher than that of a Ni/Cr alloy thin film fixed magnetic disk.

このように上記実施例によれば、ディスク基板上にNi
O膜8を形成し、その上にM n −Z nフェライト
膜9を形成し、さらにその上にCoフェライト膜10を
形成しているため、耐久性や硬度などの信転性に優れ、
かつ高密度磁気記録が可能な固定磁気ディスクを製造す
ることができる。
In this way, according to the above embodiment, Ni is deposited on the disk substrate.
Since the O film 8 is formed, the Mn-Zn ferrite film 9 is formed on it, and the Co ferrite film 10 is further formed on it, it has excellent reliability such as durability and hardness,
Moreover, a fixed magnetic disk capable of high-density magnetic recording can be manufactured.

発明の効果 本発明は上記実施例より明らかなように、ディスク基板
上に、下地層として(100)に優先配向したNiO膜
を形成し、その上にMn−ZnフェライトやNi−Zn
フェライトなどのスピネル型の結晶構造をした酸化鉄軟
磁性薄膜を形成し、さらに磁性層として柱状構造を有す
るCoを含むスピネル型酸化鉄磁性薄膜を形成した固定
磁気ディスクの構造であるため、高信頼性であり、かつ
高記録密度対応が可能となるものであり、またその製造
方法にプラズマCVD法を用いているため、簡単な原料
供給の制御を行うだけで3層膜を簡単に、かつ連続的に
製造できるという利点を有するものである。
Effects of the Invention As is clear from the above embodiments, the present invention forms a (100) preferentially oriented NiO film as a base layer on a disk substrate, and then deposits Mn-Zn ferrite or Ni-Zn on top of it.
The fixed magnetic disk has a structure in which a soft magnetic iron oxide film with a spinel-type crystal structure such as ferrite is formed, and a spinel-type iron oxide magnetic thin film containing Co with a columnar structure is formed as the magnetic layer, making it highly reliable. It is highly flexible and can handle high recording densities, and because it uses plasma CVD as its manufacturing method, it can easily and continuously produce a three-layer film by simply controlling the supply of raw materials. It has the advantage of being able to be manufactured in a number of ways.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における固定磁気ディスクの
要部拡大断面図、第2図は同固定磁気ディスクの製造方
法を実施するために使用するプラズマCVD装置の概略
正面断面図、第3図は実施例および従来例の固定磁気デ
ィスクの記録波長および記録密度と再生出力との関係を
比較して示した特性図、第4図は従来の固定磁気ディス
クの要部拡大断面図である。 7・・・・・・ディスク基板、8・・・・・・NiO膜
(酸化物情II)、9・・・・・・M n −Z nフ
ェライト膜(酸化鉄軟磁性薄膜)、10・・・・・・C
Oフェライト膜(コバルトを含むスピネル型結晶構造の
酸化鉄磁性薄膜)。 代理人の氏名 弁理士 小鍜治 明 ほか2名7 −−
− 4  イ  ス  り 暮 豪8 −−−  Nr
OR(#1仁 −11sR)9− Mn−1nフズライ
ト順 (#1仁!!−χ石1刺を淘S) 箆五図
FIG. 1 is an enlarged sectional view of essential parts of a fixed magnetic disk according to an embodiment of the present invention, FIG. 2 is a schematic front sectional view of a plasma CVD apparatus used to carry out the method for manufacturing the fixed magnetic disk, and FIG. The figure is a characteristic diagram comparing the relationship between recording wavelength, recording density, and reproduction output of the fixed magnetic disks of the embodiment and the conventional example, and FIG. 4 is an enlarged sectional view of the main part of the conventional fixed magnetic disk. 7...Disk substrate, 8...NiO film (oxide information II), 9...Mn-Zn ferrite film (iron oxide soft magnetic thin film), 10.・・・・・・C
O ferrite film (iron oxide magnetic thin film with spinel crystal structure containing cobalt). Name of agent: Patent attorney Akira Kokaji and 2 others 7 ---
- 4 Is Riku Australia 8 --- Nr
OR (#1 Ren -11sR) 9- Mn-1n Fuzurite order (#1 Ren!! - χ stone 1 sting S)

Claims (6)

