JPH04175370A - Resin composition - Google Patents

Resin composition

Info

Publication number
JPH04175370A
JPH04175370A JP30287490A JP30287490A JPH04175370A JP H04175370 A JPH04175370 A JP H04175370A JP 30287490 A JP30287490 A JP 30287490A JP 30287490 A JP30287490 A JP 30287490A JP H04175370 A JPH04175370 A JP H04175370A
Authority
JP
Japan
Prior art keywords
weight
component
silicone oil
carboxylic acid
copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30287490A
Other languages
Japanese (ja)
Inventor
Junichiro Washiyama
潤一郎 鷲山
Hiroshi Takenouchi
浩 竹之内
Teruo Nakamura
輝雄 中村
Tsutomu Aoyama
青山 力
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP30287490A priority Critical patent/JPH04175370A/en
Publication of JPH04175370A publication Critical patent/JPH04175370A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To improve rigidity, impact strength, and heat resistance by compounding a specific multicomponent styrenic copolymer, a polyamide resin, an acrylic rubber of a core-shell type, and a modified silicone oil. CONSTITUTION:A multicomponent styrenic copolymer having an MI of 0. 01-100g/10min is prepd. by copolymerizing 20 wt. % styrenic compd. and 5. 0-60wt.% alpha,beta-unsatd. dicarboximide and/or 0.1-30wt.% unsatd. dicarboxylic acid (anhydride). 10-60wt.% the copolymer, 30-80wt.% polyamide resin, an acrylic rubber of a core-shell type having a mean particle diameter of 0.02-1.0mum and the shell part modified with a carboxylic acid, and 0.01-15wt.% epoxy- or amino- modified silicone oil having a viscosity (25 deg.C) of 10-100000cSt are compounded in a ratio of the acrylic rubber to the sum of the polyamide resin and the rubber of 1-15wt.%.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は耐衝撃性に優れた高剛性樹脂組成物に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a highly rigid resin composition with excellent impact resistance.

さらに詳しくは、自動車部品、電気・電子機器部品など
の素材として好適な、高い剛性を有し、かつ優れた耐衝
撃性および耐熱性を有するなど、物性バランスに優れた
樹脂組成物に関する。
More specifically, the present invention relates to a resin composition with an excellent balance of physical properties, such as high rigidity, excellent impact resistance, and heat resistance, which is suitable as a material for automobile parts, electric/electronic equipment parts, etc.

〔従来の技術〕[Conventional technology]

ポリアミド樹脂は、その物理的、化学的特性が優れてい
ることにより、エンジニアリングプラスチックとして、
自動車部品、電気機器部品、電子機器部品、機械部品な
どに幅広く利用されている。
Polyamide resin is used as an engineering plastic due to its excellent physical and chemical properties.
It is widely used in automobile parts, electrical equipment parts, electronic equipment parts, mechanical parts, etc.

しかしながら、ポリアミド樹脂は、耐衝撃性が充分ては
ないという欠点かあった。この点を改良するために、ポ
リアミド樹脂にα、β−不飽和カルボン酸類をグラフト
させることによって得られる変性ポリオレフィンを配合
した組成物が提案されている(特開昭50−96442
号、同52−151348号、同55−9861号、同
55−9962号、同55−165922号、同57−
8296号、同57−200948号)。
However, polyamide resins have the drawback of not having sufficient impact resistance. In order to improve this point, a composition containing a modified polyolefin obtained by grafting α,β-unsaturated carboxylic acids to a polyamide resin has been proposed (Japanese Patent Laid-Open No. 50-96442
No. 52-151348, No. 55-9861, No. 55-9962, No. 55-165922, No. 57-
No. 8296, No. 57-200948).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、これらの組成物は耐衝撃性に関しては改
良されているものの、耐熱性ばかりでなく、剛性も低下
するといった問題がある。さらに吸湿時の剛性の低下が
著しいといった欠点を有する。
However, although these compositions have improved impact resistance, they have problems in that not only heat resistance but also rigidity decreases. Furthermore, it has the disadvantage that the rigidity decreases significantly when moisture is absorbed.

本発明は、このような従来の組成物か有する欠点を克服
し、高い剛性を有し、かつ優れた耐衝撃性および耐熱性
を有するなど、物性バランスに優れた樹脂組成物を提供
することを目的としてなされたものである。
The present invention aims to overcome the drawbacks of conventional compositions and provide a resin composition with an excellent balance of physical properties, such as high rigidity, excellent impact resistance, and heat resistance. It was done for a purpose.

〔課題を解決するための手段および作用〕発明者らは、
鋭意研究を重ねた結果、スチレン系多元共重合体、ポリ
アミド樹脂、コアシェルタイプのアクリルゴムおよび変
性シリコーンオイルからなる組成物が前記目的に適合す
ることを見出し、本発明を完成するに至った。
[Means and effects for solving the problem] The inventors,
As a result of extensive research, it was discovered that a composition consisting of a styrene multi-component copolymer, a polyamide resin, a core-shell type acrylic rubber, and a modified silicone oil is suitable for the above purpose, and the present invention was completed.

すなわち、本発明は (A)少なくともスチレン系化合物、α、β〜不飽和ジ
カルボン酸のイミド系化合物ならびに不飽和カルボン酸
および/または不飽和ジカルボン酸無水物とからなるス
チレン系多元共重合体、 (B)  ポリアミド樹脂、 (C)  シェル部をカルボン酸変性したコアシェルタ
イプのアクリルゴム ならびに (D)  エポキシ変性シリコーンオイルおよびアミノ
変性シリコーンオイル からなる組成物であり、組成物中に占める(A)。
That is, the present invention provides (A) a styrenic multicomponent copolymer comprising at least a styrene compound, an imide compound of α, β to unsaturated dicarboxylic acid, and an unsaturated carboxylic acid and/or an unsaturated dicarboxylic acid anhydride; A composition consisting of B) a polyamide resin, (C) a core-shell type acrylic rubber whose shell portion has been modified with a carboxylic acid, and (D) an epoxy-modified silicone oil and an amino-modified silicone oil, which occupy (A) in the composition.

