JPH0417523A - Supporting apparatus for power system restoration from accident - Google Patents

Supporting apparatus for power system restoration from accident

Info

Publication number
JPH0417523A
JPH0417523A JP2119157A JP11915790A JPH0417523A JP H0417523 A JPH0417523 A JP H0417523A JP 2119157 A JP2119157 A JP 2119157A JP 11915790 A JP11915790 A JP 11915790A JP H0417523 A JPH0417523 A JP H0417523A
Authority
JP
Japan
Prior art keywords
equipment
power
knowledge
power system
restoration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2119157A
Other languages
Japanese (ja)
Other versions
JP2907946B2 (en
Inventor
Tomosato Fukuda
福田 朋悟
Akio Nishiguchi
西口 昭雄
Yoshiya Sudo
須藤 義也
Takashi Kawai
河合 隆志
Yasumasa Kajiwara
梶原 康正
Etsurou Natsumura
夏村 悦郎
Junichi Shinohara
篠原 潤一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Chubu Electric Power Co Inc
Original Assignee
Toshiba Corp
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Chubu Electric Power Co Inc filed Critical Toshiba Corp
Priority to JP2119157A priority Critical patent/JP2907946B2/en
Publication of JPH0417523A publication Critical patent/JPH0417523A/en
Application granted granted Critical
Publication of JP2907946B2 publication Critical patent/JP2907946B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PURPOSE:To evaluate a restoration program quickly by preparing a program of operation for restoration from an accident automatically by a computer, by specifying an expected time of restoration of a generator and a load thereon on the occasion and by graphing the rise characteristics thereof. CONSTITUTION:State data and data on the characteristics of a generator and the characteristics of a load which are inputted from a power system are inputted to and stored in an equipment data storage means 61. In a means 63, knowledge about the preparation of a restoration program and knowledge about an expected time of restoration of power equipment in the case when the restoration is made according to this restoration program, are stored. In a means 64 of inference, the restoration program is prepared by applying the knowledge to the state of the power system and the expected time of restoration of the power equipment is prepared. In a graphing means 65, subsequently, a rise curve of a supply power and a rise curve of a load amount are prepared from the expected time of restoration of the power equipment and the data on the generator and the load stored in the equipment data storage means 61, and they are displayed in a CRT device 7.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は電力系統事故時に、運転員に対して的確に復旧
手段を知らしめる電力系統事故復旧支援装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Objective of the Invention (Industrial Field of Application) The present invention relates to a power system accident recovery support device that accurately informs an operator of recovery measures in the event of a power system accident.

(従来の技術) 電力系統を精成する設備、例えば送電線や変圧器などが
事故て停止すると、それらの設備を使って電力の供給を
受けている需要家は停電となる。
(Conventional Technology) When equipment that refines the power system, such as power transmission lines or transformers, is shut down due to an accident, customers who use those equipment to receive electricity will experience a power outage.

そこでこれらの需要家を停電がら救うために、他の健全
系統から電力を送る方法が一般に行なわれている。この
事故復旧操作は事故が発生した設備(以後、事故設備と
称す)を使うことなく、通常と異なる系統状態で行なう
ものである。そのなめ、電源供給力と負荷のバランス(
以後、需給バランスと称す)、送電線や変圧器の容量、
保護継電器の設置状況などを細部にわたって検討しなが
ら、問題のないことを確認して事故復旧操作を行なう必
要がある。
Therefore, in order to save these consumers from power outages, a method is generally used to send power from another healthy system. This accident recovery operation is performed under a system condition different from normal without using the equipment where the accident occurred (hereinafter referred to as accident equipment). Therefore, the balance between power supply capacity and load (
(hereinafter referred to as supply-demand balance), the capacity of transmission lines and transformers,
It is necessary to carefully examine the installation status of protective relays, confirm that there are no problems, and perform accident recovery operations.

(発明が解決しようとする課題) 電力系統の事故の内、大規模なものは社会的影響が大き
いために迅速な復旧が求められ、このような状況下では
上述した事故復旧操作は困離を極めたものとなる。
(Problem to be solved by the invention) Among power system accidents, large-scale ones have a large social impact and require prompt recovery, and under such circumstances, the above-mentioned accident recovery operations are difficult. Become the ultimate.

このような背景により、近年事故復旧操作の手順を計算
機によって自動作成する技術が開発されつつあるが、従
来の技術では、復旧手順が妥当なものか否かを運転員が
判断できる情報が不足していた。
Against this background, in recent years, technology has been developed to automatically create procedures for accident recovery operations using computers, but with conventional technology, there is insufficient information for operators to judge whether or not recovery procedures are appropriate. was.

本発明は上記した事情に鑑みてなされたものであり、事
故復旧手順を作成する過程において検討された電力設備
の復旧予定時刻から電源供給力の立ち上がり曲線と負荷
量の立ち上がり曲線とを明示することにより、需給バラ
ンスのとれた事故復旧手順と復旧後の電源供給余力とが
運転員に判断可能な電力系統事故復旧支援装置を提供す
ることを目的としている。
The present invention has been made in view of the above-mentioned circumstances, and it is an object of the present invention to clearly indicate the rising curve of power supply capacity and the rising curve of load amount from the scheduled restoration time of power equipment considered in the process of creating accident recovery procedures. The purpose of the present invention is to provide an electric power system accident recovery support device that allows operators to determine accident recovery procedures that balance supply and demand and surplus power supply capacity after recovery.

