JPH04182385A - Growing method for crystal - Google Patents

Growing method for crystal

Info

Publication number
JPH04182385A
JPH04182385A JP30790990A JP30790990A JPH04182385A JP H04182385 A JPH04182385 A JP H04182385A JP 30790990 A JP30790990 A JP 30790990A JP 30790990 A JP30790990 A JP 30790990A JP H04182385 A JPH04182385 A JP H04182385A
Authority
JP
Japan
Prior art keywords
nucleation
crystal
tantalum oxide
raw material
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30790990A
Other languages
Japanese (ja)
Inventor
Hideji Kawasaki
秀司 川崎
Hiroyuki Tokunaga
博之 徳永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP30790990A priority Critical patent/JPH04182385A/en
Publication of JPH04182385A publication Critical patent/JPH04182385A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To inhibit the generation of an abnormal nucleus wherein single crystal or polycrystal is formed and to enhance selectivity by supplying a gaseous raw material contg. chlorine in the case of forming amorphous or polycrystalline tantalum oxide on a nonnucleation surface and performing crystal forming treatment in a selective nucleation method. CONSTITUTION:For example, tantalum oxide 1 is formed by an electron beam vapor deposition method in the nonnucleation face part on the surface of a heat-resistant base plate such as a single crystalline base plate made of Si or a ceramic base plate made of SiO2. Further, a face with unsingle crystal 2 such as aluminum oxide exposed thereon is formed on a nucleation part. This unsingle crystal 2 is comparatively slow in etching grade for hydrogen chloride and large in nucleation density. Then, organic metal is selectively grown by a vapor growth method. At this time, gaseous hydrogen chloride 3 is supplied together with a group V raw material such as AsH3 and a group V raw material such as trimethyl gallium to perform a selective nucleation method.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はm−v族化合物半導体の結晶成長法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for growing crystals of m-v group compound semiconductors.

[従来の技術] 従来、G a A s単結晶を形成する場合、Ga A
s単結晶基板上にエピタキシャル成長させることにより
形成している。しかし、このような単結晶基板上てのエ
ピタキシャル成長ては、単結晶基板の材料による制約か
あり、大面積化、3次元集積化か不可能となっている。
[Prior Art] Conventionally, when forming a GaAs single crystal, GaA
It is formed by epitaxial growth on a single crystal substrate. However, such epitaxial growth on a single-crystal substrate is limited by the material of the single-crystal substrate, making it impossible to increase the area or achieve three-dimensional integration.

これに対し、光並列処理などに用いられる大面積アレー
や3次元光集積回路に対する要求か強まり、単結晶の非
晶質基板上への成長技術か望まれている。この非晶質基
板上へ単結晶を成長する技術として選択核形成法(特開
昭63−237517号)かある。
On the other hand, there is an increasing demand for large area arrays and three-dimensional optical integrated circuits used in optical parallel processing, etc., and a growth technique for single crystals on amorphous substrates is desired. As a technique for growing a single crystal on this amorphous substrate, there is a selective nucleation method (Japanese Patent Laid-Open No. 63-237517).

選択核形成法とは、非晶質あるいは多結晶である核形成
密度の小さい非核形成面と、単一核のみより結晶成長す
るに十分小さい面積を有し、該非核形成面の核形成密度
より大きい核形成密度を有する非晶質あるいは多結晶で
ある核形成面とが隣接して配された自由表面を有する基
板に、結晶形成処理を施して該単一核より単結晶を成長
させるものである。
The selective nucleation method consists of a non-nucleation surface that is amorphous or polycrystalline and has a low nucleation density, and an area that is sufficiently small to allow crystal growth from a single nucleus, and a surface that is smaller than the nucleation density of the non-nucleation surface. A substrate having a free surface adjacent to an amorphous or polycrystalline nucleation surface having a high nucleation density is subjected to crystal formation treatment to grow a single crystal from the single nucleus. be.

」−記選択核形成法ては、非核形成面として酸化ケイ素
、窒化けい素か用いられてし入る。
The selective nucleation method uses silicon oxide or silicon nitride as the non-nucleation surface.

