JPH0417166B2 - - Google Patents

Info

Publication number
JPH0417166B2
JPH0417166B2 JP59118895A JP11889584A JPH0417166B2 JP H0417166 B2 JPH0417166 B2 JP H0417166B2 JP 59118895 A JP59118895 A JP 59118895A JP 11889584 A JP11889584 A JP 11889584A JP H0417166 B2 JPH0417166 B2 JP H0417166B2
Authority
JP
Japan
Prior art keywords
catalyst
tertiary butyl
reaction
isobutylene
butyl alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59118895A
Other languages
Japanese (ja)
Other versions
JPS6126A (en
Inventor
Yoshimi Ozaki
Eizo Sueoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP59118895A priority Critical patent/JPS6126A/en
Publication of JPS6126A publication Critical patent/JPS6126A/en
Publication of JPH0417166B2 publication Critical patent/JPH0417166B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は第三級ブチルアルコールを触媒の存在
下に加熱脱水してイソブチレンを製造する方法に
関する。 第三級アルコールを触媒の存在下に加熱脱水し
て第三級オレフインを製造する方法は、従来より
種々知られており、その代表例として、アルミナ
触媒を用いる方法がある。この方法については、
近年においても、例えば、特公昭50−12403号公
報に記載されているように、改善が重ねられてい
る。しかし、この方法によれば、オレフインを高
転化率、高選択率で得るには、通常、250℃以上
の高温で第三級アルコールを触媒に接触させる必
要があり、反応温度が低温の場合は触媒活性が著
しく小さい。また、シリカを主成分とする担体、
例えば、ケイソウ土にリン酸を浸漬し、熱処理し
てなる所謂固体リン酸触媒を用いる方法も知られ
ているが、この触媒は反応においてリン酸が飛散
し、活性の経時低下が著しい。更に、陽イオン交
換樹脂、特に、スルホン酸型陽イオン交換樹脂の
ような強酸性イオン交換樹脂を触媒として用いる
方法も古くより知られている。例えば、特公昭46
−1042号公報に記載されている方法にば、100℃
以下の低温にて第三級アルコールからイソブチレ
ンを得ることがきるが、しかし、第三級アルコー
ルの転化率が低い。 一方、本発明者らは、SO4基を有する酸化チタ
ン又は酸化ジルコニウムを触媒として用いると
き、低温での反応によつて第三級エーテルの脱ア
ルコール反応によつて第三級オレフインを得るこ
とができることを見出したが(特開昭59−10528
号)、この触媒について更に研究を続けた結果、
この触媒によれば、第三級ブチルアルコールを低
温で脱水して、高転化率、高選択率にてイソブチ
レンを得ることができると共に、この触媒は反応
条件下で活性の持続性にすぐれることを見出し
て、本発明に至つたものである。 即ち、本発明の方法によるイソブチレンの製造
方法は、1〜5重量%のSo4基を含有する酸化チ
タン又は酸化ジルコニウムの存在下に第三級ブチ
ルアルコールを気相にて100〜250℃の温度で加熱
脱水することを特徴とする。 本発明において用いる触媒は、SO4基を有する
酸化チタン又は酸化ジルコニウムであつて、SO4
基は、上記酸化物中に1〜5重量%含有されてい
る。このようにSO4基を有する酸化チタン又は酸
化ジルコニウムは、例えば、チタン若しくはジル
コニウムの水和酸化物と硫酸の混合物、又はチタ
ン若しくはジルコニウムの水和酸化物とこれらの
硫酸塩を400〜700℃程度の温度に焼成することに
よつて得ることができ、酸化物中のSO4基の含有
量は、用いるチタン若しくはジルコニウムの水和
酸化物に対する硫酸又はこれらの硫酸塩の混合割
合、上記混合物の焼成温度、焼成時間等によつて
任意に調整することができる。SO4基を含有しな
い酸化チタンや酸化ジルコニウムは、低温度にお
いて高い触媒活性をもたない。 本発明の方法においては、反応は、通常、気相
で行われ、反応温度は、好ましくは100〜250℃の
範囲である。また、反応時の圧力は常圧でも加圧
下でもよいが、通常、常圧乃至10Kg/cm2の圧力が
適当である。触媒容積に対する時間当りの第三級
アルコールの供給量、即ち、LHSVは0.1〜
50hr-1、特に、0.5〜15hr-1程度が好適である。
このように気相反応による場合、例えば、触媒を
充填した反応容器中に原料を気化させて通過させ
る方法によることができる。この場合において、
特に希釈剤を用いなくともよいが、必要に応じて
窒素、水蒸気等の不活性気体を用いてもよい。特
に、希釈剤として水蒸気を用いるとき、反応の選
択性が高まると共に、触媒活性がより長時間にわ
たつて持続される。しかし、必要ならば、加圧下
に液相を維持する条件下で反応を行なうこともで
きる。 前記したように、本発明の方法において用いる
触媒は、第三級エーテルから第三級オレフインへ
の脱アルコール触媒としても有効であるが、この
脱アルコール反応においても、水蒸気を存在させ
ることにより、反応の選択性と触媒の活性持続性
が高まる。従つて、本発明の方法においては、第
三級ブチルアルコールとこれに対応する第三級エ
ーテル、即ち、メチル第三級ブチルエーテルとの
混合物を前記触媒の存在下に加熱することによつ
て、これら複数の原料から同時に所要のイソブチ
レンを得ることができると共に、第三級ブチルア
ルコールの脱水によつて水蒸気が反応系内に存在
することとなるので、反応系外からの水蒸気の供
給なしに、若しくは少量を供給するのみにて、上
記脱アルコール反応の選択性が高められる。 以上のように、本発明の方法によれば、低温に
おける第三級ブチルアルコールの加熱分解によつ
て、高転化率及び高選択性にて所要のイソブチレ
ンを得ることができ、しかも、本発明で用いる触
媒は反応条件下で安定であつて、長期間にわたつ
てその活性が持続される。更に、本発明の方法に
よれば、原料として同時にメチル第三級ブチルエ
ーテルを併せ用いて、これからも高転化率、高選
択性にてイソブチレンを得ることができる。 以下に本発明の方法の実施例を挙げるが、本発
明はこれら実施例によつて何ら限定されるもので
はない。 実施例 1〜6 小名浜堺化学(株)製の硫酸法チタニア製造におけ
る工業中間製品であつて、水中懸濁物としてのメ
タチタン酸を70〜80℃の温度で乾燥した。このメ
タチタン酸に0.5重量%のステアリン酸を混和し
