JPH0417698B2 - - Google Patents

Info

Publication number
JPH0417698B2
JPH0417698B2 JP8501582A JP8501582A JPH0417698B2 JP H0417698 B2 JPH0417698 B2 JP H0417698B2 JP 8501582 A JP8501582 A JP 8501582A JP 8501582 A JP8501582 A JP 8501582A JP H0417698 B2 JPH0417698 B2 JP H0417698B2
Authority
JP
Japan
Prior art keywords
catalyst
hydrogen
treatment
vanadium
carried out
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8501582A
Other languages
Japanese (ja)
Other versions
JPS58202049A (en
Inventor
Motohiko Iwata
Kazuo Hirabayashi
Ryoji Oonishi
Fumihiro Kono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jushitsuyu Taisaku Gijutsu Kenkyu Kumiai
Original Assignee
Jushitsuyu Taisaku Gijutsu Kenkyu Kumiai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jushitsuyu Taisaku Gijutsu Kenkyu Kumiai filed Critical Jushitsuyu Taisaku Gijutsu Kenkyu Kumiai
Priority to JP8501582A priority Critical patent/JPS58202049A/en
Publication of JPS58202049A publication Critical patent/JPS58202049A/en
Publication of JPH0417698B2 publication Critical patent/JPH0417698B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は金属化合物を含む原料油を処理して劣
化したゼオライト系流動接触分解触媒を脱金属再
生する方法に関するもので、特に流動接触分解触
媒の主な活性成分であるゼオライトを損なうこと
なく、ニツケルとバナジウムの汚染金属を除去す
る方法に関するものである。 ニツケルとバナシジウムは原油の重質留分中に
有機金属化合物として存在し、これらの成分を含
む原料油を触媒分解する際、触媒表面上に付着し
て分解反応に有害な作用をもたらす。すなわち触
媒の分解活性が低下して主生成物であるガソリン
の収率が低下し、水素生成量が増加してリーンガ
スの圧縮操作に付加的設備を必要とし、さらにコ
ークの生成量が増して液収率が低下するとともに
コークを除去する触媒再生工程に付加的操作が必
要となる。この様に金属含有量の大きな原料油を
接触分解する場合には触媒中の金属濃度が操業上
の制約から決まる限界値に早急に到達する。この
ため一定の活性レベルを保つには使用中の平衡触
媒を抜出して新触媒を補う置換操作が必要で、高
価な触媒の消費量が増すことになる。またこれら
の金属汚染物質による悪影響を低減させる方法と
して、付着した汚染金属を不活性化する方法も採
用されていることは当業者のよく知るところであ
る。しかしながらその適用範囲は金属付着量が比
較的低濃度の範囲に限られ、ある種の不動態化剤
については環境規制の上からその使用に制限があ
る。 金属により汚染された流動接触分解触媒を脱金
属再生処理して、不都合なクラツキグ挙動を抑え
ることができれば比較的豊富な低品位の原料油を
価値の高いガソリンその他の軽質炭化水素に転換
することが可能で、金属で汚染された流動接触分
解触媒の新規かつ改良された脱金属法の開発が望
まれている。 金属で汚染された流動接触分解触媒の脱金属再
生法として不定形のシリカ・アルミナ系触媒につ
いてはすでにいくつかの処理法が考案されている
(例えば米国特許第3222293号)。ゼラオライト系
触媒の脱金属再生処理においては結晶性アルミノ
シリケートであるゼオライトの結晶を損うことな
く金属を除去できる様な工夫が必要である。金属
に汚染されたゼオライト系流動接触分解触媒の脱
金属再生法としては米国特許第3985639号と同第
4013546号に開示された方法が知られている。こ
れらの特許は汚染触媒のコークを除去して還元
し、加圧下で一酸化炭素と接触させ、ニツケルを
カルボニル化合物として分離し、ついで塩素ガス
と接触させてバナジウムを塩素化合物として分離
して再生する方法を開示している。しかし、この
方法では有毒な気体である一酸化炭素で触媒を処
理し、猛毒なニツケルカルボニルが生成するため
実用化する場合にはそのための配慮が必要であ
り、また脱金属処理によつてゼオライトの結晶が
そのまゝ保たれるかどうかについては明らかにさ
れていない。 本発明による脱金属処理は以下の工程からな
る。接触分解で原料油中のニツケルとバナジウム
の付着により劣下した流動接触分解触媒をプラン
トの再生器から一部バイパスして取出し、650℃
ないし800℃で空気酸化し残存コークを除去し、
つぎに650℃ないし800℃で水素還元する。または
650℃ないし800℃で空気または酸素で酸化し、
650℃ないし800℃で水素還元する処理を繰返す交
番処理により還元処理をする。この工程でニツケ
ルは還元され、バナジウムは低酸化状態に変化す
る。還元された触媒を水素雰囲気下で300℃ない
し450℃で四塩化炭素またはヘキサクロロエタン
との混合物と接触させる化学処理を行う。バナジ
ウムは塩化バナジウムまたはオキシ塩化バナジウ
ムとして約200℃で気体として分離され、ニツケ
ルは塩化物に変化する。つぎに化学処理済触媒を
メタノール、水、クロロホルム、アセトンおよび
四塩化炭素からなる群から選ばれる少なくとも1
種の溶媒を用いて常圧ないし10Kg/cm2の圧力で常
温ないし200℃の温度条件下で洗浄する溶出処理
を行う。ニツケル塩化物と残存バナジウム化合物
は溶解して触媒から分離される。溶出処理された
触媒は加熱乾燥によりまたは乾燥窒素ガスのパー
ジ操作によつて溶媒が除去されて脱金属処理が完
了する。脱金属された触媒は流動接触分解プラン
ト再生器に戻されて再び接触分解に使われる。本
発明にしたがうならば酸化処理、還元処理、化学
処理および溶出処理の各条件を選ぶことにより、
触媒中の活性成分であるゼオライトを損うことな
く脱金属再生処理することが可能である。以下本
発明を実施例によつて説明する。 脱金属処理は流通式石英管反応器中で酸化、還
元、および化学処理で行われる。内径28mmの反応
器に触媒20gを充填して酸化または還元処理では
ガス流量(室温で)150mm/min、化学処理の場
合には流量150ml/minの水素気流中にH2/塩素
化合物モル比10ないし15になるように四塩化炭素
またはヘキサクロロエタンとの混合物をマイクロ
フイーダーで供給して処理した。溶出処理はソツ
クスレ一抽出器または反応器内部にソツクスレ一
型の抽出器を備えたオートクレーブを用いて実施
した。触媒の活性評価は固定床のマイクロリアク
ターを用いる試験法(MAT、ASTM D3907−
80に準ずるマイクロアクテイビテイーテスト)で