(B)および(D)各成分の割合は、それぞれ10〜6
0重量%、30〜80重量96および0.01〜1.5
重量%であり、 (B)成分と (C)成分の合計量中
に占める(C)成分の割合は1〜15重t%であり、(
A)成分中の不飽和カルボン酸および不飽和ジカルボン
酸無水物の共重合割合は、それらの合計量として0.1
〜30.flf量%であり、かつイミド系化合物の共重
合割合は5.0〜60重量%であるが、スチレン系化合
物の共重合割合は少なくとも20重量%であり、かつ(
D)成分中に占めるエポキシ変性シリコーンオイルの割
合が10〜90重童%である樹脂組成物を提供するもの
である。以下に本発明を具体的に説明する。
The ratio of each component (B) and (D) is 10 to 6, respectively.
0 wt%, 30-80 wt96 and 0.01-1.5
% by weight, the proportion of component (C) in the total amount of components (B) and (C) is 1 to 15 t% by weight, and (
A) The copolymerization ratio of unsaturated carboxylic acid and unsaturated dicarboxylic acid anhydride in component is 0.1 as their total amount.
~30. flf amount%, and the copolymerization ratio of the imide compound is 5.0 to 60% by weight, but the copolymerization ratio of the styrene compound is at least 20% by weight, and (
D) A resin composition in which the proportion of epoxy-modified silicone oil in the component is 10 to 90% by weight is provided. The present invention will be specifically explained below.

(A)  スチレン系多元共重合体 本発明において使用される(A)成分の共重合成分であ
るスチレン系化合物としては、スチレンまたはその誘導
体であり、誘導体としては、α−メチルスチレン、0−
メチルスチレン、m−メチルスチレン、p−メチルスチ
レン、タロルスチレンおよびブロムスチレンがあげられ
る。
(A) Styrenic multi-component copolymer The styrene compound which is the copolymerization component of component (A) used in the present invention is styrene or a derivative thereof, and the derivatives include α-methylstyrene, 0-
Mention may be made of methylstyrene, m-methylstyrene, p-methylstyrene, talolstyrene and bromstyrene.

また、α、β−不飽和ジカルボン酸のイミド系化合物と
しては、その一般式か(1)式で示されるものがあげら
れる。
Further, examples of imide compounds of α,β-unsaturated dicarboxylic acids include those represented by the general formula or formula (1).

R−C□C−R2 NO イ (1)において、R,RおよびR3は同一でも異種でも
よく、水素原子または炭素数が多くとも12個の炭化水
素基である。
R-C□C-R2NO In (1), R, R and R3 may be the same or different, and are a hydrogen atom or a hydrocarbon group having at most 12 carbon atoms.

該イミド系化合物の代表例としては、マレイミド、N−
フェニルマレイミド、N−メチルフェニルマレイミド、
N−エチルフェニルマレイミド、N−シクロへキシルマ
レイミド、N−ラウリルマレイミド、N−p−クロロフ
ェニルマレイミドなどがあげられる。
Representative examples of the imide compounds include maleimide, N-
Phenylmaleimide, N-methylphenylmaleimide,
Examples include N-ethylphenylmaleimide, N-cyclohexylmaleimide, N-laurylmaleimide, N-p-chlorophenylmaleimide, and the like.

さらに、不飽和カルボン酸としては炭素数が多くとも3
0個、好ましくは25個以下であるα、β−不飽和モノ
カルボン酸および炭素数が多くとも30個、好ましくは
25個以下であるα、β−不飽和ジカルボン酸があげら
れる。好ましい不飽和カルボン酸の代表例としては、ア
クリル酸、メタクリル酸、マレイン酸、フマル酸、イタ
コン酸などがあげられる。
Furthermore, as an unsaturated carboxylic acid, the number of carbon atoms is at most 3.
Mention may be made of α,β-unsaturated monocarboxylic acids having 0 carbon atoms, preferably 25 or less carbon atoms, and α,β-unsaturated dicarboxylic acids having at most 30 carbon atoms, preferably 25 carbon atoms or less. Representative examples of preferred unsaturated carboxylic acids include acrylic acid, methacrylic acid, maleic acid, fumaric acid, and itaconic acid.

また、不飽和ジカルボン酸無水物の好ましい例としては
、無水マレイン酸、無水フマル酸、無水イタコン酸など
があげられる。
Preferred examples of the unsaturated dicarboxylic anhydride include maleic anhydride, fumaric anhydride, itaconic anhydride, and the like.

(A)成分は、一般に行われている水性懸濁重合、乳化
重合、溶液重合および塊状重合のいずれの方法によって
も製造することができ、これらの重合方法は一般によく
知られているものである。
Component (A) can be produced by any of the commonly used methods such as aqueous suspension polymerization, emulsion polymerization, solution polymerization, and bulk polymerization, and these polymerization methods are generally well known. .

(A)成分中の前記イミド系化合物の共重合割合は5.
0〜60重量%であり、5.0〜55重量96が好まし
く、特に5.0〜50重量%が好適である。(A)成分
中のイミド系化合物の共TiL合割合が5,0重量%未
満では、耐熱性か不足する。一方、60重量%を超える
と、成形性および機械的特性がよくない。
The copolymerization ratio of the imide compound in component (A) is 5.
0 to 60% by weight, preferably 5.0 to 55% by weight, particularly preferably 5.0 to 50% by weight. If the co-TiL ratio of the imide compound in component (A) is less than 5.0% by weight, heat resistance will be insufficient. On the other hand, if it exceeds 60% by weight, moldability and mechanical properties are poor.