(以下余白) [発明の構成] (課題を解決するための手段) 上記目的を達成するための構成を実施例に対応する第1
図を用いて説明すると、本発明は被監視系統の状態デー
タを含む電力系統設備データを格納する設備データ格納
手段61と、電力系統事故に対する復旧に関する知識を
格納する知識格納手段63と、この設備データ格納手段
61の内容と知識格納手段63の内容とを用いて電力系
統事故に対する復旧手順を作成する推論手段64と、こ
の推論手段において作成された電力設備の復旧予定時刻
と前述した設備データ格納手段61の内容とを用いて電
源供給力の立ち上がり曲線と負荷量の立ち上がり曲線と
を作成するグラフ作成手段65と、前記2つの曲線を表
示するCRT装置7とから構成した。
(The following is a blank space) [Configuration of the invention] (Means for solving the problem) The configuration for achieving the above object is described in the first example corresponding to the embodiment.
To explain using the diagram, the present invention includes equipment data storage means 61 for storing power system equipment data including status data of a monitored system, knowledge storage means 63 for storing knowledge related to recovery from power system accidents, and this equipment. An inference means 64 that creates a recovery procedure for an electric power system accident using the contents of the data storage means 61 and the contents of the knowledge storage means 63, and stores the scheduled restoration time of the electric power equipment created in this inference means and the above-mentioned equipment data. The present invention is comprised of a graph creating means 65 for creating a power supply power rise curve and a load amount rise curve using the contents of the means 61, and a CRT device 7 for displaying the two curves.

(作 用) 電力系統から入力される状態データは設備データ格納手
段61に入力されて記憶される。さらに、設備データ格
納手段61には発電機の特性と負荷の特性に関するデー
タが格納されている。知識格納手段63には復旧手順の
作成に関する知識とその復旧手順で復旧した場合の電力
設備の復旧予定時刻に関する知識とが格納されている。
(Function) Status data input from the power system is input to the equipment data storage means 61 and stored. Furthermore, the equipment data storage means 61 stores data regarding the characteristics of the generator and the characteristics of the load. The knowledge storage means 63 stores knowledge regarding the creation of a recovery procedure and knowledge regarding the scheduled restoration time of the power equipment when the restoration procedure is used.

推論手段64では設備データ格納手段に格納されている
電力系統の状態に、知識格納手段に格納されている知識
を適用して、復旧手順を作成し、その復旧手順で復旧し
た場合の電力設備の復旧予定時刻を作成する。
The inference means 64 applies the knowledge stored in the knowledge storage means to the state of the power system stored in the equipment data storage means, creates a recovery procedure, and calculates the state of the power equipment when restored by the recovery procedure. Create an estimated recovery time.

次に、グラフ作成手段65では、推論手段64で作成さ
れた電力Wkmの復旧予定時刻と、設備データ格納手段
61に格納されている発電機と負荷のデータとから電源
供給力の立ち上がり曲線と負荷量の立ち上がり曲線を作
成し、CRT装置7に表示する。
Next, the graph creation means 65 calculates the rise curve of the power supply capacity and the load based on the scheduled restoration time of the power Wkm created by the inference means 64 and the generator and load data stored in the equipment data storage means 61. A rise curve of the amount is created and displayed on the CRT device 7.

(実施例) 以下図面を参照して実施例を説明する。(Example) Examples will be described below with reference to the drawings.

第1図は本発明による電力系統事故復旧支援装置の一実
施例の機能ブロック図である。第1図において、1は電
力系統、2.3,4.5は電力系統1と後述する電子計
算機6との間の情報伝送装置であり、2は電力系統1か
ら電子計算機6への上り送信局、3は同じく上り受信局
、4は電子計算116から電力系統1への下り受信局、
5は同じく下り送信局である。6は電子計算機で送信局
2及び受信局3を介して得られる電力系統1の状態をも
とに、復旧手順を作成し、電源供給力の立ち上がり曲線
と負荷量の立ち上がり曲線を作成する。
FIG. 1 is a functional block diagram of an embodiment of the power system accident recovery support device according to the present invention. In FIG. 1, 1 is an electric power system, 2.3 and 4.5 are information transmission devices between the electric power system 1 and a computer 6, which will be described later, and 2 is an upstream transmission from the electric power system 1 to the computer 6. 3 is also an upstream receiving station, 4 is a downstream receiving station from the electronic calculation 116 to the power system 1,
Similarly, 5 is a downlink transmitting station. Reference numeral 6 uses a computer to create a recovery procedure based on the state of the power system 1 obtained through the transmitting station 2 and the receiving station 3, and creates a power supply power rise curve and a load amount rise curve.