行つた。反応条件は触媒量5g、反応温度482.2
℃、通油量2ml/75sec、および重量液空間速度
は毎時17.2であつた。脱金属処理に供したゼオラ
イト系流動接触分解触媒は第1表に記載する性状
を特徴とするものであつた。ゼオライトカチオン
(RE2O3)の定量は蛍光X線法で、ゼオライト含
有量はX線回析法でY型ゼオライトの(111)と
(533)
The present invention relates to a method for demetallizing and regenerating a deteriorated zeolite-based fluid catalytic cracking catalyst by treating raw oil containing metal compounds. and a method for removing contaminant metals from vanadium. Nickel and vanacidium exist as organometallic compounds in heavy fractions of crude oil, and when raw oil containing these components is catalytically decomposed, they adhere to the catalyst surface and have a detrimental effect on the decomposition reaction. In other words, the cracking activity of the catalyst decreases and the yield of gasoline, the main product, decreases, the amount of hydrogen produced increases and additional equipment is required for compressing lean gas, and the amount of coke produced increases and the liquid Yields are reduced and additional operations are required in the catalyst regeneration step to remove coke. In the case of catalytic cracking of raw oil with such a large metal content, the metal concentration in the catalyst quickly reaches a limit value determined by operational constraints. Therefore, in order to maintain a constant activity level, it is necessary to extract the used equilibrium catalyst and replace it with new catalyst, which increases the amount of expensive catalyst consumed. It is well known to those skilled in the art that as a method of reducing the adverse effects of these metal contaminants, a method of inactivating the attached contaminant metals is also employed. However, its application range is limited to a range where the amount of metal deposited is relatively low concentration, and there are restrictions on the use of certain passivating agents due to environmental regulations. If metal-contaminated fluid catalytic cracking catalysts can be demetallized and their unfavorable cracking behavior suppressed, relatively abundant low-grade feedstock oils can be converted into high-value gasoline and other light hydrocarbons. The development of new and improved demetalization methods for metal-contaminated fluid catalytic cracking catalysts is desired. Several treatment methods have already been devised for amorphous silica-alumina catalysts as demetallization regeneration methods for fluid catalytic cracking catalysts contaminated with metals (for example, US Pat. No. 3,222,293). In the demetallization regeneration treatment of zeraolite-based catalysts, it is necessary to devise ways to remove metals without damaging the crystals of zeolite, which is a crystalline aluminosilicate. U.S. Patent No. 3985639 and U.S. Pat.
A method disclosed in No. 4013546 is known. These patents regenerate the contaminated catalyst by removing coke and reducing it, contacting it with carbon monoxide under pressure to separate the nickel as a carbonyl compound, and then contacting it with chlorine gas to separate the vanadium as a chlorine compound. The method is disclosed. However, in this method, the catalyst is treated with carbon monoxide, which is a toxic gas, and highly toxic nickel carbonyl is produced, so consideration must be taken when putting it into practical use. It is not clear whether the crystals will remain intact. The demetal treatment according to the present invention consists of the following steps. The fluidized catalytic cracking catalyst, which has deteriorated due to the adhesion of nickel and vanadium in the feedstock oil during catalytic cracking, is partially bypassed from the plant's regenerator and taken out at 650℃.