[発明か解決しようとしている課題] しかしながら、上記従来例ては非核形成面の面積か大き
くなると酸化けい素、窒化はし\素等の上にGaAs単
結晶核あるいは多結晶等の異常核か形成されてしまうこ
とがあった。
[Problem to be solved by the invention] However, in the above conventional example, when the area of the non-nucleation surface becomes large, GaAs single crystal nuclei or abnormal nuclei such as polycrystals are formed on silicon oxide, nitride, etc. There have been times when I have been

[課題を解決するための手段] 本発明の結晶成長法は、非晶質あるいは多結晶である酸
化タンタルを非核形成面とし、該非核形成面と、単一核
のみより結晶成長するに十分小さい面積を有し、単一核
より結晶成長するに十分な大きさの核形成密度を有する
非晶質あるいは多結晶である核形成面とが隣接して配さ
れた自由表面を有する基板に、結晶形成処理を施す際、
塩素を含む原料ガスを供給することを特徴とする。
[Means for Solving the Problems] The crystal growth method of the present invention uses amorphous or polycrystalline tantalum oxide as a non-nucleation surface, and combines the non-nucleation surface with a material that is small enough to allow crystal growth from a single nucleus alone. A crystal is formed on a substrate having a free surface adjacent to an amorphous or polycrystalline nucleation surface having a large area and a nucleation density large enough for crystal growth from a single nucleus. When performing the forming process,
It is characterized by supplying a raw material gas containing chlorine.

本発明は、選択核形成法を用いて非単結晶」−に結晶形
成処理を施す際に、塩素を含む原料ガスを供給し、非核
形成面として、酸化けい素や窒化けい素に比へ、塩素を
含む原料カスに対してより速くエツチングされる酸化タ
ンタルを用いるものである。
In the present invention, when a non-single crystal is subjected to a crystal formation process using a selective nucleation method, a source gas containing chlorine is supplied, and as a non-nucleation surface, silicon oxide or silicon nitride is used as a non-nucleation surface. This method uses tantalum oxide, which can be etched more quickly against raw material residue containing chlorine.

[作用] 非核形成面とする酸化タンタルをエツチングする塩素を
含む原料カスを供給することにより、非核形成面上に単
結晶あるいは多結晶か生ずる異常核発生を抑制し、選択
性を向上てきる。
[Operation] By supplying raw material scum containing chlorine for etching tantalum oxide, which is used as a non-nucleation surface, abnormal nucleation of single crystals or polycrystals on the non-nucleation surface can be suppressed and selectivity can be improved.

[実施態様例] 本発明の実施態様例を示す。[Example of implementation] An example embodiment of the present invention is shown.

まず第1図に示すようにSi、 Ga As  lnP
等の単結晶基板あるいはSio。、AuJ3等のセラミ
ック基板あるいはMo、W等の高融点金属基板を用い、
これらの耐熱性基板、表面に非核形成面部分に酸化タン
タル、を形成し、核形成面部分に酸化アルミニウム、窒
化アルミニウム、酸化チタン、窒化チタン等の塩化水素
に対して比較的エラチンクレートか遅く核形成密度が大
きい非単結晶2か露出した面を形成する。あるいは、酸
化アルミニウム、窒化アルミニウム等の核形成密度か大
きい非晶質あるいは多結晶質の非単結晶2を形成し、非
核形成面部分に酸化タンタル1が露出した面を形成して
も構わない。
First, as shown in Figure 1, Si, GaAs lnP
A single crystal substrate such as Sio. , using a ceramic substrate such as AuJ3 or a high melting point metal substrate such as Mo or W,
These heat-resistant substrates have tantalum oxide formed on the non-nucleation surface, and aluminum oxide, aluminum nitride, titanium oxide, titanium nitride, etc. on the nucleation surface, which are relatively slow to elastinate against hydrogen chloride. A non-single crystal 2 with a high nucleation density forms an exposed surface. Alternatively, an amorphous or polycrystalline non-single crystal 2 having a high nucleation density such as aluminum oxide or aluminum nitride may be formed, and a surface where tantalum oxide 1 is exposed may be formed on the non-nucleation surface portion.

酸化タンタルの形成法としては、EB(電子線)蒸着法
、スパッタ法を等用いる。
As a method for forming tantalum oxide, an EB (electron beam) evaporation method, a sputtering method, etc. are used.

つぎに、MOCVD法(有機金属気相成長法)あるいは
VPE法(塩化物気相成長法)等のガス状の原料を用い
た気相成長法を用いて、選択成長を行う。この時、V族
原料としてAsH。
Next, selective growth is performed using a vapor phase growth method using a gaseous raw material, such as MOCVD (metal organic chemical vapor deposition) or VPE (chloride vapor phase epitaxy). At this time, AsH was used as the group V raw material.

TBAs  (ターシャルブチルアルシン)、TMAs
  (トリメチルアルシン) 、 PH3,TBP(タ
ーシャルブチルホスフィン)等を用いる。
TBAs (tertiary butylarsine), TMAs
(trimethylarsine), PH3, TBP (tertiary butylphosphine), etc. are used.

また■族原料としては、TMG (1−リメチルガリウ
ム)、TEG (トリエチルガリウム)、TMA (1
−リメチルアルミニウム)、TEA ()−リエチルア
ルミニウム)、TMIn(トリメチルインジウム)、T
EIn  (トリエチルインジウム)等の原料か用いら
れる。これらの原料と同時にMCIカス3を供給し、選
択核形成法を行う。
Group III raw materials include TMG (1-limethyl gallium), TEG (triethyl gallium), and TMA (1-limethyl gallium).
-limethylaluminum), TEA ()-liethylaluminum), TMIn (trimethylindium), T
Raw materials such as EIn (triethyl indium) are used. MCI dregs 3 is supplied simultaneously with these raw materials, and a selective nucleation method is performed.

MOCVD法を用いてGa Asの選択核形成法を行う
場合、以下のような条件て行う。成長温度は一般には5
00〜800°C5望ましくは570〜760°C1最
適には600〜700°Cて行い、圧力は一般には76
0Torr以下、望ましくはl00Torr以下、最適
には20 Torr以下て行う。またV族原料供給量/
■族原料供給量の比は一般には5〜300、望ましくは
lO〜200最適には30〜150て行い、原料ととも
に供給するHCTの供給モル量の全供給カスに占める割
合は一般には1〜1.000ppm 、望ましくは1〜
500ppm、最適には5〜1100ppとする。
When selective nucleation of GaAs is performed using the MOCVD method, it is performed under the following conditions. The growth temperature is generally 5
00-800°C5 Desirably 570-760°C1 Optimal temperature is 600-700°C, and the pressure is generally 76°C.
It is carried out at a pressure of 0 Torr or less, preferably 100 Torr or less, most preferably 20 Torr or less. Also, V group raw material supply amount/
The ratio of the amount of group raw materials supplied is generally 5 to 300, preferably 10 to 200, and optimally 30 to 150. .000ppm, preferably 1~
500 ppm, optimally 5 to 1100 ppm.

またEB蒸着法により酸化タンタルを形成する際、酸素
供給量を変化させた試料を作成し、この後、MOCVD
法を用いて、結晶形成処理を施し、5cm角の酸化タン
タル上に形成された単結晶核の密度を測定した。この結
果を第2図に示す。これより、酸化タンタルの作成条件
により、酸化タンタル−Lに形成される単結晶核の数は
異なることが分かる。これは酸化タンタルの組成により
酸化タンタル上に形成される単結晶核の数か異なること
を示していると考えられる。第2図か極小値を持ってい
ることは、酸素の組成比か大きい場合には酸化タンタル
のエラチンクレートか小さくなりGa Asの形成を抑
制することが出来なくなるためGa As単結晶核か増
加し、酸素の組成比か小さい場合には酸化タンタルの表
面モホロジーか悪化するためにGa As単結晶核か増
加すると考えられる。ここて、MOCVD法を用いた結
晶形成処理の条件は、まず基板温度760°C1圧力]
00TorrてA s H:+を6 X 10−4mo
l/min 、水素を10文/min、供給し、20分
間、表面処理を行う。
In addition, when forming tantalum oxide using the EB evaporation method, samples were created with varying amounts of oxygen supplied, and then MOCVD
A crystal formation process was performed using the method, and the density of single crystal nuclei formed on a 5 cm square tantalum oxide was measured. The results are shown in FIG. From this, it can be seen that the number of single crystal nuclei formed in tantalum oxide-L varies depending on the production conditions of tantalum oxide. This is considered to indicate that the number of single crystal nuclei formed on tantalum oxide differs depending on the composition of tantalum oxide. The fact that it has a minimum value in Figure 2 means that when the oxygen composition ratio is large, the elastin crater of tantalum oxide becomes small and the formation of GaAs cannot be suppressed, so the number of GaAs single crystal nuclei increases. However, if the oxygen composition ratio is small, the surface morphology of tantalum oxide deteriorates, and it is thought that the number of GaAs single crystal nuclei increases. Here, the conditions for the crystal formation treatment using the MOCVD method are: first, the substrate temperature is 760°C and the pressure is
00 Torr A s H: +6 x 10-4mo
1/min, hydrogen was supplied at 10 m/min, and surface treatment was performed for 20 minutes.

その後基板温度780°C1圧力10 Torrで原料
ガスとしてAs H3を4 X 10 ”−4mol/
min、TMGをI X 10−5mol/min 、
水素を10文/min、HClガスを2 X 10−’
mol/min 、を20分供給した。
After that, As H3 was added as a raw material gas at a substrate temperature of 780°C and a pressure of 10 Torr at a concentration of 4×10”-4mol/
min, TMG at I×10−5 mol/min,
Hydrogen at 10 sentences/min, HCl gas at 2 x 10-'
mol/min was supplied for 20 minutes.

また、HCu供給量を変化させ、5cm角の酸化タンタ
ルI−に形成されるG a A s rli結晶核の密
度変化を測定した。また比較のためSi基板を熱酸化処
理し得られた5cm角の酸化けい素−1−に形成された
G a A s 単結晶核の数の変化を酸化タンタルと
同時に結晶形成処理を施し調べた。この結果を第5図に
示す。酸化タンタルはHCI供給量に対して極小値をb
っでいることが分かる。これはHC文供給量か少ない場
合には酸化タンタルのエラチンクレートか小さくなりG
aAsの形成を抑制することが出来なくなるためG a
 A s単結晶核が増加し、HCI供給量か多い場合に
はエラチンクレートか大きすきるため、酸化タンタルの
表面モホロジーか悪化するためにGaAs単結晶核か増
加すると考えられる。ここて用いた酸化タンタルはEB
蒸着により作成され、この時の酸素供給量は10c c
 / m i n、である。また結晶形成処理はMOC
VD法を用いて、まず基板温度760°C圧力]00T
orrてA s H3を6 X 10−’mol/++
+in水素を10文/min、供給し、20分間、表面
処理を行う。その後基板温度780°C1圧力10 T
orrて原料ガスとしてAsH3を4×10 ”−’m
ol/min 、 T M Gをl X 10−5mo
l/min水素を10f/min 、HCIガスを2X
10−5mol/minを20分供給した。
In addition, the HCu supply amount was changed and changes in the density of Ga As rli crystal nuclei formed in a 5 cm square tantalum oxide I- were measured. For comparison, changes in the number of GaAs single crystal nuclei formed on a 5 cm square silicon oxide-1- obtained by thermal oxidation treatment of a Si substrate were investigated by performing crystal formation treatment at the same time as tantalum oxide. . The results are shown in FIG. Tantalum oxide has a minimum value b for HCI supply amount.
I can see that there is. This means that if the HC supply is low, the tantalum oxide elatin crate will become smaller.
Since the formation of aAs cannot be suppressed, Ga
It is thought that the number of GaAs single crystal nuclei increases because the number of As single crystal nuclei increases, and when the amount of HCI supplied is large, the size of the elastin crate becomes large, and the surface morphology of tantalum oxide deteriorates. The tantalum oxide used here is EB
It is created by vapor deposition, and the amount of oxygen supplied at this time is 10 c c
/min. Also, the crystal formation process is MOC
Using the VD method, first the substrate temperature is 760°C and the pressure is 00T.
Orr A s H3 6 X 10-'mol/++
+in hydrogen was supplied at 10 m/min, and surface treatment was performed for 20 minutes. Then substrate temperature 780°C1 pressure 10T
AsH3 was used as the raw material gas at 4×10''-'m
ol/min, TMG to l x 10-5mo
l/min hydrogen 10f/min, HCI gas 2X
10 −5 mol/min was supplied for 20 minutes.

[実施例] 本発明の実施例を示す。[Example] An example of the present invention is shown.

まず第3図(a)に示すように、Si基板4上に酸化ア
ルミニウム5を2000A 、酸化タンタル1を50O
A連続的にEB蒸着により形成した。ここてEB蒸着の
条件としては、ハッククランドを10”−67orrま
て真空にし、次に02を10 cc/min供給し蒸着
した。
First, as shown in FIG. 3(a), aluminum oxide 5 was placed on a Si substrate 4 at 2000A, and tantalum oxide 1 was placed at 500A on a Si substrate 4.
A was formed by continuous EB deposition. The conditions for EB deposition were as follows: Hackland was evacuated to 10"-67 orr, and then 02 was supplied at 10 cc/min for deposition.

続いて、第3図(b)に示すようにホトリソクラフイに
より200pmピッチて2JLmφのドツトを抜いたパ
ターンを形成した。
Subsequently, as shown in FIG. 3(b), a pattern in which dots of 2JLmφ were punched out at a pitch of 200pm was formed by photolithography.

続いて第3図(c)に示すようにIBEにより2上mφ
ドツト部以外の酸化タンタルを残し、1〜ツl一部表面
に酸化アルミニウムを露出させた。ここてIBEの条件
は、CF 、、を20CC/l111nO2を2 cc
/min供給し、圧力10Paパワー100WてlO分
間エッチンクした。
Then, as shown in Fig. 3(c), 2 upper mφ was obtained by IBE.
Tantalum oxide was left in areas other than the dots, and aluminum oxide was exposed on a portion of the surface. Here, the IBE conditions are CF, 20CC/l111nO2 2cc
/min, and etching was performed for 10 minutes at a pressure of 10 Pa and a power of 100 W.

第3図(d)に示すようにその後、レシス1〜15を取
り去り、表面の清純化を行いMOCVD法を用いて基板
温度760℃、圧力]flOTorrてAsH3を6 
X 10−’Inol/ll1in 、水素を10fl
/min供給し、20分間、表面処理を行った第3図(
e)。その後基板温度760°C1圧力20 Torr
て原料カスとしてA s” H:+を4×10−’mo
l/min 、 TMGをI X 10−5mol/m
in水素を10 fL /min、HCIカスを2×1
0 ”−’mol/ll1in 、供給してGaAs単
結晶単結晶形9する(1時間)。
As shown in FIG. 3(d), Resis 1 to 15 were then removed, the surface was purified, and AsH3 was removed using the MOCVD method at a substrate temperature of 760°C and a pressure of 60°C.
X 10-'Inol/ll1in, 10 fl of hydrogen
/min and surface treatment was performed for 20 minutes.
e). After that, the substrate temperature was 760°C and the pressure was 20 Torr.
A s"H:+ is 4×10-'mo as raw material waste.
l/min, TMG I x 10-5 mol/m
in hydrogen at 10 fL/min, HCI sludge at 2×1
0''-'mol/ll1in to form a GaAs single crystal (1 hour).

非核形成面としてSio2を用いて、同一条件て結晶形
成処理をした場合、Sio□上にG a A s単結晶
核は47個/cm2てあったのに対して、酸化タンタル
上に形成された GaAs単結晶核は26個/c+++2てあり、選択性
か向上したことが示された。
When crystal formation was performed under the same conditions using Sio2 as a non-nucleation surface, there were 47 GaAs single crystal nuclei/cm2 on Sio2, whereas 47 GaAs single crystal nuclei were formed on tantalum oxide. The number of GaAs single crystal nuclei was 26/c+++2, indicating that the selectivity was improved.

[実施例2] 本発明の実施例を示す。[Example 2] An example of the present invention is shown.

第4図(a)に示すように81基板4上に酸化タンタル
1を2000A 、窒化アルミニウム6を500X、E
B蒸着により形成した。ここでEB蒸着の条件としては
、ハッククランドを1O−6Torrまて真空にし、次
に02を10 cc/min供給し、蒸着した。
As shown in Fig. 4(a), tantalum oxide 1 was applied at 2000A on 81 substrate 4, aluminum nitride 6 was applied at 500X, E
It was formed by B vapor deposition. Here, the conditions for EB vapor deposition were as follows: Huckland was evacuated to 10-6 Torr, and then 02 was supplied at 10 cc/min for vapor deposition.

続いて第4図(b)に示すようにホトリソタラフイによ
り500pmピッチて]、、27pmφのドツトを残し
たパターンを形成し、IBHにより1.2 p−mφの
ドツト部以外の窒化アルミニウムを取り去り、酸化タン
タルを表面に露出させた(第4図(C))。ここてIB
Eの条件はCG12F2を10 cc/min、 A 
rを2 cc/min供給し、圧力4Pa、パワー13
0Wて10分間エツチングした。
Next, as shown in FIG. 4(b), a pattern was formed with dots of 27 pmφ at a pitch of 500 pm using photolithography, and aluminum nitride other than the dots of 1.2 pmφ was removed by IBH, and then oxidized. Tantalum was exposed on the surface (Figure 4(C)). Kokote IB
Conditions for E are CG12F2 at 10 cc/min, A
Supply r at 2 cc/min, pressure 4 Pa, power 13
Etching was performed for 10 minutes at 0W.

その後、レジスト15を取り去り、表面の清純化を行っ
た(第4図(d))。
Thereafter, the resist 15 was removed and the surface was purified (FIG. 4(d)).

M0CVD法を用いて基板温度860°C1圧力]00
TorrてA s Hzを4 x l O−’mol/
min、水素を10文/min、供給し、20分間、表
面処理を行った(第4図(e))。その後基板温度77
5℃、圧力20 Torrて原料ガスとしてAsH3を
4 X 10−’mol/min 、 T M Gを1
×10−5mol/min 、水素を109./ mi
n、HCIガスを2 x 10−”mol/Il]in
 、供給してGaAs単結晶核9を形成するく1時間)
Using M0CVD method, substrate temperature 860°C1 pressure]00
Torr and A s Hz 4 x l O-'mol/
Hydrogen was supplied at a rate of 10 m/min and surface treatment was performed for 20 minutes (FIG. 4(e)). Then the substrate temperature is 77
At 5°C and a pressure of 20 Torr, AsH3 was used as the raw material gas at 4 x 10-'mol/min, and TMG was used at 1
×10-5 mol/min, hydrogen at 109. / mi
n, HCI gas at 2 x 10-”mol/Il]in
, for 1 hour to form GaAs single crystal nuclei 9)
.

非核形成面として、S i O2を用いて、同一条件て
結晶形成処理を行った場合、S 1021に発生した異
常核密度は65個/Cm2てあったのに対して、酸化タ
ンタル上の異常核密度は30個/cm2てあり、異常核
の発生か抑えられた。
When crystal formation was performed under the same conditions using SiO2 as a non-nucleation surface, the density of abnormal nuclei generated on S1021 was 65/Cm2, whereas the density of abnormal nuclei on tantalum oxide was 65/Cm2. The density was 30/cm2, and the occurrence of abnormal nuclei was suppressed.

[発明の効果] 以上説明したように、選択核形成法を行う際、非核形成
面として酸化タンタルを用い、原料ガスとともにHC1
jガスを供給することにより、異常核発生を抑え選択性
を向」ニさせることがてきる。
[Effect of the invention] As explained above, when performing the selective nucleation method, tantalum oxide is used as a non-nucleation surface, and HC1 is used together with the raw material gas.
By supplying J gas, abnormal nucleation can be suppressed and selectivity can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による結晶成長法説明図。 第2図は酸化タンタル作成条件による酸化タンタル上に
形成されたGaAs単結晶単結晶変数を示す図。 第3図は本発明による結晶成長法実施例1を説明するた
めの図。 第4図は本発明による結晶成長法実施例2を説明するた
めの図。 第5図はHCI供給量による酸化タンタル上に形成され
たGaAs単結晶単結晶変数を示す図。 1・・・酸化タンタル 2・・・核形成面 3・・・V族原料、■族原料、HC又ガス4・・・Si
基板 5・・・酸化アルミニウム 6・・・窒化アルミニウム 9・・・GaAs単結晶核 15・・・レシスト \ へ  \ ′−稿 ト    賜
FIG. 1 is an explanatory diagram of the crystal growth method according to the present invention. FIG. 2 is a diagram showing single crystal parameters of GaAs single crystal formed on tantalum oxide under tantalum oxide production conditions. FIG. 3 is a diagram for explaining Example 1 of the crystal growth method according to the present invention. FIG. 4 is a diagram for explaining Example 2 of the crystal growth method according to the present invention. FIG. 5 is a diagram showing the single crystal parameters of GaAs single crystal formed on tantalum oxide depending on the amount of HCI supplied. 1... Tantalum oxide 2... Nucleation surface 3... Group V raw material, Group II raw material, HC or gas 4... Si
Substrate 5...Aluminum oxide 6...Aluminum nitride 9...GaAs single crystal nucleus 15...Resist

Claims (3)