また、不飽和カルボン酸および不飽和ジカルボン酸無水
物の共重合割合はそれらの合計量として0.1〜30重
量%であり、0,1〜25重量%が好ましく、とりわけ
0.5〜20重量Ooか好適である。(A)成分中の不
飽和カルボン酸および不飽和ジカルボン酸無水物の共重
合割合かそれらの合計量として0.1重量%未満では、
(B)成分との相溶性がよくない。一方、30重量%を
超えると、成形性か低下する。なお、(A)成分中のス
チレン系化合物の共重合割合は少なくとも20重量%で
あり、20重量%未満では得られる組成物の成形性かよ
くない。
Further, the copolymerization ratio of unsaturated carboxylic acid and unsaturated dicarboxylic acid anhydride is 0.1 to 30% by weight as their total amount, preferably 0.1 to 25% by weight, particularly 0.5 to 20% by weight. Oo is suitable. If the copolymerization ratio of unsaturated carboxylic acid and unsaturated dicarboxylic acid anhydride in component (A) or their total amount is less than 0.1% by weight,
Poor compatibility with component (B). On the other hand, if it exceeds 30% by weight, moldability deteriorates. The copolymerization ratio of the styrene compound in component (A) is at least 20% by weight, and if it is less than 20% by weight, the moldability of the resulting composition is poor.

本発明の(A)成分には、さらに不飽和ニトリル系化合
物(例えば、アクリロニトリル、メタクリレートリル)
およびアクリル酸あるいはメタクリル酸のエステル(例
えば、アクリル酸メチル、メタクリル酸メチル)を共重
合成分として多くとも30重量%共重合したものを用い
てもよい。
Component (A) of the present invention further includes unsaturated nitrile compounds (for example, acrylonitrile, methacrylate).
A copolymer of at most 30% by weight of an ester of acrylic acid or methacrylic acid (for example, methyl acrylate, methyl methacrylate) as a copolymerization component may also be used.

また、不飽和カルボン酸および/または不飽和ジカルボ
ン酸無水物を高い割合で含有する(A)成分を製造し、
(A)成分と不飽和カルボン酸および/または不飽和ジ
カルボン酸無水物を含まないスチレン系共重合体とを最
終的に得られる組成物を製造する際に前記の割合になる
ように混合してもよい。
In addition, producing component (A) containing a high proportion of unsaturated carboxylic acid and/or unsaturated dicarboxylic acid anhydride,
When producing the final composition, the component (A) and the styrenic copolymer containing no unsaturated carboxylic acid and/or unsaturated dicarboxylic acid anhydride are mixed in the proportions described above. Good too.

本発明の(A)成分のメルトインデックス(JISK7
21 Dに従い、250℃、5)cgで測定した。以下
Mlという。〕は通常0.O1〜100g/10分であ
り、0.05〜100g/10分が好ましく、とりわけ
0.1〜5(Ig/10分が好適である。Mlか0.0
1g/10分未満では、得られる組成物の成形性がよく
ない。
Melt index of component (A) of the present invention (JISK7
21 D at 250° C. and 5) cg. Hereinafter referred to as Ml. ] is usually 0. O1 to 100 g/10 min, preferably 0.05 to 100 g/10 min, particularly preferably 0.1 to 5 (Ig/10 min. Ml or 0.0
If it is less than 1 g/10 minutes, the resulting composition will not have good moldability.

一方、100g/10分を超えると機械的強度がよくな
い。
On the other hand, if it exceeds 100 g/10 minutes, mechanical strength is poor.

(B)  ポリアミド樹脂 また、本発明における(B)成分については特開平2−
51547号公報第3頁左下欄第17行目〜第4頁左上
欄第7行目に記載したポリアミド樹脂が使用できる。
(B) Polyamide resin The component (B) in the present invention is described in Japanese Patent Application Laid-Open No.
The polyamide resins described in Publication No. 51547, page 3, lower left column, line 17 to page 4, upper left column, line 7, can be used.

(C)  アクリルゴム 本発明におけるアクリルゴムは、コアシェルタイプであ
る。コア部分はアクリル酸エステルの重合体を主成分と
したもので、例えばアクリル酸エステル単量体と少量の
架橋性単量体を重合させた、ガラス転移温度か一30℃
以下のゴム状ポリマーなどが挙げられる。該アクリル酸
エステル単量体として、炭素数が好ましくは1〜12個
、最も好ましくは2〜8個のアルキル基を有するものが
用いられる。また、架橋性単量体としては、ブチレング
リコールジアクリレート、ヘキサンジアクリレートなど
の2個以上の二重結合を有する化合物が挙げられる。さ
らに、アクリル酸エステルと共重合可能な単量体、例え
ばスチレン、α−メチルスチレン、ハロゲン化ビニル、
ハロゲン化ビニリデン、アクリロニトリル、メチルメタ
クリレートなどをアクリル酸エステルに共重合させたも
のも使用できる。
(C) Acrylic Rubber The acrylic rubber in the present invention is a core-shell type. The core part is mainly composed of an acrylic ester polymer, for example, it is made by polymerizing an acrylic ester monomer and a small amount of a crosslinking monomer, and has a glass transition temperature of -30°C.
Examples include the following rubbery polymers. As the acrylic acid ester monomer, one having an alkyl group preferably having 1 to 12 carbon atoms, most preferably 2 to 8 carbon atoms is used. Further, examples of the crosslinkable monomer include compounds having two or more double bonds such as butylene glycol diacrylate and hexane diacrylate. Furthermore, monomers copolymerizable with acrylic esters, such as styrene, α-methylstyrene, vinyl halides,
Acrylic acid esters copolymerized with vinylidene halide, acrylonitrile, methyl methacrylate, etc. can also be used.