Air oxidation is performed at 800℃ to remove residual coke,
Next, hydrogen reduction is performed at 650℃ to 800℃. or
Oxidize with air or oxygen at 650℃ to 800℃,
Reduction treatment is performed by an alternating process of repeating hydrogen reduction treatment at 650°C to 800°C. In this process, nickel is reduced and vanadium changes to a lower oxidation state. A chemical treatment is carried out in which the reduced catalyst is contacted with a mixture with carbon tetrachloride or hexachloroethane at 300° C. to 450° C. under a hydrogen atmosphere. Vanadium is separated as a gas at about 200°C as vanadium chloride or vanadium oxychloride, and nickel is converted to chloride. Next, the chemically treated catalyst is treated with at least one member selected from the group consisting of methanol, water, chloroform, acetone, and carbon tetrachloride.
Elution treatment is carried out using a different solvent at a pressure of normal pressure to 10 kg/cm 2 and a temperature of room temperature to 200°C. Nickel chloride and residual vanadium compounds are dissolved and separated from the catalyst. The solvent of the eluted catalyst is removed by heating and drying or by purging with dry nitrogen gas, and the demetallization process is completed. The demetalized catalyst is returned to the fluid catalytic cracking plant regenerator and used again for catalytic cracking. According to the present invention, by selecting the conditions of oxidation treatment, reduction treatment, chemical treatment and elution treatment,
It is possible to carry out demetallization regeneration treatment without damaging the zeolite, which is the active component in the catalyst. The present invention will be explained below with reference to Examples. Demetallization is carried out in a flow-through quartz tube reactor with oxidation, reduction, and chemical treatments. A reactor with an inner diameter of 28 mm is filled with 20 g of catalyst, and the H 2 /chlorine compound molar ratio is 10 in a hydrogen stream with a gas flow rate (at room temperature) of 150 mm/min for oxidation or reduction treatment, and a flow rate of 150 ml/min for chemical treatment. A mixture of carbon tetrachloride or hexachloroethane was supplied through a microfeeder in an amount of 1 to 15%. The elution treatment was carried out using a Soxthlet type extractor or an autoclave equipped with a Soxthlet type extractor inside the reactor. Catalyst activity evaluation is performed using a fixed bed microreactor test method (MAT, ASTM D3907-
A microactivity test (according to 80) was conducted. The reaction conditions are catalyst amount 5g, reaction temperature 482.2
℃, the oil flow rate was 2 ml/75 sec, and the weight liquid space velocity was 17.2 per hour. The zeolite-based fluid catalytic cracking catalyst subjected to the metal removal treatment was characterized by the properties listed in Table 1. Zeolite cations (RE 2 O 3 ) were determined by fluorescent X-ray method, and zeolite content was determined by X-ray diffraction method (111) and (533) of Y-type zeolite.