7は電子計算機6で作成された電源供給力の立ち上がり
曲線と負荷量の立ち上がり曲線を表示するCRT装置で
ある。また、電子計算816において、61は電力系統
1をモデル化し、更に、その状態を保持する設備データ
格納手段、62は電力系統1の状態を入力して設備デー
タ格納手段61へ格納し、また、後述する推論手段64
によって得られる復旧手順を、制御信号として下り送信
局5及び下り受信局4を通して送出する電力系統監視制
御手段、63は復旧手順の作成に関する知識とその復旧
手順で復旧した場合の電力設備の復旧時刻に関する知識
とを格納した知識格納手段、64は設備データ格納手段
61に格納されている電力系統1の状態に、知識格納手
段63に格納されている知識を適用して復旧手順を作成
し、その復旧手順で復旧した場合の電力設備の復旧予定
時刻を作成する推論手段、65は推論手段64で作成さ
れた電力系統の復旧予定時刻及び設備データ格納手段6
1に格納された発電機の特性と負荷の特性に関するデー
タから電源供給力の立ち上がり曲線と負荷量の立ち上が
り曲線を作成し、CRT装置7に表示するグラフ作成手
段である。
Reference numeral 7 denotes a CRT device that displays a rise curve of power supply power and a rise curve of load amount created by the computer 6. Further, in the electronic calculation 816, 61 models the power system 1 and further maintains its state, equipment data storage means, 62 inputs the state of the power system 1 and stores it in the equipment data storage means 61, and Reasoning means 64 to be described later
power system monitoring and control means that transmits the recovery procedure obtained by the above as a control signal through the downlink transmitting station 5 and the downlink receiving station 4; 63 is the knowledge about creating the recovery procedure and the recovery time of the power equipment when the recovery procedure is restored; The knowledge storage means 64 stores knowledge regarding the power system 1 and applies the knowledge stored in the knowledge storage means 63 to the state of the power system 1 stored in the equipment data storage means 61 to create a recovery procedure. An inference means 65 creates a scheduled restoration time of the electric power system when the power equipment is restored by the restoration procedure, and 65 is a storage means 6 for storing the scheduled restoration time and equipment data of the power system created by the inference means 64.
This is graph creation means for creating a rise curve of power supply capacity and a rise curve of load amount from the data regarding the characteristics of the generator and the characteristics of the load stored in 1 and displayed on the CRT device 7.

第2図は電力系統事故復旧支援装置における電源供給力
の立ち上がり曲線と負荷量の立ち上がり曲線のCRT装
置7への表示例である。第2図において、実線の曲線が
電源供給力の立ち上かり可能量を示しており、破線の曲
線が負荷量の立ち上がり可能量を示している。
FIG. 2 is an example of display on the CRT device 7 of the rise curve of the power supply capacity and the rise curve of the load amount in the power system accident recovery support device. In FIG. 2, the solid line curve shows the amount by which the power supply capacity can be increased, and the broken line curve shows the amount by which the load amount can be increased.

第3図は電力系統事故復旧支援装置における復旧手順の
CRT装置7への出力例である。図では各発電機#1 
、12 、 S3 、 S4と電力系統との接続関係が
どのようになっているかを示しており、四角で囲んだ部
分A、B、C,・・・、Jが電気所を示す。そして囲み
の内部に斜線のある電気所は停電電気所を、又斜線のな
い電気所が充電電気所を示す。各設備を接続する送電線
の記号は、例えば電気所Aと電気所C間においてはAC
線とする。
FIG. 3 is an example of output of the recovery procedure in the power system accident recovery support device to the CRT device 7. In the diagram, each generator #1
, 12, S3, S4 and the power system, and the squared parts A, B, C, . . . , J indicate the electric stations. Electrical stations with diagonal lines inside the box indicate outage electric stations, and electric stations without diagonal lines indicate charging electric stations. For example, the symbol of the power transmission line connecting each equipment is AC between electric station A and electric station C.
Line.

図ではCD線に事故Fが発生していることを示している
。各設備近傍に示した数値は事故復旧予定時刻を示して
いる。例えばA電気所近傍の数値00:02はA電気所
の復旧予定時刻を、C電気所近傍の数値00:01はC
電気所の復旧予定時刻を示している。
The figure shows that accident F has occurred on the CD line. The numbers shown near each facility indicate the estimated time for recovery from the accident. For example, the numerical value 00:02 near electric station A indicates the scheduled restoration time of electric station A, and the numerical value 00:01 near electric station C indicates the scheduled restoration time of electric station A.
Indicates the estimated restoration time of the electric plant.

次に、設備データベース61の構成例を説明する。Next, a configuration example of the equipment database 61 will be explained.

第4図は設備データベース61に格納されている電力系
統1の状態を、第3図に示した電力系統を例に示した構
成図である。第4図においては0で囲まれた部分が一つ
の設備に関するデータのまとまりを形成し、0内の第一
要素が設備名、第2要素が設備種別毎のデータ、第3要
素以降が接続可能設備データである。但し、第3要素の
内容がないときは、カッコ内は空白となる。例えば、電
気所Aについて説明すると母線は停電であり、この母線
にはAC線と#1重電機が接続可能である。
FIG. 4 is a configuration diagram showing the state of the power system 1 stored in the equipment database 61 using the power system shown in FIG. 3 as an example. In Figure 4, the part surrounded by 0 forms a collection of data related to one piece of equipment, the first element within the 0 is the equipment name, the second element is data for each equipment type, and the third and subsequent elements can be connected. This is equipment data. However, if there is no content for the third element, the space inside the parentheses will be blank. For example, regarding electric station A, the bus bar is out of power, and the AC line and #1 heavy electrical machine can be connected to this bus bar.

又、電気所Bは母線充電であり、#2発電機とB0線に
接続されており、接続可能設備はな髪)。
In addition, electric station B is a busbar charging station, and is connected to the #2 generator and B0 line, and the number of connectable facilities is limited).

第5図はCRT装置7に対して、第2図及び第3図のよ
うに出力するための復旧手順の作成処理を示すフローチ
ャートであり、電子計算機全体としてみた場合の処理で
ある。
FIG. 5 is a flowchart showing a process for creating a recovery procedure for outputting to the CRT device 7 as shown in FIGS. 2 and 3, and is a process for the computer as a whole.