一方、シェ、小部分は硬質の重合体からなり、例えば、
ポリメチルメタクリレート、ポリスチレン、スチレンと
アクリロニトリルの共重合体などが挙げられる。コア部
分が、該アクリルゴム中に占める割合は50〜90重量
%である。コア部分あ割合が50重量%未満では、得ら
れる組成物の耐衝撃性が良くなく、90重量%を超える
と耐熱性が低下し好ましくない。
On the other hand, the small part consists of a hard polymer, e.g.
Examples include polymethyl methacrylate, polystyrene, and a copolymer of styrene and acrylonitrile. The proportion of the core portion in the acrylic rubber is 50 to 90% by weight. If the proportion of the core portion is less than 50% by weight, the resulting composition will not have good impact resistance, and if it exceeds 90% by weight, the heat resistance will decrease, which is not preferable.

また、該アクリルゴムの平均粒径は0.02〜1.0ミ
クロンである。平均粒径か前記範囲を外れると、耐衝撃
性がよくない。
Moreover, the average particle size of the acrylic rubber is 0.02 to 1.0 microns. If the average particle size is outside the above range, the impact resistance will be poor.

さらに、本発明では該アクリルゴムのシェル部分がカル
ボン酸変性されていることが必要である。
Furthermore, in the present invention, it is necessary that the shell portion of the acrylic rubber be modified with carboxylic acid.

カルボン酸としては、a、β−不飽和カルボン酸、例え
ばアクリル酸、メタクリル酸などが用いられ、これらの
カルボン酸と前記シェル部分となる単量体とを共重合し
て得られる。カルボン酸がシェル中に占める割合は0.
1〜30重量%である。カルボン酸の割合が0.1重量
%未満では、得られる組成物の耐衝撃性か良くない。一
方、30重1%を超えると、得られる組成物の粘度か著
しく上昇して成形性か悪化する。
As the carboxylic acid, a, β-unsaturated carboxylic acid, such as acrylic acid or methacrylic acid, is used, and is obtained by copolymerizing these carboxylic acids with the monomer forming the shell portion. The proportion of carboxylic acid in the shell is 0.
It is 1 to 30% by weight. If the proportion of carboxylic acid is less than 0.1% by weight, the resulting composition will have poor impact resistance. On the other hand, if it exceeds 30% by weight, the viscosity of the resulting composition will increase significantly and the moldability will deteriorate.

(D)  エポキシ変性シリコーンオイルおよびアミノ
変性シリコーンオイル さらに、本発明で使用される (D)成分は、アルキル
基をエポキシ変性またはアミノ変性したシリコーンオイ
ルである。その代表例としては、ポリジアルキル(アル
キル基の炭素数は1〜[1pJ)シロキサンのアルキル
基をエポキシ変性またはアミノ変性することによって得
られる変性シリコーンオイルである。
(D) Epoxy-modified silicone oil and amino-modified silicone oil Furthermore, component (D) used in the present invention is a silicone oil in which an alkyl group is epoxy-modified or amino-modified. A typical example thereof is a modified silicone oil obtained by epoxy-modifying or amino-modifying the alkyl group of polydialkyl (the number of carbon atoms in the alkyl group is 1 to [1 pJ) siloxane.

また、 (D)成分は、その粘度か25℃においてlO
〜1ooo00cs (センチストークス)であり、5
0〜50000csのものが好ましく、とりわけ5O−
20000CSのものが好適である。25℃における粘
度がlocS未満ては、混線中に揮散のおそれがある。
In addition, component (D) has a viscosity of 1O at 25°C.
~1ooo00cs (centistokes), 5
0 to 50,000 cs is preferred, especially 5O-
20000CS is suitable. If the viscosity at 25° C. is less than locS, there is a risk of volatilization during crosstalk.

一方、100000csを超えると、相溶性が良くない
On the other hand, if it exceeds 100,000 cs, the compatibility is poor.

(E)組成割合 本発明の組成物中に占める(A)成分の割合は10〜6
0重量%であり、好ましくは15〜55重量%である。
(E) Composition ratio The ratio of component (A) in the composition of the present invention is 10 to 6.
0% by weight, preferably 15-55% by weight.

この割合か1D重;%未満ては、耐熱性および吸湿時の
剛性か低下し好ましくない。また、60重量%を超える
と、耐薬品性および耐衝撃性か低下し好ましくない。
If this ratio is less than 1D weight%, heat resistance and stiffness upon moisture absorption will decrease, which is not preferable. Moreover, if it exceeds 60% by weight, chemical resistance and impact resistance will deteriorate, which is not preferable.

また、本発明の組成物中に占める(B)成分の組成割合
は30〜80重量%であり、30〜75重量%か好まし
く、特に35〜70重量%か好適である。該組成物中に
占める(B)成分の組成割合か30重量%未満では、得
られる組成物の耐薬品性か良くない。−方、80重量%
を超えると得られる組成物の耐熱性、耐衝撃性、剛性(
曲げ弾性率)のバランスが悪くなる。しかも、吸湿によ
る剛性の低下か著しい。
The composition ratio of component (B) in the composition of the present invention is 30 to 80% by weight, preferably 30 to 75% by weight, and particularly preferably 35 to 70% by weight. If the proportion of component (B) in the composition is less than 30% by weight, the resulting composition will have poor chemical resistance. - side, 80% by weight
The heat resistance, impact resistance, and rigidity of the composition obtained when the
flexural modulus) becomes unbalanced. Moreover, the rigidity decreases significantly due to moisture absorption.

さらに、(B)成分と(C)成分の合計量中に占める(
C)成分の割合は1〜15重量%である。(C)成分の
割合が1重量%未満ては、得られる組成物の耐衝撃性が
低下する。一方、15重量%を超えると、耐熱性、剛性
か低下して好ましくない。
Furthermore, (
The proportion of component C) is 1 to 15% by weight. If the proportion of component (C) is less than 1% by weight, the impact resistance of the resulting composition will decrease. On the other hand, if it exceeds 15% by weight, heat resistance and rigidity decrease, which is not preferable.