【表】 面に帰属する回折線から定量した。その他の成分
の分析は通常の方法で行つた。 実施例 1 触媒を酸素気流中で750℃3時間焼成し、窒
素ガスで残存酸素をパージして水素ガスに切替
え、750℃で3時間還元する交番処理を3回繰返
して後、水素気流中380℃で0.2時間四塩化炭素と
触媒させる化学処理を行つた。つぎに触媒を円筒
紙中に移し、ソツクスレ一抽出器に入れて常圧
下で約50℃で5時間水を用いる溶出処理を行つ
た。取出し後乾燥器中105℃で5時間乾燥し、ガ
ラス製反応管に充填し、250℃1時間窒素パージ
を行つて脱金属処理を完了した。こうして再生さ
れた触媒はMAT実験と上述の分析に供された。
MAT実験の生成物と金属およびゼオライトの分
析結果をまとめて第2表に示す。ニツケル当量
(Ni+1/4V)を基準にした脱金属率は31%で、
脱金属処理によりゼオライト含有量とRE2O3含有
量はほとんど変化はない。MAT実験では水素と
コークの生成量が減少し、ガソリン収率に対応す
るC5留分ないし沸点204.4℃留分と全分解活性に
相当すると考えられるC1留分ないし沸点204.4℃
留分が増加している。したがつてこの脱金属処理
によつて金属が除去され、ゼオライトと置換カチ
オンはそのまゝ保たれ、触媒活性と選択性が明ら
かに回復していることが解る。 実施例 2 触媒を750℃3時間水素還元し、水素気流中
380℃0.2時間四塩化炭素と触媒させる化学処理を
行つた。実施例1と同じ手法でメタノールを用い
て常圧下で約50℃5時間の溶出処理を行つた。実
施例1と同様に溶媒を除去し、分析とMAT実験
に供した。第3表から判かるように脱金属率30%
でゼオライトと置換カチオンはそのまゝ保たれ、
水素とコークが減少してC5留分ないし沸点204.4
℃の収率とC1留分ないし沸点204.4℃の収率が増
加している。したがつてこの脱金属処理で触媒の
活性成分が損われることはなく、触媒性能が回復
していることは明らかである。
[Table] Quantified from the diffraction lines attributed to the plane. Analysis of other components was performed using conventional methods. Example 1 The catalyst was calcined in an oxygen stream at 750°C for 3 hours, the residual oxygen was purged with nitrogen gas, the switch was switched to hydrogen gas, and the alternating process of reducing at 750°C for 3 hours was repeated three times, and then the catalyst was calcined at 750°C in a hydrogen stream for 3 hours. Chemical treatment was carried out by catalyzing with carbon tetrachloride for 0.2 h at ℃. Next, the catalyst was transferred into a paper cylinder, placed in a Soxley extractor, and subjected to elution treatment using water at about 50° C. for 5 hours under normal pressure. After taking it out, it was dried in a dryer at 105°C for 5 hours, filled into a glass reaction tube, and purged with nitrogen at 250°C for 1 hour to complete the demetal treatment. The thus regenerated catalyst was subjected to MAT experiments and the above-mentioned analysis.
Table 2 summarizes the products of the MAT experiment and the analysis results of metals and zeolites. The metal removal rate is 31% based on nickel equivalent (Ni + 1/4V),
There is almost no change in the zeolite content and RE 2 O 3 content due to the demetallization treatment. In the MAT experiment, the amount of hydrogen and coke produced decreased, and a C 5 fraction with a boiling point of 204.4℃ corresponding to the gasoline yield and a C 1 fraction with a boiling point of 204.4℃ corresponding to the total cracking activity.
Distillate is increasing. Therefore, it can be seen that the metal is removed by this demetalization treatment, the zeolite and substituted cations are kept intact, and the catalytic activity and selectivity are clearly restored. Example 2 The catalyst was reduced with hydrogen at 750°C for 3 hours and placed in a hydrogen stream.
Chemical treatment was carried out by catalyzing with carbon tetrachloride at 380℃ for 0.2 hours. Elution treatment was performed in the same manner as in Example 1 using methanol at about 50° C. for 5 hours under normal pressure. The solvent was removed in the same manner as in Example 1, and the sample was subjected to analysis and MAT experiment. As can be seen from Table 3, the metal removal rate is 30%.