先ず、ステップS61では電力系統監視制御手段62に
より電力系統1の状態を取り込み、各設備毎の停電状態
、充電状態の判定を行ない、かつ、事故設備の判定を行
なう。ステ・ンプS52では推論手段64により復旧手
順とその場合の復旧予定時刻を作成してCRT装置7へ
出力する。ステ・ツブS53では、グラフ作成手段65
により電源供給力の立ち上がり曲線と負荷量の立ち上が
り曲線とを作成しCR■装置7に出力する。次に、ステ
・ツブS54で運転員がステップS52とステップS5
3の出力結果を評価し、事故復旧に適切であればステ・
ツブS55へ、不適切であればステップS52へ戻るよ
うにして出力する。ステップS55では、ステップS5
4で運用者に適切と評価された復旧手順を電力系統監視
制御手段62を介して実行し、処理を終了する。
First, in step S61, the power system monitoring and control means 62 takes in the state of the power system 1, and determines the power outage state and charging state of each facility, and also determines which equipment has failed. In step S52, the inference means 64 creates a recovery procedure and the expected recovery time in that case, and outputs it to the CRT device 7. In the Ste-Tsub S53, the graph creation means 65
A rise curve of the power supply power and a rise curve of the load amount are created and outputted to the CR device 7. Next, in step S54, the operator performs step S52 and step S5.
Evaluate the output results of step 3 and take steps if appropriate for accident recovery.
If it is inappropriate, it is outputted to the knob S55 so as to return to step S52. In step S55, step S5
In step 4, the restoration procedure evaluated as appropriate by the operator is executed via the power system monitoring and control means 62, and the process ends.

第5図で示した個々の処理について以下に説明する。The individual processes shown in FIG. 5 will be explained below.

先ず、第5図におけるステップ851の処理について説
明する。ステップS51は第6図に示す通り、設備の充
停電判定(ステップ561)と事故設備判定(ステップ
562)との2つの処理からなる。ここでは、第7図を
用いて設備の充停電判定(ステップ561)の詳細につ
いて説明する。
First, the process of step 851 in FIG. 5 will be explained. As shown in FIG. 6, step S51 consists of two processes: determination of equipment charging/power failure (step 561) and determination of faulty equipment (step 562). Here, the details of the equipment charging/powering/output determination (step 561) will be explained using FIG. 7.

ステップS71では運転中または試送電の発電機を充電
状態とする。ステップS72では、ステップ371にお
いて充電状態となった設備を全て取り出す。ステップS
73では、ステップS?2で取り出した設備に接続して
いる全ての設備を充電状態とする。ステップS74では
ステップS72 、 S73の処理が全ての設備につい
て実施されたか否かを判断し、実施されていない設備が
あればステップ872へ戻って前記各処理を行ない、な
ければ充停電判定のの処理を終了する。このようにステ
ップS72からステップS74を繰り返すことにより設
備の充停電判定の処理か行なわれる。
In step S71, the generator that is in operation or undergoing trial power transmission is placed in a charging state. In step S72, all the equipment that has been brought into a charging state in step 371 is taken out. Step S
73, step S? All equipment connected to the equipment taken out in step 2 is brought into a charging state. In step S74, it is determined whether or not the processes of steps S72 and S73 have been carried out for all equipment. If there is any equipment for which the processes have not been carried out, the process returns to step 872 and each of the above processes is performed. If not, the process of charging/power failure determination is performed. end. By repeating steps S72 to S74 in this way, the process of determining whether the equipment is charged or shut down is performed.

次に、第8図を用いて事故設備判定(ステップ562)
の詳細説明をする。ステップS81ては事故等により動
作したリレーの保護設備を全て抽出する。ステップS8
2ではステップS81で抽出された設備のうち、停電の
ものを全て事故設備とし事故設備判定の処理を終わる。
Next, use FIG. 8 to determine the accident equipment (step 562).
Give a detailed explanation. In step S81, all protective equipment for relays that have been activated due to an accident or the like are extracted. Step S8
In Step 2, all of the facilities extracted in step S81 that are out of power are treated as accidental facilities, and the process of determining the failure facilities ends.

次に、第9図と第10図を用いてステップS52の推論
処理について説明する。第9図はステップS91の復旧
手順の作成とステップS92の事故設備の復旧予定時刻
作成を示している。
Next, the inference processing in step S52 will be explained using FIGS. 9 and 10. FIG. 9 shows creation of a restoration procedure in step S91 and creation of a scheduled restoration time for the failed equipment in step S92.

第10図をmmいてステップS91の推論処理について
説明する。
The inference processing in step S91 will be explained with reference to FIG. 10.

ステップ5101では系統状態を短期記憶として保存す
る。ステップ5102では知識ベースの中から知識を一
つ取り出し、ステップ5103においてステップ510
2で取り出した知識の条件部と短期記憶の状態とを比較
し、条件部が満足するものがあるか否かを判定する。条
件部を満足するものかある場合はステップ5104へ進
み、満足するものがない場合はステップ5105へ進む
In step 5101, the system status is stored as short-term memory. In step 5102, one piece of knowledge is extracted from the knowledge base, and in step 5103, step 510
The conditional part of the knowledge retrieved in step 2 is compared with the state of short-term memory, and it is determined whether there is any conditional part that satisfies the conditional part. If there is something that satisfies the condition part, the process proceeds to step 5104; if there is nothing that satisfies the condition, the process proceeds to step 5105.