また、本発明の組成物中に占める(D)成分の割合は、
合計量として0.01−1.5重量%である。
Furthermore, the proportion of component (D) in the composition of the present invention is:
The total amount is 0.01-1.5% by weight.

(D)成分の割合が0,01重量%未満では、得られる
組成物の耐衝撃性か低下し、1.5重量%を超えれば耐
熱性が低下する。また、(D)成分中に占めるエポキシ
変性シリコーンオイルの割合は10〜90重量%である
。その割合が上記範囲を外れると耐衝撃性が低下し好ま
しくない。
If the proportion of component (D) is less than 0.01% by weight, the impact resistance of the resulting composition will decrease, and if it exceeds 1.5% by weight, the heat resistance will decrease. The proportion of epoxy-modified silicone oil in component (D) is 10 to 90% by weight. If the ratio is outside the above range, the impact resistance will decrease, which is not preferable.

(P)  樹脂組成物の製造、成形方法本発明の樹脂組
成物は前記の(A)、 (B)、 (C)および(D)
各成分を均一に配合することによって目的を達成するこ
とかできる。その配合方法(混合方法)については特に
制限はなく、合成樹脂の分野において一般に行われてい
る方法を適用すればよい。混合方法としては、一般に行
われているヘンシェルミキサー、タンブラ−およびリボ
ンブレンダーのごとき混合機を使用してトライブレンド
する方法ならびにオープンロール、押出混合機、ニーダ
−およびバンバリーのごとき混合機を用いて溶融しなが
ら混合する方法があげられる。これらの方法のうち一層
均一な組成物を得るにはこれらの混合方法を二種以上併
用させれば良い(例えば、あらかじめトライブレンドし
た後、その混合物を溶融混合する)。なかでも、トライ
ブレンドを併用する場合でも、溶融混練する方法を〜種
または二種以上併用する場合でも、後記の成形方法によ
って成形物を製造するにあたり、ペレタイザーを使用し
てペレットに製造して用いることが好ましい。また、該
組成物を製造するにあたり、合成樹脂および合成ゴムの
分野において広く利用されている熱、酸素および光に対
する安定剤、難燃剤、充填剤、着色剤、滑剤、可塑剤な
らびに帯電防止剤のことき添加剤を組成物の使用目的に
応して本発明の組成物の特性を本質的に損なわない範囲
で添加してもよい。
(P) Manufacture and molding method of resin composition The resin composition of the present invention is produced by the above-mentioned (A), (B), (C) and (D).
The purpose can be achieved by uniformly blending each component. There are no particular restrictions on the blending method (mixing method), and any method commonly used in the field of synthetic resins may be applied. Mixing methods include tri-blending using commonly used mixers such as Henschel mixers, tumblers, and ribbon blenders, and melting using mixers such as open rolls, extrusion mixers, kneaders, and Banbury mixers. One method is to mix while To obtain a more uniform composition among these methods, two or more of these mixing methods may be used in combination (for example, tri-blending is performed in advance, and then the mixture is melt-mixed). In particular, even when tri-blend is used in combination, or when a melt-kneading method or two or more methods are used in combination, when producing a molded product by the molding method described later, it is possible to use a pelletizer to produce pellets. It is preferable. In producing the composition, heat, oxygen and light stabilizers, flame retardants, fillers, colorants, lubricants, plasticizers and antistatic agents, which are widely used in the fields of synthetic resins and synthetic rubbers, are also added. Depending on the intended use of the composition, additives may be added to the extent that they do not essentially impair the properties of the composition of the present invention.

以上の混合方法のうち、溶融混合する場合でも、後記の
成形方法によって成形する場合でも、使用する高分子物
質が溶融する温度で実施しなければならない。しかし、
高い温度で実施するならば、高分子物質か熱分解や劣化
を起こす。これらのことから一般には180〜350℃
(好ましくは、200〜320℃)で実施される。
Of the above mixing methods, both melt mixing and molding using the molding method described below must be carried out at a temperature at which the polymeric substance used melts. but,
If carried out at high temperatures, the polymeric material may undergo thermal decomposition or deterioration. For these reasons, the temperature is generally 180 to 350℃.
(preferably 200 to 320°C).

本発明の組成物は合成樹脂の分野で一般に実施されてい
る射出成形法、押出成形法、圧縮成形法および中空成形
法のごとき成形方法を適用して所望の形状に成形しても
よい。また、押出成形機を用いてシート状に成形した後
、このシートを真空成形法、圧空成形法などの二次加工
方法によって所望の形状に成形してもよい。
The composition of the present invention may be molded into a desired shape by applying molding methods commonly practiced in the field of synthetic resins, such as injection molding, extrusion molding, compression molding, and blow molding. Alternatively, after forming into a sheet using an extrusion molding machine, this sheet may be formed into a desired shape by a secondary processing method such as a vacuum forming method or a pressure forming method.

〔実施例および比較例〕[Examples and comparative examples]

以下、実施例によって本発明をさらに詳しく説明する。 Hereinafter, the present invention will be explained in more detail with reference to Examples.

なお、実施例および比較例において、アイゾツト衝撃強
度はASTM D285に準し、23℃の温度において
ノツチ付きで測定した。また、熱変形温度はASTM 
D64g +、:従い、18.8kg/cdノ応力で測
定した。
In the Examples and Comparative Examples, the Izot impact strength was measured with a notch at a temperature of 23° C. according to ASTM D285. In addition, the heat distortion temperature is ASTM
D64g +: Therefore, it was measured at a stress of 18.8 kg/cd.

さらに、曲げ弾性率はASTM D7901.:従い、
23℃の温度において測定した。なお、吸湿試験は試験
片を100℃の沸騰水中に30分間浸漬した後、曲げ弾
性率を測定した。
Furthermore, the flexural modulus is ASTM D7901. :Accordingly,
Measurements were made at a temperature of 23°C. In addition, in the moisture absorption test, the test piece was immersed in boiling water at 100° C. for 30 minutes, and then the flexural modulus was measured.

また、実施例および比較例において使用した(A)、 
(B)、 (C)および(D>各成分の製造方法、種類
および物性などを下記に示す。
In addition, (A) used in Examples and Comparative Examples,
(B), (C) and (D> The manufacturing method, type and physical properties of each component are shown below.

〔(A)スチレン系多元共重合体〕[(A) Styrenic multi-component copolymer]

(A)成分として下記のようにして製造したスチレン系
多元共重合体を使用した。
As component (A), a styrenic multi-component copolymer produced as follows was used.

10Ωのオートクレーブに6000 gの水、2400
 gのスチレン(ST)、 680gのアクリロニトリ
ル(AN)、 800 gのN−フェニルマレイミド(
N−PMI)および120gのメタクリル酸(MAA)
を仕込み、さらに開始剤として8gのラウリルパーオキ
サイドおよび、9.6gの第三級プチルパーオキンラウ
レート、連鎖移動剤として、8gの第三級ドデシルメル
カプタンならびに懸濁安定剤として、60gの第三リン
酸カルシウムおよび0.9gのドデシルヘンゼンスルホ
ン酸ソーダを加えて80℃の温度で攪拌しなから2時間
重合を行った。ついで、重合系を120℃に昇温し、こ
の温度において3時間重合を行った後、重合系を室温ま
で放冷させた。その結果、約3500 gの淡黄色の粉
末が得られた。得られた粉末を赤外線吸収スペクトル分
析法(溶液法)で求めたところ、重量比でST:AN:
N−PMI :MAA−80:11:20:3であった
。得られた粉末の熱変形温度は130℃であり、かつM
lは16.2g/10分であった。
6000 g of water in a 10Ω autoclave, 2400
g of styrene (ST), 680 g of acrylonitrile (AN), 800 g of N-phenylmaleimide (
N-PMI) and 120 g methacrylic acid (MAA)
and 8 g of lauryl peroxide as an initiator, 9.6 g of tertiary butyl peroxide laurate, 8 g of tertiary dodecyl mercaptan as a chain transfer agent, and 60 g of tertiary butyl peroxide as a suspension stabilizer. Calcium triphosphate and 0.9 g of sodium dodecylhenzenesulfonate were added and polymerization was carried out for 2 hours while stirring at a temperature of 80°C. Next, the temperature of the polymerization system was raised to 120° C., and after polymerization was carried out at this temperature for 3 hours, the polymerization system was allowed to cool to room temperature. As a result, about 3500 g of pale yellow powder was obtained. When the obtained powder was determined by infrared absorption spectroscopy (solution method), the weight ratio was ST:AN:
N-PMI:MAA-80:11:20:3. The heat distortion temperature of the obtained powder was 130°C, and M
1 was 16.2 g/10 minutes.

これを共重合体(1)とする。This is referred to as copolymer (1).

また、比較のために、前記共重合体(1)を製造する際
に用いたMAAの全量をANに変えたほかは、共重合体
(1)と同様の方法によって重合を行った。得られた約
3500 iの粉末を共重合体(1)と同様に分析した
ところ、重量比でST:AN:N−PMI−60・20
 : 20であった。得られた粉末(重合体)の熱変形
温度は134.2℃であり、Mlは]7.l1g/II
)分であった。これを共重合体(2)とする。
For comparison, polymerization was carried out in the same manner as for copolymer (1) except that the entire amount of MAA used in producing copolymer (1) was changed to AN. When the obtained powder of approximately 3500 i was analyzed in the same manner as copolymer (1), it was found that the weight ratio was ST:AN:N-PMI-60.20.
: It was 20. The heat distortion temperature of the obtained powder (polymer) was 134.2°C, and Ml was 7. l1g/II
) minutes. This is referred to as copolymer (2).

〔(B)ポリアミド樹脂〕[(B) Polyamide resin]

また、(B)成分として、相対粘度η (a硫酸中、3
0℃で測定)が2.6であるナイロン66(以下P A
 (a)という。)およびη が2.7であるナイロン
6(以下P A (b)という。)を用いた。
In addition, as component (B), relative viscosity η (a in sulfuric acid, 3
Nylon 66 (hereinafter referred to as P A
It is called (a). ) and nylon 6 (hereinafter referred to as P A (b)) having η of 2.7 was used.

〔(C)コアシェルタイプのアクリルゴム〕さらに、コ
アシェルタイプのアクリルゴムでシェル部分かカルボン
酸て変性されたものとして、スタフィロイド I M 
−301(武田薬品工業株式会社製)を用いた。このゴ
ムの平均粒径は0.3ミク      ゛ロンである。
[(C) Core-shell type acrylic rubber] Furthermore, as a core-shell type acrylic rubber whose shell portion has been modified with carboxylic acid, Staphyloid I M
-301 (manufactured by Takeda Pharmaceutical Co., Ltd.) was used. The average particle size of this rubber is 0.3 microns.

これをゴム(1)とする。This is called rubber (1).

また、比較例としてゴム(1)においてシェルがカルボ
ン酸で変性されていないもの(ゴム(2))、無水マレ
イン酸て変性したEPRゴム(ゴム(3))を用いた。
As comparative examples, rubber (1) whose shell was not modified with carboxylic acid (rubber (2)) and EPR rubber whose shell was modified with maleic anhydride (rubber (3)) were used.

〔(D)シリコーンオイル〕[(D) Silicone oil]

エポキシ変性シリコーンオイルとして25℃における粘
度(以下間し)が8000csであるシリコーンオイル
(東しシリコーン製: S F 8411.  (S 
j(1)とする)、粘度か1200csであるアミノ変
性シリコーンオイル(東しシリコーン製: S F 8
417゜(S 1(2)とする)を用いた。比較として
粘度が5000esであるジメチルシリコーンオイル(
東しシリコーン製: S H200,(S 1(3)と
する)を用いた。
Silicone oil (manufactured by Toshi Silicone: S F 8411. (S
J(1)), amino-modified silicone oil with a viscosity of 1200 cs (manufactured by Toshi Silicone: SF 8)
417° (referred to as S 1(2)) was used. For comparison, dimethyl silicone oil with a viscosity of 5000 es (
Made by Toshi Silicone: SH200 (referred to as S1(3)) was used.

実施例1〜5、比較例1〜9 第1表にそれぞれの配合量が示されている各組成成分を
ヘンシェルミキサーに仕込み、5分間トライブレンドを
行った。得られた各混合物を270℃に設定された同方
向二軸押出機(径40+n+s)を用いて混練しながら
ペレットを製造した。
Examples 1 to 5, Comparative Examples 1 to 9 Each component whose compounding amount is shown in Table 1 was charged into a Henschel mixer, and triblended for 5 minutes. Pellets were manufactured by kneading each of the obtained mixtures using a co-directional twin-screw extruder (diameter 40+n+s) set at 270°C.

得られた各ペレットを80℃の温度で48時間真空乾燥
を行った後、270’Cに設定された射出成形機を用い
て射出成形を行い、iPJ定用の試験片を作成した。
Each of the obtained pellets was vacuum dried at a temperature of 80° C. for 48 hours, and then injection molded using an injection molding machine set at 270° C. to prepare test pieces for iPJ.

次いて各試験片の耐熱性試験、吸湿試験ならびにアイゾ
ツト衝撃試験、曲げ弾性率の測定を行った。それらの結
果を第2表に示す。
Next, each test piece was subjected to a heat resistance test, a moisture absorption test, an Izot impact test, and a measurement of flexural modulus. The results are shown in Table 2.

第    2    表 I)ノツチ付き 〔発明の効果〕 本発明の樹脂組成物は下記のごとき効果を発揮する。Table 2 I) Notched 〔Effect of the invention〕 The resin composition of the present invention exhibits the following effects.

(1)  耐熱性が優れている。(1) Excellent heat resistance.

(2)吸湿による剛性の低下が小さい。(2) Decrease in rigidity due to moisture absorption is small.

(3)耐衝撃性が優れている。(3) Excellent impact resistance.

(4)剛性が高い。(4) High rigidity.

本発明の樹脂組成物は上記のごとき効果を発揮するため
に多方面にわたって利用することかできる。代表的な用
途を下記に示す。
The resin composition of the present invention can be used in a wide variety of ways to achieve the effects described above. Typical uses are shown below.

(1)  フェンダ−、リアパネルなどの自動車外板(
2)オイルカバー、ラジェーターグリルなどの自動車部
品 (3)  コネクター、トランスケースなどの機械、電
気部品
(1) Automotive exterior panels such as fenders and rear panels (
2) Automotive parts such as oil covers and radiator grills (3) Mechanical and electrical parts such as connectors and transformer cases

Claims (1)

【特許請求の範囲】 (A)少なくともスチレン系化合物、α,β−不飽和ジ
カルボン酸のイミド系化合物ならびに不飽和カルボン酸
および/または不飽和ジカルボン酸無水物とからなるス
チレン系多元共重合体、 (B)ポリアミド樹脂、 (C)シェル部をカルボン酸変性したコアシェルタイプ
のアクリルゴム ならびに (D)エポキシ変性シリコーンオイルおよびアミノ変性
シリコーンオイル からなる組成物であり、組成物中に占める(A)、(B
)および(D)各成分の割合は、それぞれ10〜60重
量%、30〜80重量%および0.01〜1.5重量%
であり、(B)成分と(C)成分の合計量中に占める(
C)成分の割合は1〜15重量%であり、(A)成分中
の不飽和カルボン酸および不飽和ジカルボン酸無水物の
共重合割合は、それらの合計量として0.1〜30重量
%であり、かつイミド系化合物の共重合割合は5.0〜
60重量%であるが、スチレン系化合物の共重合割合は
少なくとも20重量%であり、かつ(D)成分中に占め
るエポキシ変性シリコーンオイルの割合が10〜90重
量%である樹脂組成物。
[Scope of Claims] (A) A styrenic multi-component copolymer comprising at least a styrene compound, an imide compound of an α,β-unsaturated dicarboxylic acid, and an unsaturated carboxylic acid and/or an unsaturated dicarboxylic acid anhydride; (B) a polyamide resin, (C) a core-shell type acrylic rubber whose shell portion is modified with a carboxylic acid, and (D) an epoxy-modified silicone oil and an amino-modified silicone oil, which occupy (A) in the composition; (B
) and (D) The proportions of each component are 10 to 60% by weight, 30 to 80% by weight, and 0.01 to 1.5% by weight, respectively.
, and the proportion of (
The proportion of component C) is 1 to 15% by weight, and the copolymerization proportion of unsaturated carboxylic acid and unsaturated dicarboxylic acid anhydride in component (A) is 0.1 to 30% by weight as their total amount. Yes, and the copolymerization ratio of the imide compound is 5.0~
60% by weight, the copolymerization ratio of the styrene compound is at least 20% by weight, and the ratio of the epoxy-modified silicone oil in component (D) is 10 to 90% by weight.
JP30287490A 1990-11-08 1990-11-08 Resin composition Pending JPH04175370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30287490A JPH04175370A (en) 1990-11-08 1990-11-08 Resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30287490A JPH04175370A (en) 1990-11-08 1990-11-08 Resin composition

Publications (1)

Publication Number Publication Date
JPH04175370A true JPH04175370A (en) 1992-06-23

Family

ID=17914143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30287490A Pending JPH04175370A (en) 1990-11-08 1990-11-08 Resin composition

Country Status (1)