The zeolite and substituted cations are kept intact,
Hydrogen and coke are reduced to C5 fraction or boiling point 204.4
℃ yield and the yield of C 1 fraction or boiling point 204.4℃ are increasing. Therefore, it is clear that the active components of the catalyst are not impaired by this demetallization treatment and the catalyst performance is restored.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 実施例 3 触媒を750℃3時間水素還元し、水素気流中
で375℃0.2時間四塩化炭素と触媒させる化学処理
を行つた。取出し後円筒紙に移し、ソツクスレ
一型抽出器を内蔵するオートクレーブに入れ、メ
タノールを用いて120℃、7Kg/cm23時間の溶出
処理を行つた。メタノールの代りにクロロホル
ム、アセトン、および四塩化炭素を用いてもほぼ
同様な金属分析値が得られた。実施例1と同様の
乾燥を行つて分析とMAT実験に供した。第4表
に見られる様に脱メタル率54%でゼオライトと置
換カチオンはそのまゝ保たれ、水素とコークが減
少して、C5留分ないし沸点204.4℃とC1留分ない
し沸点204.4℃の収率が増加している。ゼオライ
ト結晶が破壊されることなく分解活性と選択性が
回復していることが明らかである。 実施例 4 触媒を実施例1と同様に還元し、水素気流中
でヘキサクロロエタン10%を含む四塩化炭素と
400℃0.3時間接触させる化学処理を行つた。つぎ
に実施例2と同様に残存溶媒を取除いてMAT実
験と分析に供した。第5表に示すように脱メタル
率57%でゼオライトと置換カチオンはそのまゝ保
たれ、水素とコークの収率が減少してC5留分な
いし沸点204.4℃とC1留分ないし沸点204.4℃の収
率が増加している。したがつてこの処理条件にお
いても脱金属処理によつて活性成分はそのまゝ保
たれ、金属による有害な接触作用が抑えられ分解
活性が回復していることが明らかである。
[Table] Example 3 A catalyst was reduced with hydrogen at 750°C for 3 hours, and then chemically treated with carbon tetrachloride at 375°C for 0.2 hours in a hydrogen stream. After taking it out, it was transferred to a cylindrical paper, placed in an autoclave equipped with a Soxle type extractor, and subjected to elution treatment using methanol at 120° C. and 7 kg/cm 2 for 3 hours. Almost similar metal analysis values were obtained using chloroform, acetone, and carbon tetrachloride instead of methanol. It was dried in the same manner as in Example 1 and subjected to analysis and MAT experiment. As shown in Table 4, at a demetalization rate of 54%, zeolite and substituted cations are kept as they are, hydrogen and coke are reduced, and the C5 fraction has a boiling point of 204.4℃ and the C1 fraction has a boiling point of 204.4℃. yield is increasing. It is clear that the decomposition activity and selectivity are restored without destroying the zeolite crystals. Example 4 A catalyst was reduced in the same manner as in Example 1 and treated with carbon tetrachloride containing 10% hexachloroethane in a hydrogen stream.
Chemical treatment was performed by contacting at 400°C for 0.3 hours. Next, the remaining solvent was removed in the same manner as in Example 2, and the sample was subjected to MAT experiment and analysis. As shown in Table 5, at a demetalization rate of 57%, the zeolite and substituted cations are kept as they are, and the yield of hydrogen and coke decreases, resulting in a C 5 fraction with a boiling point of 204.4°C and a C 1 fraction with a boiling point of 204.4°C. °C yield is increasing. Therefore, it is clear that even under these treatment conditions, the active components are maintained as they are by the demetallization treatment, the harmful contact effects of metals are suppressed, and the decomposition activity is restored.

Claims (1)

【特許請求の範囲】 1 ニツケルおよびバナジウムの付着により活性
劣化したゼオライト系流動接触分解触媒を還元処
理したのち塩素系試薬で化学処理し、ついで極性
溶媒で洗浄して金属を除去して触媒活性を再生す
る方法。 2 劣化触媒から残存コークを除去して650℃な
いし800℃で水素還元するか、または650℃ないし
800℃で空気または酸素雰囲気下で焼成してのち
650℃ないし800℃で水素還元する交番処理を行う
上記特許請求の範囲第1項に記載の方法。 3 塩素系試薬として四塩化炭素またはヘキサク
ロロエタンとの混合物である試薬を用いて常圧
下、水素雰囲気下で300℃ないし450℃で化学処理
し、バナジウムを気体として分離する上記特許請
求の範囲第1項に記載の方法。 4 極性溶媒としてメタノール、水、クロロホル
ム、アセトンおよび四塩化炭素からなる群から選
ばれる少なくとも1種の溶媒を用い、常圧ないし
10Kg/cm2の圧力で、常温ないし200℃の温度条件
下で溶出処理を行う上記特許請求の範囲第1項に
記載の方法。 5 少なくとも触媒100万重量部中にニツケルと
バナジウムの総量で3000重量部付着した流動接触
分解平衡触媒について行なう上記特許請求の範囲
第1項に記載の方法。
[Claims] 1. A zeolite-based fluid catalytic cracking catalyst whose activity has deteriorated due to the adhesion of nickel and vanadium is reduced, then chemically treated with a chlorine-based reagent, and then washed with a polar solvent to remove metals and increase the catalytic activity. How to play. 2 Remove residual coke from the deteriorated catalyst and reduce it with hydrogen at 650℃ to 800℃, or reduce it with hydrogen at 650℃ to 800℃
After firing in air or oxygen atmosphere at 800℃
The method according to claim 1, wherein alternating hydrogen reduction treatment is carried out at 650°C to 800°C. 3. Claim 1 above, in which vanadium is separated as a gas by chemical treatment at 300°C to 450°C in a hydrogen atmosphere under normal pressure using a reagent that is a mixture of carbon tetrachloride or hexachloroethane as a chlorinated reagent. The method described in section. 4 Using at least one solvent selected from the group consisting of methanol, water, chloroform, acetone, and carbon tetrachloride as a polar solvent, under normal pressure or
The method according to claim 1, wherein the elution treatment is carried out at a pressure of 10 Kg/cm 2 and a temperature of room temperature to 200°C. 5. The method according to claim 1, which is carried out using a fluid catalytic cracking equilibrium catalyst having a total of 3000 parts by weight of nickel and vanadium deposited in at least 1 million parts by weight of the catalyst.
JP8501582A 1982-05-21 1982-05-21 Metal removing regeneration of deactivated catalyst for fluidized catalytic cracking Granted JPS58202049A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8501582A JPS58202049A (en) 1982-05-21 1982-05-21 Metal removing regeneration of deactivated catalyst for fluidized catalytic cracking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8501582A JPS58202049A (en) 1982-05-21 1982-05-21 Metal removing regeneration of deactivated catalyst for fluidized catalytic cracking

Publications (2)

Publication Number Publication Date
JPS58202049A JPS58202049A (en) 1983-11-25
JPH0417698B2 true JPH0417698B2 (en) 1992-03-26

Family

ID=13846911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8501582A Granted JPS58202049A (en) 1982-05-21 1982-05-21 Metal removing regeneration of deactivated catalyst for fluidized catalytic cracking

Country Status (1)

Country Link
JP (1) JPS58202049A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4686197A (en) * 1986-07-02 1987-08-11 Chemcat Corporation Catalyst demetallization and process for using demetallized catalyst
CN110387470B (en) * 2018-04-23 2022-01-04 中国石油化工股份有限公司 Treatment method of waste catalytic cracking catalyst, silicon-aluminum material obtained by treatment method and application of silicon-aluminum material
CN110387471B (en) * 2018-04-23 2021-12-17 中国石油化工股份有限公司 Deep nickel removing method for waste catalytic cracking catalyst, silicon-aluminum material obtained by deep nickel removing method and application of silicon-aluminum material

Also Published As

Publication number Publication date
JPS58202049A (en) 1983-11-25

Similar Documents

Publication Publication Date Title
CN1277988B (en) Modifying and hydrogenation processing for diesel union method
EP0072653B1 (en) Endothermic removal of coke deposited on sorbent materials during conversion of oils containing coke precursors and heavy metals
US4504379A (en) Passivation of metal contaminants in cat cracking
US4268416A (en) Gaseous passivation of metal contaminants on cracking catalyst
JPS6096687A (en) Passivation of vanadium accumulated on inactive or catalytic solid flowable particle
US3839187A (en) Removing metal contaminants from petroleum residual oil
JPS58104019A (en) Zeolite and hydrogenolysis catalyst using said zeolite
US4280897A (en) Removal of contaminating metals from FCC catalyst by NH4 citrate chelates
US4954244A (en) Treatment of spent cracking catalysts
EP0525602B1 (en) Removal of arsenic compounds from light hydrocarbon streams
US4295955A (en) Attenuation of metal contaminants on cracking catalyst with a boron compound
CA2056343A1 (en) Reactivation of spent cracking catalysts
JPS6322183B2 (en)
US4364848A (en) Passivation of metal contaminants on cracking catalyst
JPH0332743A (en) Method for reactivation of cracking catalyst contaminated by metal
EP0252656B1 (en) Improved catalyst demetallisation and process for using a demetallised catalyst
US4800185A (en) Regeneraation of metal contaminated hydrocarbon conversion catalytsts
AU2001273567A1 (en) Regeneration of iron-based hydrogen sulfide sorbents
US4361496A (en) Passivation of metal contaminants on cracking catalyst
US4447552A (en) Passivation of metal contaminants on cracking catalyst
JP3699782B2 (en) Method for catalytic cracking of hydrocarbon-containing oil feedstock in the presence of catalyst
JPH0417698B2 (en)
EP1345693B1 (en) Regeneration method of heterogeneous catalysts and adsorbents
US7368409B2 (en) Regeneration method of heterogeneous catalysts and adsorbents
US4267032A (en) Demetallization process for a conversion catalyst