ステップ5104では条件部が満足された知識を競合す
る知識集合に追加して保存する。そしてステップ510
5では全ての知識を適用したかを判定し、全ての知識を
適用していればステップ5106へ進む、他に知識が存
在していればステップ5102へ戻ってステップ510
2.5103.5104の各処理を繰り返す。
In step 5104, the knowledge whose condition part is satisfied is added to the competing knowledge set and saved. and step 510
In step 5, it is determined whether all the knowledge has been applied. If all the knowledge has been applied, the process proceeds to step 5106. If there is other knowledge, the process returns to step 5102 and steps 510
2. Repeat each process of 5103 and 5104.

ステップ8106ては競合する知識集合に知識かあるか
を判断し、一つでも保存されていればステップ5107
へ進み、知識集合の中から最も優先度の高い知識を選択
し、その実行部に従い短期記憶の複数の復旧手順に優先
度を付ける。更に競合する知識集合を初期化して、再び
全ての知識を対象としてステップ8102へ戻る。一方
、ステップ8108ては短期記憶の中から最も優先度の
高い復旧手順を選択する。
In step 8106, it is determined whether there is knowledge in the competing knowledge set, and if even one is saved, step 5107
, selects the knowledge with the highest priority from the knowledge set, and prioritizes multiple short-term memory recovery procedures according to its execution part. Furthermore, the competing knowledge sets are initialized, and the process returns to step 8102, targeting all knowledge again. On the other hand, in step 8108, the recovery procedure with the highest priority is selected from the short-term memory.

次に第11図に示す復旧手順作成のための知識例と事故
設備回避の知識例とを第3図を参照しながら説明する。
Next, an example of knowledge for creating a recovery procedure and an example of knowledge for avoiding accidental equipment shown in FIG. 11 will be explained with reference to FIG. 3.

第11図の上の知識は復旧手順作成のための知識てあり
、1Fから始まる条件部において、第3図の電気所Cに
着目すると電気所Cの母線が停電し、その母線に接続可
能な送電線としてCG線があり、電気所Gの母線は充電
して、その母線に接続可能な送電線としてCG線があり
、かつ、電気所Cと電気所Gは異なるという全ての条件
が成立する。
The knowledge above in Figure 11 is the knowledge for creating a recovery procedure, and in the condition part starting from the 1st floor, if we focus on electric station C in Figure 3, the bus of electric station C will be out of power, and it is possible to connect to that bus. All conditions are met: there is a CG line as a power transmission line, the bus bar of electric station G is charged and there is a CG line as a power transmission line that can be connected to the bus line, and electric station C and electric station G are different. .

その結果、THENから始まる実行部において、電気所
Cの母線と電気所Gの母線とを送電線CG線を用いて復
旧するという復旧手順を作成する。
As a result, the execution unit starting from THEN creates a recovery procedure for restoring the busbars of electric station C and the busbar of electric station G using the power transmission line CG line.

第11図の下の知識は事故設備回避の知識であり、IF
から始まる条件部において、事故設備がCD線であると
すると、電気所Cの母線に接続可能な送電線としてCD
線があり、送電線CD線は事故設備であるという全ての
条件が成立する。
The knowledge at the bottom of Figure 11 is knowledge for avoiding equipment accidents, and the IF
In the condition part starting from , if the faulty equipment is a CD line, CD
All conditions are met that there is a power line and that the transmission line CD line is an accidental facility.

その結果、THENから始まる実行部において、その母
線に接続可能な送電線CD線なるデータは削除される。
As a result, in the execution section starting from THEN, the data of the power transmission line CD line that can be connected to that bus is deleted.

第12図は、ステップS92として示す設備の事故復旧
予定時刻作成手順のフローチャートである。
FIG. 12 is a flowchart of the procedure for preparing the scheduled accident recovery time for equipment shown as step S92.

ステップ5121では復旧手順の中から1つを取出し、
ステップ5122にて復旧予定時刻作成に関する知識の
中から条件部が満足している知識を取出し、復旧予定時
刻を判定する。
In step 5121, one of the recovery procedures is extracted,
In step 5122, the knowledge that satisfies the condition part is extracted from the knowledge regarding the creation of the scheduled recovery time, and the scheduled recovery time is determined.

次にステップ5123てはすべての復旧手順について時
刻の推定を行なっていればステップ5124へ、行なっ
ていなければステップ5121へ戻る。ステップ512
4では復旧の最初の工程からの相対時刻を復旧手順に基
づいて、各設備毎に計算する。
Next, in step 5123, if the time has been estimated for all recovery procedures, the process goes to step 5124; if not, the process returns to step 5121. Step 512
In step 4, the relative time from the first step of restoration is calculated for each piece of equipment based on the restoration procedure.

第14図は第5図のステップS53における電源供給と
負荷量の立上りの処理を示すフローチャートである。
FIG. 14 is a flowchart showing the power supply and load amount rise processing in step S53 of FIG.

ステップ5141では事故復旧に用いる発電機を1つ取
り出し、ステップ5142てはステップ5141で取り
出した発電機が始動し、目的とする電源供給量に達する
まての時間と各時刻に伴なう電源供給可能量を計算する
。ステップ5143ては事故復旧に用いるすべての発電
機に対して処理が行なわれていればステップ5144へ
、又、行なわれていなければステップ5141へ戻る。
In step 5141, one of the generators used for accident recovery is taken out, and in step 5142, the generator taken out in step 5141 is started, and the power supply at each time and the time until the desired power supply amount is reached is determined. Calculate the possible amount. In step 5143, if the process has been performed on all generators used for accident recovery, the process goes to step 5144, and if the process has not been done, the process returns to step 5141.

ステップ5144ては事故復旧に用いる負荷の1つを取
り出し、ステップ5144で取出した負荷の復旧予定時
刻から、各時刻における負荷の変動状況を計算する。
In step 5144, one of the loads used for accident recovery is extracted, and the load fluctuation status at each time is calculated from the scheduled recovery time of the load extracted in step 5144.

ステップ8146では事故復旧に用いるすべての負荷に
対して処理が行なわれていれば処理を終了し、行なわれ
ていなければステップ5144へ戻る。
In step 8146, if the process has been performed for all loads used for accident recovery, the process ends; if not, the process returns to step 5144.

第13図は復旧時間作成の知識例てあり、この知識の適
用例を第3図を例に説明する。
FIG. 13 shows an example of knowledge for creating a recovery time, and an example of applying this knowledge will be explained using FIG. 3 as an example.

仮に、IFから始まる条件部において、[電気所Cのf
線を電気所Gの母線と送電線CG線を用いて復旧するJ
ことが最適な復旧手順てあり、電気所Cの母線と送電線
CG線は接続してなく、電気所Gの母線と送電線CG線
は接続してなく、電気所Cは有人電気所てあり、電気所
Gは有人電気所であるという全ての条件か成立すると、
THENから始まる実行部において、所要時間は1分と
いう推定結果か得られる。
For example, in the condition part starting from IF, [f of electric station C]
J to restore the line using the busbar of electric station G and the transmission line CG line.
The optimal recovery procedure is that the busbar of electric station C and the transmission line CG line are not connected, the busbar of electric station G and the transmission line CG line are not connected, and electric station C is a manned electric station. , if all the conditions that electric station G is a manned electric station are met, then
In the execution section starting from THEN, the estimated time required is 1 minute.

第15図は第5図のステップS55における復旧操作実
施の処理を示すフローチャートである。
FIG. 15 is a flowchart showing the process of performing the recovery operation in step S55 of FIG.

ステップ5151てはステップS54て運転員に適切で
あると判断された復旧手順の中から1つを取り出す。ス
テップ5152ては取出された復旧手順の対象とする設
備の電源側接続設備状態が開、すなわち対象とする設備
が停電状態ならばステップ5153へ進み電源側接続設
備を投入してステップ5154へ進む。又、対象とする
設備の電源側接続設備状態が閉、すなわち対象とする設
備か充電状態ならばステップ5154へ進む。
In step 5151, one of the recovery procedures determined to be appropriate for the operator in step S54 is selected. In step 5152, if the state of the power supply side connection equipment of the extracted equipment targeted for the restoration procedure is open, that is, the target equipment is in a power outage state, the process advances to step 5153, where the power supply side connection equipment is turned on, and the process advances to step 5154. Further, if the power supply side connection equipment state of the target equipment is closed, that is, the target equipment is in a charging state, the process advances to step 5154.

ステップ5154では取出された復旧手順の対象とする
負荷の電源側が開、すなわち、対象とする負荷が停電状
態であればステップ5155て電源側と対象とする負荷
を接続し、ステップ8156へ進む。又、対象とする負
荷の電源側が閉、すなわち対象となる負荷か充電状態な
らばステップ8156へ進む。
In step 5154, if the power supply side of the load that is the target of the extracted recovery procedure is open, that is, if the target load is in a power outage state, the power supply side and the target load are connected in step 5155, and the process proceeds to step 8156. If the power supply side of the target load is closed, that is, the target load is in a charging state, the process advances to step 8156.

ステップ8156では復旧手順の操作をすべて行なって
いれば処理を終了し、行なっていなければステップ51
51へ戻る。
In step 8156, if all operations in the recovery procedure have been performed, the process ends; if not, step 51
Return to 51.

[発明の効果] 以上説明したように、本発明によれば電力系統事故時に
事故復旧操作の手順を計算機によって自動作成し、その
際の発電機や負荷の復旧予定時刻を明示し、かつそれら
の立ち上がり特性をグラフ化するようにしたので、運転
員が直観的に状況を認識てき、復旧手順の評価を迅速に
行なうことができる。
[Effects of the Invention] As explained above, according to the present invention, a computer automatically creates a procedure for accident recovery operations in the event of a power system accident, clearly indicates the scheduled restoration time of the generator and load at that time, and Since the start-up characteristics are graphed, operators can intuitively recognize the situation and quickly evaluate recovery procedures.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による電力系統復旧支援装置の実施例の
機能ブロック図、第2図は電源供給力と負荷量の立ち上
がり曲線のCRT装置出力例図倒閣3図は本発明による
復旧手順の出力倒閣、第4図は設備データベースの構成
倒閣、第5図はCRT装置への出力処理を示すフローチ
ャート、第6図は第5図のステップS51における充電
停電判定と事故設備判定の処理を示すフローチャート、
第7図は第6図のステップS61における充電停電判定
の処理を示すフローチャート、第8図は第6図のステッ
プS62における事故設備判定の処理を示すフローチャ
ート、第9図は第5図のステップS52における復旧手
順と復旧時間作成の処理を示すフローチャー1〜、第1
0図は第9図のステップS91における推論処理を示す
フローチャート、第11図は事故復旧と事故設備回避の
知識倒閣、第12図はステップS92における推論処理
を示すフローチャート、第13図は復旧時間作成の知識
倒閣、第14図は第5図のステップS53における電源
供給と負荷量の立ち上がりの処理を示すフローチャート
、第15図は第5図のステップS55における復旧操作
実施の処理を示すフローチャートである。 1・・電力系統    2・・・上り送信局3・・・上
り受信局   4・・下り受信局5・・・下り送信局 
  6・・・電子計算機7・・・CRT装置    6
1・・・設備データ格納手段62・・・電力系統監視制
御手段 63・・・知識格納手段  64・・・推論手段65・
・・グラフ作成手段 特許出願人  中部電力株式会社 (ほか1名) 代理人弁理士  石 井   紀 男 (A電気所(母線停電()) (接続可能膜[(す1発電機、AC緯)))(日電気所
(母線充電(◆2発電機)、BD線))(接続可能設備
())) (C電気所(母線停電()) (接続可能設備(AC線、C0N5CE線、CF線、C
G線)))(す1発電機 停止 (4)) (42発電機 運転中(8)) (AC線 送電線 停電(接続可能設備(ASC)))
(CD線 送電線 停電(接続可能設備(C,0)))
(BD線 送電線 充電(接続可能膜(II(s、o)
))第4図 第IU囚 第 図 第 図 (IF 電気所、Stの母線8tが停電しているfRWJB +
に接続可能な送電綿Llがある電気所S2の母MB2が
充電している 母&lB2に接続可能な送電綿L1がある電気所51と
電気所S2は興なる 1−IEN 電気所51の@#S+を電気所S2の母線82と送電線
Llを用いて1旧する) (IF 母線日1に接続可能な送電線Llがある送電線Llは事
故設備である I−IEN (母線Bllこ接続可能な送電線Llがある)を削#す
る)第11図 第12 第14図 F (電気所Slの母線Blを電気所S2の母線B2と送電
線し1を用いて復旧する)か最適な復旧手順であるN0
T(電気所Stの母線Blと送電線Llは接続している
N0T(電気所S2の母線B2と送電線L1は接続して
いる電気所Slは有人電気所である 電気所S2は有人電気所である HEN 所要時間は1分である) 第13図 第15図
Fig. 1 is a functional block diagram of an embodiment of the power system restoration support device according to the present invention, Fig. 2 is an example of a CRT device output of a rising curve of power supply capacity and load amount, and Fig. 3 is an output of the restoration procedure according to the present invention. FIG. 4 is a flowchart showing the configuration of the equipment database; FIG. 5 is a flowchart showing the output processing to the CRT device; FIG. 6 is a flowchart showing the charging power outage determination and faulty equipment determination processing in step S51 of FIG.
FIG. 7 is a flowchart showing the charging power outage determination processing in step S61 of FIG. 6, FIG. 8 is a flowchart showing the faulty equipment determination processing in step S62 of FIG. 6, and FIG. 9 is a flowchart showing the processing of faulty equipment determination in step S62 of FIG. 5. Flowcharts 1 to 1 showing the recovery procedure and recovery time creation process in
Figure 0 is a flowchart showing the reasoning process in step S91 of Figure 9, Figure 11 is a knowledge-based knowledge of accident recovery and accidental equipment avoidance, Figure 12 is a flowchart showing the reasoning process in step S92, and Figure 13 is recovery time creation. FIG. 14 is a flowchart showing the power supply and load rise processing in step S53 of FIG. 5, and FIG. 15 is a flowchart showing the restoration operation implementation processing in step S55 of FIG. 1... Power system 2... Upstream transmitting station 3... Upstream receiving station 4... Downstream receiving station 5... Downstream transmitting station
6...Electronic computer 7...CRT device 6
1...Equipment data storage means 62...Power system monitoring and control means 63...Knowledge storage means 64...Inference means 65.
...Graph creation method patent applicant: Chubu Electric Power Co., Ltd. (and one other person) Patent attorney: Norio Ishii (Electric plant A (Bus bar power outage ()) (Connectable membrane [(S1 generator, AC latitude))] ) (Nichi Electric Power Station (bus bar charging (◆2 generators), BD line)) (Connectable equipment ())) (C Electric Power Station (bus power outage ()) (Connectable equipment (AC line, C0N5CE line, CF line) , C
G line))) (1 generator stopped (4)) (42 generator in operation (8)) (AC line power outage (connectable equipment (ASC)))
(CD line power transmission line power outage (connectable equipment (C, 0)))
(BD line Power line Charging (Connectable membrane (II(s, o)
)) Figure 4 IU Prisoner Figure Figure (IF Electrical plant, St bus bar 8t is out of power fRWJB +
The mother MB2 of the electric station S2, which has the power transmission cotton Ll that can be connected to the mother &lB2, where the mother MB2 is charging, and the electric station S2, which has the power transmission cotton L1 that can be connected to the mother &lB2, are connected to the 1-IEN @# of the electric station 51. S+ is replaced by 1 using bus 82 of electric station S2 and transmission line Ll) (IF There is a transmission line Ll that can be connected on bus day 1) Transmission line Ll is the faulty equipment I-IEN (Bus line Bll can be connected) (There is a power transmission line Ll) (Remove the transmission line Ll) (Remove the power line 1) (Detach the power line Ll of the electric station S1 with the bus line B2 of the electric station S2 and restore it using the transmission line 1) or the optimal restoration N0 which is a procedure
T (Bus line Bl of electric station St and transmission line Ll are connected. N0T (Bus line B2 of electric station S2 and transmission line L1 are connected. Electric station Sl is a manned electric station. Electric station S2 is a manned electric station. (The required time is 1 minute) Figure 13 Figure 15

Claims (1)

【特許請求の範囲】[Claims]  電力系統設備に関するデータを格納する設備データ格
納手段と、電力系統事故の復旧手順に関する知識を格納
する知識格納手段と、前記設備データ格納手段の内容と
知識格納手段の内容とを用いて電力系統事故に対する復
旧手順を作成して表示する電力系統事故復旧支援装置に
おいて、前記設備データ格納手段に格納されている電力
系統状態に対して知識格納手段に格納されている知識を
適用して復旧手順とともに、その復旧手順で復旧した場
合の電力設備の復旧予定時刻を作成する推論手段と、前
記推論手段において作成された復旧予定時刻と前記設備
データ格納手段の内容とをもとに電源供給力の立上り曲
線及び負荷量の立上り曲線を作成するグラフ作成手段と
を備えたことを特徴とする電力系統事故復旧支援装置。
An equipment data storage means for storing data regarding power system equipment, a knowledge storage means for storing knowledge regarding recovery procedures for power system accidents, and the contents of the equipment data storage means and the contents of the knowledge storage means are used to detect power system accidents. In the power system accident recovery support device that creates and displays a recovery procedure for a power system, the knowledge stored in the knowledge storage means is applied to the power system state stored in the equipment data storage means, together with the recovery procedure; an inference means for creating a scheduled restoration time of the electric power equipment when the power equipment is restored according to the restoration procedure; and a rise curve of the power supply capacity based on the estimated restoration time created by the inference means and the contents of the equipment data storage means. and graph creation means for creating a rise curve of load amount.
JP2119157A 1990-05-09 1990-05-09 Power system accident recovery support device Expired - Lifetime JP2907946B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2119157A JP2907946B2 (en) 1990-05-09 1990-05-09 Power system accident recovery support device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2119157A JP2907946B2 (en) 1990-05-09 1990-05-09 Power system accident recovery support device

Publications (2)

Publication Number Publication Date
JPH0417523A true JPH0417523A (en) 1992-01-22
JP2907946B2 JP2907946B2 (en) 1999-06-21

Family

ID=14754331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2119157A Expired - Lifetime JP2907946B2 (en) 1990-05-09 1990-05-09 Power system accident recovery support device

Country Status (1)

Country Link
JP (1) JP2907946B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5957748A (en) * 1996-12-13 1999-09-28 Triumph International (Japan), Ltd. Women's clothing
JP2012120424A (en) * 2010-11-17 2012-06-21 General Electric Co <Ge> Enhanced plant level support of grid reconstruction

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5957748A (en) * 1996-12-13 1999-09-28 Triumph International (Japan), Ltd. Women's clothing
JP2012120424A (en) * 2010-11-17 2012-06-21 General Electric Co <Ge> Enhanced plant level support of grid reconstruction

Also Published As

Publication number Publication date
JP2907946B2 (en) 1999-06-21

Similar Documents

Publication Publication Date Title
Matsumoto et al. Knowledge-based systems as operational aids in power system restoration
Razeghi et al. A generic microgrid controller: Concept, testing, and insights
CN103679293A (en) Intelligent substation warning and aid decision making system
Marquez et al. A fault detection and reconfiguration approach for MPC-based energy management in an experimental microgrid
Rhodes et al. PowerModelsRestoration. jl: An open-source framework for exploring power network restoration algorithms
Gao et al. Fault diagnosis system for electric vehicle charging devices based on fault tree analysis
US20110264477A1 (en) Methods and a system for use of business process management for demand response
Wilmeth et al. Reliability-centered maintenance: A case study
Melo et al. Centralized monitoring of a cost efficient PLC‐SCADA based islanded microgrid considering dispatch techniques
Aziz et al. A self-healing restoration of power grid based on two-stage adaptive decision-making strategy to enhance grid resilience
Sakaguchi et al. Prospects of expert systems in power system operation
JPH0417523A (en) Supporting apparatus for power system restoration from accident
Stewart et al. Integrated multi-scale data analytics and machine learning for the distribution grid and building-to-grid interface
DyLiacco et al. Considerations in developing and utilizing operator training simulators
CN113095952B (en) Power grid splitting early warning method and system considering real-time and N-X forecast information
WO2019008856A1 (en) System operation support device and method in power system, and wide-area monitoring protection control system
CN110212585A (en) Running of wind generating set Reliability Prediction Method, device and Wind turbines based on statistical analysis
JP2011253098A (en) Drill evaluation device
EP3627433B1 (en) Resiliency determination in a microgrid
Jeong et al. Development of severe accident management advisory and training simulator (SAMAT)
Guan et al. Grid monitoring and market risk management
JP2010113518A (en) Support system for remote monitoring control device and support method for remote monitoring control device
JPH08340636A (en) Power system monitor controller, and its training device
Ravinder Experience in asset performance management analytics for decision support on Transmission & Distribution Assets
JPH0715861A (en) Training simulator for operating electric power system