【特許請求の範囲】[Claims] (1)ディスク基板上にNaCl型結晶構造の酸化物薄
膜を形成し、その酸化物薄膜上にスピネル型結晶構造の
酸化鉄軟磁性薄膜を形成し、さらに前記酸化鉄軟磁性薄
膜上にコバルトを含むスピネル型結晶構造の酸化鉄磁性
薄膜を形成した固定磁気ディスク。
(1) Form an oxide thin film with a NaCl type crystal structure on a disk substrate, form an iron oxide soft magnetic thin film with a spinel type crystal structure on the oxide thin film, and further coat cobalt on the iron oxide soft magnetic thin film. A fixed magnetic disk formed with an iron oxide magnetic thin film with a spinel-type crystal structure.
(2)NaCl型結晶構造の酸化物薄膜が、結晶学的に
(100)に優先配向したニッケル酸化物である請求項
(1)記載の固定磁気ディスク。
(2) The fixed magnetic disk according to claim 1, wherein the oxide thin film having the NaCl type crystal structure is a nickel oxide crystallographically preferentially oriented in (100).
(3)スピネル型結晶構造の酸化鉄軟磁性薄膜が、亜鉛
、マンガン、ニッケルのうち少なくとも一種の元素を含
む請求項(1)記載の固定磁気ディスク。
(3) The fixed magnetic disk according to claim (1), wherein the iron oxide soft magnetic thin film having a spinel crystal structure contains at least one element among zinc, manganese, and nickel.
(4)コバルトを含むスピネル型結晶構造の酸化鉄磁性
薄膜が、ディスク基板表面に対して垂直方向に柱状構造
を有する請求項(1)記載の固定磁気ディスク。
(4) The fixed magnetic disk according to claim 1, wherein the iron oxide magnetic thin film containing cobalt and having a spinel crystal structure has a columnar structure in a direction perpendicular to the surface of the disk substrate.
(5)ニッケルを含む有機金属化合物の蒸気と酸素の混
合ガスをプラズマを用いて反応させ、ディスク基板上に
NaCl型結晶構造のニッケル酸化物薄膜を化学蒸着し
、さらに亜鉛を含む有機金属化合物、マンガンを含む有
機金属化合物、ニッケルを含む有機金属化合物のうち少
なくとも一種以上の有機金属化合物の蒸気と、鉄を含む
有機金属化合物の蒸気と酸素との混合ガスをプラズマを
用いて反応させ、前記ニッケル酸化物薄膜上にスピネル
型結晶構造の酸化鉄軟磁性薄膜を形成し、さらに鉄を含
む有機金属化合物の蒸気とコバルトを含む有機金属化合
物の蒸気と酸素の混合ガスをプラズマを用いて分解して
前記酸化鉄軟磁性薄膜上にコバルトを含むスピネル型結
晶構造の酸化鉄磁性薄膜を化学蒸着する固定磁気ディス
クの製造方法。
(5) A mixed gas of oxygen and vapor of an organometallic compound containing nickel is reacted using plasma to chemically deposit a nickel oxide thin film with an NaCl type crystal structure on the disk substrate, and an organometallic compound containing zinc, The vapor of at least one organometallic compound containing manganese and the organometallic compound containing nickel is reacted with a mixed gas of the vapor of an organometallic compound containing iron and oxygen using plasma, and the nickel An iron oxide soft magnetic thin film with a spinel-type crystal structure is formed on the oxide thin film, and a mixed gas of oxygen and the vapor of an organometallic compound containing iron and cobalt is decomposed using plasma. A method for manufacturing a fixed magnetic disk, comprising chemical vapor deposition of an iron oxide magnetic thin film having a spinel crystal structure containing cobalt on the iron oxide soft magnetic thin film.
(6)亜鉛を含む有機金属化合物およびマンガンを含む
有機金属化合物およびニッケルを含む有機金属化合物お
よび鉄を含む有機金属化合物およびコバルトを含む有機
金属化合物がβ−ジケトン系金属錯体である請求項(5
)に記載の固定磁気ディスクの製造方法。
(6) Claim (5) wherein the organometallic compound containing zinc, the organometallic compound containing manganese, the organometallic compound containing nickel, the organometallic compound containing iron, and the organometallic compound containing cobalt are β-diketone metal complexes.
) The method for manufacturing a fixed magnetic disk described in .
JP2313522A 1990-11-19 1990-11-19 Fixed magnetic disk and manufacturing method thereof Expired - Fee Related JP2538124B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2313522A JP2538124B2 (en) 1990-11-19 1990-11-19 Fixed magnetic disk and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2313522A JP2538124B2 (en) 1990-11-19 1990-11-19 Fixed magnetic disk and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH04184710A true JPH04184710A (en) 1992-07-01
JP2538124B2 JP2538124B2 (en) 1996-09-25

Family

ID=18042327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2313522A Expired - Fee Related JP2538124B2 (en) 1990-11-19 1990-11-19 Fixed magnetic disk and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2538124B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6020060A (en) * 1997-09-25 2000-02-01 Fujitsu Limited Magnetic recording medium, process for producing the same and magnetic disk device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6020060A (en) * 1997-09-25 2000-02-01 Fujitsu Limited Magnetic recording medium, process for producing the same and magnetic disk device

Also Published As

Publication number Publication date
JP2538124B2 (en) 1996-09-25

Similar Documents

Publication Publication Date Title
US4554217A (en) Process for creating wear and corrosion resistant film for magnetic recording media
EP0265246B1 (en) Magnetic iron oxide film and production thereof
US6117570A (en) Thin film medium with surface-oxidized NiAl seed layer
US6953629B2 (en) NiCr and NiFeCr seed layers for perpendicular magnetic recording media
US5034286A (en) Perpendicular magnetic storage medium
US5866227A (en) Magnetic recording medium with partially oxidized seed layer
US5378548A (en) Magnetic recording medium and its manufacturing process
KR890004257B1 (en) Magnetic recording carrier and its method of producing
US6753077B2 (en) Magnetic recording medium and process for producing the same
JPH04184710A (en) Fixed magnetic disk and manufacture thereof
JPS6218970B2 (en)
JPH11110732A (en) Magnetic recording medium
JP2538123B2 (en) Fixed magnetic disk and manufacturing method thereof
US20030143434A1 (en) Perpendicular magnetic recording medium
US6986954B2 (en) Perpendicular magnetic recording media
JPH05166167A (en) Stationary magnetic disk and production thereof
JPH04332915A (en) Manufacture of fixed magnetic disk
JPH04332914A (en) Manufacture of fixed magnetic disk
JPH04332913A (en) Manufacture of fixed magnetic disk
JPH04184709A (en) Fixed magnetic disk and manufacture thereof
JPH0644550A (en) Stationary magnetic disk
JPH0760768B2 (en) Fixed magnetic disk and manufacturing method thereof
JPH04305820A (en) Production of stationary magnetic disk
JPH05166168A (en) Stationary magnetic disk and production thereof
JP2004046928A (en) Magnetic recording medium

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees