JPH04182319A - Production of doped glass - Google Patents

Production of doped glass

Info

Publication number
JPH04182319A
JPH04182319A JP30933690A JP30933690A JPH04182319A JP H04182319 A JPH04182319 A JP H04182319A JP 30933690 A JP30933690 A JP 30933690A JP 30933690 A JP30933690 A JP 30933690A JP H04182319 A JPH04182319 A JP H04182319A
Authority
JP
Japan
Prior art keywords
sol
glass
dopant
gel
doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30933690A
Other languages
Japanese (ja)
Inventor
Satoru Miyashita
悟 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP30933690A priority Critical patent/JPH04182319A/en
Publication of JPH04182319A publication Critical patent/JPH04182319A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/12Other methods of shaping glass by liquid-phase reaction processes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/34Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/40Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To produce the doped glass in which the dopant is uniformly dispersed by the sol-gel method by dissolving a dopant compd. in a sol, infiltrating the sol into a porous glass precursor and heating the glass precursor contg. the dopant. CONSTITUTION:Ethyl silicate, for example, is hydrolyzed to obtain a sol, the sol is gelled, and the gel is dried and heated under specified conditions to obtain a sintered gel (glass precursor) having micropores. Meanwhile, ethyl silicate is partially hydrolyzed, and a dopant compd. is added to the product to obtain a sol in which the compd. is uniformly dispersed. The sintered gel is dipped in this sol, the micropores are filled with the sol by diffusion, and the glass precursor is heated and vitrified to obtain a doped glass. The state of the dopant is easily controlled by this method, and a doped glass, in which the dopant is uniformly dispersed, is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、レーザーやメモリー、スイッチング等の光学
機能を有するガラス材料に関わる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a glass material having optical functions such as laser, memory, and switching.

[従来の技術] 従来のドープトガラスの製造方法は、ガラス原料粉末と
ドーパント粉末を、ルツボ中高温で溶融させ混合するも
のであった。また、ゾルゲル法を用いる場合、ドーパン
トをゾル中に添加しゲル化させた後ガラス化する方法、
多孔質のゲル内に溶媒に溶かしたドーパントを浸透させ
ガラス化する方法が知られている。VAD法のガラスス
ートに溶媒に溶かしたドーパントを浸透させガラス化す
る方法も行われるようになった。更に、各種気相法によ
る製造も可能である。
[Prior Art] A conventional method for producing doped glass involves melting and mixing glass raw material powder and dopant powder at high temperature in a crucible. In addition, when using the sol-gel method, a method in which a dopant is added to the sol, gelled, and then vitrified;
A method of vitrifying a porous gel by infiltrating a dopant dissolved in a solvent is known. A method of vitrification by infiltrating a dopant dissolved in a solvent into the glass soot of the VAD method has also come to be used. Furthermore, production by various vapor phase methods is also possible.

[発明が解決しようとする課題] しかしこのように製造された従来のドープトガラスは、
ドーパントのガラス内での状態が制御できず、またドー
パントを単分子分散できないなどの課題があった。特に
高融点のシワ力系ガラスなどを、マトリックスとして用
いることは困難であった。そのため、レーザーやメモリ
ー等の光学機゛ 能を、ガラスに付加させることができ
なかった。
[Problem to be solved by the invention] However, the conventional doped glass manufactured in this way,
There were problems such as the state of the dopant within the glass could not be controlled and the dopant could not be dispersed as a single molecule. In particular, it has been difficult to use a high melting point, wrinkle-resistant glass, etc. as a matrix. Therefore, it was not possible to add optical functions such as lasers and memory to glass.

例えば、レーザーガラスの場合、ドーパントの遷移金属
が決められた価数で単分子分散していないと、レーザー
遷移を起こさない。また、フォトケミカルホールバーニ
ング(以下PHBと記す)の場合も同様に、ドーパント
が決められた価数で単分子分散していないと、PHB現
象が起こらない。三次の光非線形性材料である半導体ド
ープガラスは、半導体が量子井戸サイズで分散していな
いと良い特性が得られない。
For example, in the case of laser glass, laser transition will not occur unless the transition metal dopant is monomolecularly dispersed with a predetermined valence. Similarly, in the case of photochemical hole burning (hereinafter referred to as PHB), the PHB phenomenon does not occur unless the dopant is monomolecularly dispersed with a predetermined valence. Semiconductor-doped glass, which is a material with third-order optical nonlinearity, cannot obtain good properties unless the semiconductor is dispersed in the size of a quantum well.

従来のゾルゲル法によるドープトガラスは、ドーパント
をゾル中に添加する除水との反応のため、ドーパントの
価数が変化してしまう。また、多孔質のゲル内に溶媒に
溶かしたドーパントを浸透させる方法では、よほどの低
濃度でない限り分散性をよくできないという課題があっ
た。他の方法でも状況は同様である。
In doped glass produced by the conventional sol-gel method, the valence of the dopant changes due to the reaction with water removal when the dopant is added to the sol. Another problem with the method of infiltrating a dopant dissolved in a solvent into a porous gel is that good dispersibility cannot be achieved unless the concentration is extremely low. The situation is similar for other methods.

光機能ガラスは、特性的にもファイバー等のデバイス化
を考えても、マトリックスはシリカ系ガラスが好ましい
。シリカ系ガラスは、製造時に制御できないと、後工程
での改質は難しい。そこで本発明は、ガラス中にドーピ
ングするドーパントの状−態が容易に制御でき、しかも
均質に分散したドープトガラスの製造方法の提供を目的
とする。
In the optical functional glass, silica-based glass is preferable for the matrix, both in terms of characteristics and in terms of device formation into fibers and the like. If silica-based glass cannot be controlled during manufacturing, it is difficult to modify it in subsequent processes. SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a method for manufacturing doped glass in which the state of dopants doped into glass can be easily controlled and homogeneously dispersed.

[課題を解決するための手段] 本発明のドープトガラスの製造方法は、アルキルシリケ
ートを主原料とするゾルゲル法によるドープトガラスの
製造方法において、少なくともアルキルシリケートを部
分加水分解させんゾル中にドーパント化合物を溶解した
後、多孔質のガラス前駆体内に浸透させ、ドーパントを
吸着したガラス前駆体を加熱処理によりガラス化させる
ことを特徴とする。
[Means for Solving the Problems] The method for producing doped glass of the present invention is a method for producing doped glass by a sol-gel method using an alkyl silicate as a main raw material, in which a dopant compound is dissolved in a sol in which at least an alkyl silicate is partially hydrolyzed. After that, the glass precursor is infiltrated into a porous glass precursor and the dopant is adsorbed, and the glass precursor is vitrified by heat treatment.

[作用] アルキルシリケートを部分加水分解させたゾル中には、
水分は含まれない。そのため遷移金属のハロゲン化物な
どは、溶解しても原子価の状態は変わらない。また、ゾ
ル中では均質に分散している状態が一番安定である。ド
ーパント化合物がシラノール基と反応する場合、−分子
のシランに一分子のドーパントが結合するため、やはり
クラスターは形成されない。
[Function] In the sol of partially hydrolyzed alkyl silicate,
Contains no water. Therefore, the valence state of transition metal halides does not change even if they are dissolved. Furthermore, in a sol, the state of homogeneous dispersion is the most stable. When a dopant compound reacts with a silanol group, one molecule of dopant is bonded to one molecule of silane, so no cluster is formed.

しかし、アルキルシリケートを部分加水分解させたゾル
では、ゲル化が進行せず、バルクなガラス体は得られな
い。多孔質のガラス前駆体内にこのゾルを浸透させ、ド
ーパントを吸着したガラス前駆体を加熱するとバルクな
ガラス体を得ることができる。ガラス中のドーパントは
、当初の原子価の状態を維持し、しかもクラスターを形
成しない。単に溶媒にドーパント化合物を溶解し、多孔
質のガラス前駆体内にこの溶液を浸透させただけでは、
溶媒が乾燥する際ドーパント化合物が孔内に一斉に析出
し、必ずクラスターが形成される。
However, with a sol obtained by partially hydrolyzing alkyl silicate, gelation does not proceed and a bulk glass body cannot be obtained. A bulk glass body can be obtained by infiltrating this sol into a porous glass precursor and heating the glass precursor that has adsorbed the dopant. The dopants in the glass maintain their original valence state and do not form clusters. Simply dissolving the dopant compound in a solvent and infiltrating this solution into the porous glass precursor does not
When the solvent dries, the dopant compounds precipitate all at once in the pores, inevitably forming clusters.

以下、実施例により本発明の詳細を示す。Hereinafter, the details of the present invention will be shown by examples.

[実施例1] エチルシリケートを塩酸水溶液で加水分解したゾルをポ
リプロピレン等の疎水性の容器中、適当な開口率の蓋を
し、40°Cから90°Cの温度でゲル化、乾燥させド
ライゲルを得た。適当な昇温プログラムで500°Cか
ら800°Cの温度まで加熱すると、数十オングストロ
ームの細孔を有する焼結ゲルが得られた。焼結ゲルはシ
リカガラス前駆体であり、ある程度の強度があるため、
溶媒を浸透させても壊れない。
[Example 1] A sol obtained by hydrolyzing ethyl silicate with an aqueous hydrochloric acid solution is placed in a hydrophobic container made of polypropylene or the like with a lid of an appropriate opening ratio, gelled at a temperature of 40°C to 90°C, and dried to form a dry gel. I got it. When heated to a temperature of 500°C to 800°C with an appropriate heating program, a sintered gel with pores of several tens of angstroms was obtained. Sintered gel is a silica glass precursor and has some strength, so
Will not break down even if penetrated by solvent.

それとは別に、エタノールで希釈したエチルシリケート
に等倍モルの水と触媒量の塩酸を添加し、数時間撹拌し
た。エチルシリケートの4個のエトキシ基のうち、1個
だけが加水分解され、シラノール基になった。そこに塩
化クロム(m )をエチルシリケートの0.3倍モル添
加し、撹拌して溶解させ、3価のクロムが均質に分散し
たゾルを調整した。
Separately, an equal molar amount of water and a catalytic amount of hydrochloric acid were added to ethyl silicate diluted with ethanol, and the mixture was stirred for several hours. Of the four ethoxy groups of ethyl silicate, only one was hydrolyzed to become a silanol group. Chromium chloride (m 2 ) was added thereto by 0.3 times the mole of ethyl silicate, and the mixture was stirred and dissolved to prepare a sol in which trivalent chromium was homogeneously dispersed.

このゾル中に前述の焼結ゲルを浸し、細孔にゾルを拡散
により充填した。適当な昇温プログラムで900℃から
1000℃の温度まで加熱することにより、ガラス化が
終了し、3価のクロムがほぼ単分子状態で均質にドープ
されたシリカガラスが製造できた。得られたクロムドー
プトガラスは、700から800nmの波長でレーザー
発振し、またレーザーアンプ用としても応用することが
できた。
The aforementioned sintered gel was immersed in this sol, and the pores were filled with the sol by diffusion. By heating from 900° C. to 1000° C. using an appropriate heating program, vitrification was completed and silica glass homogeneously doped with trivalent chromium in a substantially monomolecular state was produced. The obtained chromium-doped glass oscillated at a wavelength of 700 to 800 nm, and could also be used as a laser amplifier.

[実施例2コ メチルシリケートを塩酸水溶液で加水分解したゾルに、
ホウ酸水溶液と平均粒径0.15ミクロンのコロイダル
シリカを混合した。更にアンモニアの希釈水溶液を徐徐
に流加し、ゾルのpnを3から6の間に調整してポリフ
ルオロエチレン等の疎水性の容器中でゲル化させ、適当
な開口率の蓋をし、40°Cから90°Cの温度で乾燥
させドライゲルを得た。適当な昇温プログラムで500
 ’Cから1000°Cの温度まで加熱すると、数百オ
ングストロームの細孔を有する焼結ゲルが得られた。
[Example 2 A sol prepared by hydrolyzing comethyl silicate with an aqueous hydrochloric acid solution,
A boric acid aqueous solution and colloidal silica having an average particle size of 0.15 microns were mixed. Furthermore, a dilute aqueous solution of ammonia was gradually added, the pn of the sol was adjusted to between 3 and 6, and the sol was gelled in a hydrophobic container such as polyfluoroethylene. A dry gel was obtained by drying at a temperature of 90°C to 90°C. 500 with an appropriate heating program
Heating to temperatures from 'C to 1000 °C resulted in a sintered gel with pores of several hundred angstroms.

焼結ゲルはボロシリケートガラス前駆体であり、ある程
度の強度があるため、溶媒を浸透させても壊れない。
Sintered gel is a borosilicate glass precursor and has a certain degree of strength, so it will not break even when penetrated by solvent.

それとは別に、エタノールで希釈したエチルシリケート
に等倍モルの水と触媒量の塩酸を添加し、数時間撹拌し
た。エチルシリケートの4個のエトキシ基のうち、1個
だけが加水分解され、シラノール基になった。そこに塩
化@(■)をエチルシリケートの0. 1倍モル添加し
、撹拌して溶解させ、塩化銅(I)が均質に分散したゾ
ルを調整した。
Separately, an equal molar amount of water and a catalytic amount of hydrochloric acid were added to ethyl silicate diluted with ethanol, and the mixture was stirred for several hours. Of the four ethoxy groups of ethyl silicate, only one was hydrolyzed to become a silanol group. Add chloride (■) there to 0.0% of ethyl silicate. 1 times the mole was added and stirred to dissolve, thereby preparing a sol in which copper(I) chloride was homogeneously dispersed.

このゾル中に前述の焼結ゲルを浸し、細孔にゾルを拡散
により充填した。適当な昇温プログラムで1000 ’
Cから1200°Cの温度まで加熱することにより、ガ
ラス化が終了し、塩化銅(I)が均質にドープされたボ
ロシリケートガラスが製造できた。得られた半導体ドー
プトガラスは、縮退四波混合法で三次の非線形光学定数
を測定したところ、10”6esu程度の特性を示した
。光スィッチや位相共役ミラーとして応用することがで
きる。
The aforementioned sintered gel was immersed in this sol, and the pores were filled with the sol by diffusion. 1000' with an appropriate heating program
Vitrification was completed by heating to a temperature of 1200° C. and a borosilicate glass homogeneously doped with copper(I) chloride could be produced. When the third-order nonlinear optical constant of the obtained semiconductor-doped glass was measured using the degenerate four-wave mixing method, it showed a characteristic of about 10''6 esu.It can be applied as an optical switch or a phase conjugate mirror.

[実施例3] エチルシリケートを硝酸水溶液で加水分解したゾルに、
平均粒径0.2ミクロンのコロイダルシリカを混合した
。更にアンモニアの希釈水溶液を徐徐に添加し、ゾルの
pnを3から6の間に調整してボ+7フルオロエチレン
等の疎水性の容器中でゲル化させ、適当な開口率の蓋を
し、40°Cから90°Cの温度で乾燥させドライゲル
を得た。適当な昇温プログラムで600℃から1100
°Cの温度まで加熱すると、数百オングストロームの細
孔を有する焼結ゲルが得られた。焼結ゲルはシリカガラ
ス前駆体であり、ある程度の強度があるため、溶媒を浸
透させても壊れない。
[Example 3] A sol obtained by hydrolyzing ethyl silicate with an aqueous nitric acid solution,
Colloidal silica with an average particle size of 0.2 microns was mixed. Furthermore, a diluted aqueous solution of ammonia was gradually added, the pn of the sol was adjusted to between 3 and 6, and the sol was gelled in a hydrophobic container such as bo+7 fluoroethylene. A dry gel was obtained by drying at a temperature of 90°C to 90°C. From 600℃ to 1100℃ with an appropriate heating program
Upon heating to a temperature of °C, a sintered gel with pores of several hundred angstroms was obtained. Sintered gel is a silica glass precursor and has a certain degree of strength, so it will not break even if a solvent penetrates it.

それとは別に、メタノールで希釈したメチルシリケート
に2倍モルの水と触媒量の塩酸を添加し、数時間撹拌し
た。メチルシリケートのメトキシ基の半数が部分加水分
解され、シラノール基になった。そこに塩化サマリウム
(II)をメチルシリケートの0. 1倍モル添加し、
撹拌して溶解させ、2価のサマリウムが均質に分散した
ゾルを調整した。
Separately, twice the mole of water and a catalytic amount of hydrochloric acid were added to methyl silicate diluted with methanol, and the mixture was stirred for several hours. Half of the methoxy groups in methyl silicate were partially hydrolyzed to become silanol groups. Add samarium(II) chloride to 0.0% of methyl silicate. Add 1 times the mole,
The mixture was stirred and dissolved to prepare a sol in which divalent samarium was homogeneously dispersed.

このゾル中に前述の焼結ゲルを浸し、細孔にゾルを拡散
により充填した。適当な昇温プログラムで1100°C
から1300°Cの温度まで加熱することにより、ガラ
ス化が終了し、2価のサマ1ノウq− ムがほぼ単分子状態で均質にドープされたシリカガラス
が製造できた。得られたサマリウムドープトガラスは、
700nm付近の波長でP HB現象が観察された。5
00nm以下にゲート波長を持ち、非破壊読みだしので
きる光多重メモリーとして応用することができる。
The aforementioned sintered gel was immersed in this sol, and the pores were filled with the sol by diffusion. 1100°C with an appropriate heating program
By heating the glass to a temperature of 1,300°C, vitrification was completed, and silica glass homogeneously doped with divalent sammonium in a substantially monomolecular state was produced. The obtained samarium-doped glass is
The PHB phenomenon was observed at a wavelength around 700 nm. 5
It has a gate wavelength of 0.00 nm or less and can be applied as an optical multiplexed memory that can be read out non-destructively.

[実施例4] エタノールで希釈したエチルシリケートに等倍モルの水
と触媒量の塩酸を添加し、数時間撹拌した。エチルシリ
ケートの4個のエトキシ基のうち、1個だけが加水分解
され、シラノール基になった。
[Example 4] Equal moles of water and a catalytic amount of hydrochloric acid were added to ethyl silicate diluted with ethanol, and the mixture was stirred for several hours. Of the four ethoxy groups of ethyl silicate, only one was hydrolyzed to become a silanol group.

そこに塩化ネオジム(III )をエチルシリケートの
0、 1倍モル、リン酸アンモニウム0.8倍モル添加
し、撹拌して溶解させ、3価のネオジムが均質に分散し
たゾルを調整した。
Neodymium (III) chloride was added thereto in an amount of 0 to 1 times the mole of ethyl silicate and 0.8 times the mole of ammonium phosphate, and the mixture was stirred and dissolved to prepare a sol in which trivalent neodymium was homogeneously dispersed.

このゾル中にVAD法によるシリカ系ガラス微粒子の集
合体であるガラススートを浸し、細孔にゾルを拡散によ
り充填した。リングヒーターを用いてガラス化させるこ
とにより、3価のネオジムがほぼ単分子状態で均質にド
ープされたシリカ系ガラスが製造できた。得られたネオ
ジムドープトガラスは、1.05μmの波長でレーザー
発振し、またレーザーアンプ用としても応用することが
できた。
Glass soot, which is an aggregate of silica-based glass particles produced by the VAD method, was immersed in this sol, and the pores were filled with the sol by diffusion. By vitrifying the glass using a ring heater, a silica-based glass homogeneously doped with trivalent neodymium in a substantially monomolecular state was produced. The obtained neodymium-doped glass oscillated at a wavelength of 1.05 μm, and could also be used as a laser amplifier.

[実施例5] エタノールで希釈したエチルシリケートに1倍から4倍
モルの水と触媒量の塩酸を添加し、数時間撹拌した。エ
チルシリケートのエトキシ基が部分加水分解され、シラ
ノール基になった。そこに塩化鋼(I)をエチルシリケ
ートの等倍モル添加し、撹拌して溶解させ、塩化銅(I
)が均質に分散したゾルを調整した。
[Example 5] To ethyl silicate diluted with ethanol, 1 to 4 times the mole of water and a catalytic amount of hydrochloric acid were added and stirred for several hours. The ethoxy groups of ethyl silicate were partially hydrolyzed to become silanol groups. Add chloride steel (I) to the same mole of ethyl silicate, stir and dissolve, and copper chloride (I)
) was prepared into a homogeneously dispersed sol.

このゾル中に分相ガラスのエツチングで得られる多孔質
ガラス(例えば、コーニング社#7930ガラス)を浸
し、細孔にゾルを拡散により充填した。適当な昇温プロ
グラムで900″Cから1100℃の温度まで加熱する
ことにより、ガラス化が終了し、塩化銅(I)が均質に
ドープされたシリケートガラスが製造できた。得られた
半導体ドープトガラスは、縮退四波混合法で三次の非線
形光学定数を測定したところ、1O−6esu程度の特
性を示した。光スィッチや位相共役ミラーとして応用す
ることができる。
Porous glass (for example, Corning #7930 glass) obtained by etching a phase-divided glass was immersed in this sol, and the pores were filled with the sol by diffusion. By heating from 900″C to 1100°C with an appropriate temperature increase program, vitrification was completed and a silicate glass homogeneously doped with copper(I) chloride was produced.The obtained semiconductor-doped glass was When the third-order nonlinear optical constant was measured using the degenerate four-wave mixing method, it showed a characteristic of about 1O-6esu.It can be applied as an optical switch or a phase conjugate mirror.

[発明の効果] 以上述べたように本発明によれば、アルキルシリケート
を主原料とするゾルゲル法によるドープトガラスの製造
方法において、少なくともアルキルシリケートを部分加
水分解させたゾル中にドーパント化合物を溶解した後、
多孔質のガラス前駆体内に浸透させ、ドーパントを吸着
したガラス前駆体を加熱処理によりガラス化させること
により、ガラス中にドーピングするドーパントの状態が
容易に制御でき、しかも均質に分散したドープトガラス
の製造方法を提供することができた。これにより優れた
特性の光学機能ガラスが容易に得られるようになり、レ
ーザーやメモリー、スイッチング等への応用展開が可能
となった。
[Effects of the Invention] As described above, according to the present invention, in a method for producing doped glass by a sol-gel method using an alkyl silicate as a main raw material, after dissolving a dopant compound in a sol in which at least an alkyl silicate is partially hydrolyzed, ,
A method for producing doped glass in which the state of the dopant doped into the glass can be easily controlled and homogeneously dispersed by vitrifying the glass precursor by infiltrating the porous glass precursor and adsorbing the dopant by heat treatment. were able to provide. This has made it possible to easily obtain optically functional glass with excellent properties, making it possible to develop applications in lasers, memories, switching, etc.

、′ 以  上 =12−,′ that's all =12-

Claims (2)

【特許請求の範囲】[Claims] (1)アルキルシリケートを主原料とするゾルゲル法に
よるドープトガラスの製造方法において、少なくともア
ルキルシリケートを部分加水分解させたゾル中にドーパ
ント化合物を溶解した後、多孔質のガラス前駆体内に浸
透させ、ドーパントを吸着したガラス前駆体を加熱処理
によりガラス化させることを特徴とするドープトガラス
の製造方法。
(1) In a method for producing doped glass using a sol-gel method using an alkyl silicate as the main raw material, a dopant compound is dissolved in a sol obtained by partially hydrolyzing at least an alkyl silicate, and then the dopant compound is infiltrated into a porous glass precursor. A method for producing doped glass, which comprises vitrifying an adsorbed glass precursor by heat treatment.
(2)前記多孔質のガラス前駆体がゾルゲル法による焼
結ゲル、またはVAD法によるガラススート、または分
相ガラスのエッチングで得られる多孔質ガラスのいずれ
かであることを特徴とする、請求項1記載のドープトガ
ラスの 製造方法。
(2) The porous glass precursor is a sintered gel produced by a sol-gel method, a glass soot produced by a VAD method, or a porous glass obtained by etching a phase-separated glass. 1. The method for producing doped glass according to 1.
JP30933690A 1990-11-15 1990-11-15 Production of doped glass Pending JPH04182319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30933690A JPH04182319A (en) 1990-11-15 1990-11-15 Production of doped glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30933690A JPH04182319A (en) 1990-11-15 1990-11-15 Production of doped glass

Publications (1)

Publication Number Publication Date
JPH04182319A true JPH04182319A (en) 1992-06-29

Family

ID=17991787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30933690A Pending JPH04182319A (en) 1990-11-15 1990-11-15 Production of doped glass

Country Status (1)

Country Link
JP (1) JPH04182319A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5410572A (en) * 1992-12-25 1995-04-25 Mitsubishi Denki Kabushiki Kaisha Phase locked loop circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5410572A (en) * 1992-12-25 1995-04-25 Mitsubishi Denki Kabushiki Kaisha Phase locked loop circuit

Similar Documents

Publication Publication Date Title
JP3040278B2 (en) Method for producing product made of high silica glass
JPS63307140A (en) Sol-gel process for manufacturing superlow expansion glass
JP4035440B2 (en) Sol-gel process for producing dry gels with large dimensions and glasses derived thereby
US6360564B1 (en) Sol-gel method of preparing powder for use in forming glass
JP3953749B2 (en) Product manufacturing method
JPH0829952B2 (en) Porous glass manufacturing method
JPH04182319A (en) Production of doped glass
JPH01183438A (en) Production of semiconductor-matrix
JPH04193722A (en) Production of doped glass
JPH0549610B2 (en)
JPH01160843A (en) Production of neodymium-containing quartz glass
US7305851B2 (en) Method for fabricating silica glass containing Bi and Ti using a sol-gel process
JPS6296339A (en) Production of optical fiber preform
JP3924803B2 (en) Silica glass for SHG element and method for producing the same
JPS63319229A (en) Quartz laser glass and its production
JP2621491B2 (en) Method for producing silica glass
JPH01141832A (en) Production of borosilicate glass
JPH04293026A (en) Optical wavelength shifting element and production thereof
JPH02199033A (en) Production of optical glass
JPH05306125A (en) Production of glass
JPH0735257B2 (en) Quartz glass manufacturing method
JPS63303829A (en) Cerium-containing quartz laser glass and its production
JPH02230223A (en) Production of nonlinear optical medium
JPS61286230A (en) Production of glass
JPS63256547A (en) Cerium-containing quartz glass for laser and production thereof