Country Link
JP (1) JPH04175370A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6197878B1 (en) 1997-08-28 2001-03-06 Eastman Chemical Company Diol latex compositions and modified condensation polymers
US6329462B1 (en) 1999-06-18 2001-12-11 Eastman Chemical Company Nylon 6/silicone blends
US6340726B1 (en) 1999-03-03 2002-01-22 Eastman Chemical Company Silicone polymer diol compositions and condensation polymer/silicone polymer blends
US6353052B1 (en) 1999-06-18 2002-03-05 Eastman Chemical Company Amide-type polymer/silicone polymer blends and processes of making the same
US6403698B1 (en) 1999-03-03 2002-06-11 Eastman Chemical Company Polyamide/emulsion polymer blends
EP2468817A1 (en) * 2009-08-20 2012-06-27 Denki Kagaku Kogyo Kabushiki Kaisha Acrylic rubber composition and crosslinked product thereof
US9725561B2 (en) 2014-06-20 2017-08-08 3M Innovative Properties Company Curable polymers comprising silsesquioxane polymer core and silsesquioxane polymer outer layer and methods
US9957416B2 (en) 2014-09-22 2018-05-01 3M Innovative Properties Company Curable end-capped silsesquioxane polymer comprising reactive groups
US9957358B2 (en) 2014-09-22 2018-05-01 3M Innovative Properties Company Curable polymers comprising silsesquioxane polymer core silsesquioxane polymer outer layer, and reactive groups
US10066123B2 (en) 2013-12-09 2018-09-04 3M Innovative Properties Company Curable silsesquioxane polymers, compositions, articles, and methods
US10370564B2 (en) 2014-06-20 2019-08-06 3M Innovative Properties Company Adhesive compositions comprising a silsesquioxane polymer crosslinker, articles and methods
US10392538B2 (en) 2014-06-20 2019-08-27 3M Innovative Properties Company Adhesive compositions comprising a silsesquioxane polymer crosslinker, articles and methods

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6197878B1 (en) 1997-08-28 2001-03-06 Eastman Chemical Company Diol latex compositions and modified condensation polymers
US6417239B1 (en) 1997-08-28 2002-07-09 Eastman Chemical Company Methods of making modified condensation polymers
US6417269B1 (en) 1997-08-28 2002-07-09 Eastman Chemical Company Methods of making modified condensation polymers
US6340726B1 (en) 1999-03-03 2002-01-22 Eastman Chemical Company Silicone polymer diol compositions and condensation polymer/silicone polymer blends
US6403698B1 (en) 1999-03-03 2002-06-11 Eastman Chemical Company Polyamide/emulsion polymer blends
US6329462B1 (en) 1999-06-18 2001-12-11 Eastman Chemical Company Nylon 6/silicone blends
US6353052B1 (en) 1999-06-18 2002-03-05 Eastman Chemical Company Amide-type polymer/silicone polymer blends and processes of making the same
EP2468817A4 (en) * 2009-08-20 2013-03-06 Denki Kagaku Kogyo Kk Acrylic rubber composition and crosslinked product thereof
EP2468817A1 (en) * 2009-08-20 2012-06-27 Denki Kagaku Kogyo Kabushiki Kaisha Acrylic rubber composition and crosslinked product thereof
US8658737B2 (en) 2009-08-20 2014-02-25 Denki Kagaku Kogyo Kabushiki Kaisha Acrylic rubber composition and cross-linked product thereof
US10066123B2 (en) 2013-12-09 2018-09-04 3M Innovative Properties Company Curable silsesquioxane polymers, compositions, articles, and methods
US9725561B2 (en) 2014-06-20 2017-08-08 3M Innovative Properties Company Curable polymers comprising silsesquioxane polymer core and silsesquioxane polymer outer layer and methods
US10370564B2 (en) 2014-06-20 2019-08-06 3M Innovative Properties Company Adhesive compositions comprising a silsesquioxane polymer crosslinker, articles and methods
US10392538B2 (en) 2014-06-20 2019-08-27 3M Innovative Properties Company Adhesive compositions comprising a silsesquioxane polymer crosslinker, articles and methods
US9957416B2 (en) 2014-09-22 2018-05-01 3M Innovative Properties Company Curable end-capped silsesquioxane polymer comprising reactive groups
US9957358B2 (en) 2014-09-22 2018-05-01 3M Innovative Properties Company Curable polymers comprising silsesquioxane polymer core silsesquioxane polymer outer layer, and reactive groups

Similar Documents

Publication Publication Date Title
JPH04175370A (en) Resin composition
JPS6237671B2 (en)
JPH0786165B2 (en) Impact resistant thermoplastic resin composition
JPH04173863A (en) Resin composition
JPH0423661B2 (en)
JPH05279549A (en) Flame-retardant thermoplastic resin composition
JPH0613630B2 (en) Resin composition
KR100372568B1 (en) Thermoplastic Resin Composition
KR20180075095A (en) Thermoplastic flame retardant resin composition, method for preparing the resin composition and molding product comprising the resin composition
JPS60120734A (en) Transparent, heat- and impact-resistant resin composition
JPS62129343A (en) Thermoplastic resin composition
JPH04173862A (en) Resin composition
JP2533790B2 (en) Imide group-containing resin composition
KR19980027068A (en) Styrenic resin composition
JP2987975B2 (en) Low gloss thermoplastic resin composition
JPS61264045A (en) Thermoplastic resin composition
JPS59166552A (en) Self-extinguishing resin composition
JPS63135442A (en) Flame-retarding rubber-reinforced resin composition
JPS5883056A (en) Thermoplastic resin composition
JPS5842648A (en) Heat-resistant resin composition having good flow characteristics
JPS62129342A (en) Thermoplastic resin composition
JPH0517647A (en) Styrenic resin composition excellent in flowability
JPH08502763A (en) Polymer compound
JPH01138252A (en) Resin composition
JPH0433816B2 (en)