【特許請求の範囲】[Claims] (1)非晶質あるいは多結晶である酸化タンタルを非核
形成面とし、該非核形成面と、単一核のみより結晶成長
するに十分小さい面積を有し、単一核より結晶成長する
に十分な大きさの核形成密度を有する非晶質あるいは多
結晶である核形成面とが隣接して配された自由表面を有
する基板に、結晶形成処理を施す際、塩素を含む原料ガ
スを供給することを特徴とする結晶成長法。
(1) Amorphous or polycrystalline tantalum oxide is used as a non-nucleation surface, and the non-nucleation surface and the area are sufficiently small to allow crystal growth from a single nucleus, and are sufficient to allow crystal growth from a single nucleus. A source gas containing chlorine is supplied when performing crystal formation treatment on a substrate having a free surface adjacent to an amorphous or polycrystalline nucleation surface having a nucleation density of a certain size. A crystal growth method characterized by:
(2)結晶形成原料ガスと塩化水素とを供給する請求項
1記載の結晶成長法。
(2) The crystal growth method according to claim 1, wherein the crystal forming raw material gas and hydrogen chloride are supplied.
(3)前記単結晶はIII−V族化合物半導体である請求
項1記載の結晶成長法。
(3) The crystal growth method according to claim 1, wherein the single crystal is a III-V group compound semiconductor.
JP30790990A 1990-11-13 1990-11-13 Growing method for crystal Pending JPH04182385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30790990A JPH04182385A (en) 1990-11-13 1990-11-13 Growing method for crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30790990A JPH04182385A (en) 1990-11-13 1990-11-13 Growing method for crystal

Publications (1)

Publication Number Publication Date
JPH04182385A true JPH04182385A (en) 1992-06-29

Family

ID=17974633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30790990A Pending JPH04182385A (en) 1990-11-13 1990-11-13 Growing method for crystal

Country Status (1)

Country Link
JP (1) JPH04182385A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030012797A (en) * 2001-08-01 2003-02-12 후지쯔 가부시끼가이샤 Polycrystalline structure film and method of making same
US7285312B2 (en) * 2004-01-16 2007-10-23 Honeywell International, Inc. Atomic layer deposition for turbine components

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030012797A (en) * 2001-08-01 2003-02-12 후지쯔 가부시끼가이샤 Polycrystalline structure film and method of making same
US7285312B2 (en) * 2004-01-16 2007-10-23 Honeywell International, Inc. Atomic layer deposition for turbine components

Similar Documents

Publication Publication Date Title
JP5276852B2 (en) Method for manufacturing group III nitride semiconductor epitaxial substrate
US7455729B2 (en) Method for producing by vapour-phase epitaxy a gallium nitride film with low defect density
TW504754B (en) Group III-V compound semiconductor and method of producing the same
WO2012042961A1 (en) Growth method for gan crystal and gan crystal substrate
JP2000164929A5 (en) Manufacturing method for semiconductor thin films and semiconductor devices
JP2009505938A (en) Semiconductor substrate, method for manufacturing a self-supporting semiconductor substrate by hydride vapor phase epitaxy, and mask layer used therefor
JP2003511871A (en) Single-stage pendeo-epitaxial overgrowth and single-stage lateral epitaxial overgrowth of III-nitride epitaxial layers with III-nitride buffer layers
JP2006290697A (en) Nitride semiconductor substrate and its manufacturing method
KR100331447B1 (en) Method for fabricating a thick GaN film
US20090056618A1 (en) Method for producing group III Nitride single crystal
JP4788397B2 (en) Method for producing group III nitride crystal
JP2002249400A (en) Method for manufacturing compound semiconductor single crystal and utilization thereof
JP6249250B2 (en) Group III nitride semiconductor and method of manufacturing the same
JPH03132016A (en) Method of forming crystal
US20050132950A1 (en) Method of growing aluminum-containing nitride semiconductor single crystal
JP2001274093A (en) Semiconductor base and its manufacturing method
JP4199599B2 (en) Method for producing group 3-5 compound semiconductor
JPH04182385A (en) Growing method for crystal
JP2001135575A (en) Iii-v compound semiconductor
JP2002293697A (en) METHOD OF GROWING GaN EPITAXIAL LAYER
JP2003192496A (en) Group iii nitride semiconductor substrate and method of producing the same
JP2008303136A (en) Method for manufacturing compound semiconductor substrate
JPH05335241A (en) Compound semiconductor and manufacture thereof
JPH0822800B2 (en) III-Method of forming group V compound semiconductor thin film
JP2002289538A (en) Method for fabricating semiconductor element and semiconductor element