て、直径5mm、厚さ3mmのペレツトに打錠成型し
た後、このペレツトを空気雰囲気下に550℃で3
時間焼成した。このようにして得られた触媒ペレ
ツトを破砕した後、32〜60メツシユに分級した。
この触媒のSO4基含量は2.9重量%であつた。 この触媒を内径17mmのステンレス鋼製反応器に
所定量充填し、この反応器に表に示す所定の条件
にて第三級ブチルアルコールと水とを供給して脱
水反応を行なつた。反応容器からの生成気体は、
氷水で冷却したトラツプ及びドライアイスで冷却
したトラツプに導き、凝縮液化させて捕集した。 捕集した反応生成物をガスクロマトグラフイに
より分析し、残存原料及びイソブチレンを定量
し、第三級ブチルアルコールの転化率及びイソブ
チレン選択率を次式により求めた。 第三級ブチルアルコール転化(%) =〔(時間当りに反応した第三級ブチルアルコー
ルのモル数)/(時間当りに供給した第三級ブ
チルアルコールのモル数)〕×100 イソブチレン選択率(%) =〔(時間当りに生成したイソブチレンのモル
数)/(時間当りに反応した第三級ブチルアル
コールのモル数)〕×100 結果を表に示すように、本発明の方法によれ
ば、200℃前後の低温にて第三級ブチルアルコー
ル転化率はほぼ100%であり、しかも、イソブチ
レン選択率も非常に高く、好ましい場合にはほぼ
100%に達する。 実施例 7 前記実施例と同じ反応器に第三級ブチルアルコ
ール(TBA)、メチル第三級ブチルエーテル
(MTBE)及び水をそれぞれ0.16モル/時、0.13
モル/時及び0.71モル/時の速度で供給し、大気
圧下、温度200℃の条件下で反応させた。結果は
次のとおりであつた。 TBAの転化率 96% MTBEの転化率 99% イソブチレンの選択率 99% メタノールの選択率 99% ここで、イソブチレンの選択率(%) =〔(時間当りに生成したイソブチレンのモル
数)/(時間当りに反応したTBAとMTBEの
モル数の合計)〕×100 メタノールの選択率
The present invention relates to a method for producing isobutylene by heating and dehydrating tertiary butyl alcohol in the presence of a catalyst. Various methods have been known to produce tertiary olefins by heating and dehydrating tertiary alcohols in the presence of catalysts, and a typical example is a method using an alumina catalyst. For this method,
Even in recent years, improvements have been made repeatedly, as described in Japanese Patent Publication No. 12403/1983, for example. However, according to this method, in order to obtain olefins with high conversion and high selectivity, it is usually necessary to bring the tertiary alcohol into contact with the catalyst at a high temperature of 250°C or higher; Catalytic activity is extremely low. In addition, carriers mainly composed of silica,
For example, a method is known in which a so-called solid phosphoric acid catalyst is used, which is obtained by immersing diatomaceous earth in phosphoric acid and heat-treating the same. However, with this catalyst, phosphoric acid scatters during the reaction, and the activity of this catalyst decreases significantly over time. Furthermore, a method using a cation exchange resin, particularly a strongly acidic ion exchange resin such as a sulfonic acid type cation exchange resin, as a catalyst has been known for a long time. For example,
According to the method described in −1042 publication, 100℃
Isobutylene can be obtained from tertiary alcohol at lower temperatures, but the conversion rate of tertiary alcohol is low. On the other hand, the present inventors have found that when titanium oxide or zirconium oxide having SO 4 groups is used as a catalyst, it is possible to obtain a tertiary olefin by dealcoholization of a tertiary ether through a reaction at a low temperature. I found out what I could do (Japanese Unexamined Patent Publication No. 59-10528)
As a result of further research on this catalyst,
According to this catalyst, isobutylene can be obtained by dehydrating tertiary butyl alcohol at low temperature with high conversion rate and high selectivity, and this catalyst has excellent sustainability of activity under the reaction conditions. This discovery led to the present invention. That is, the method for producing isobutylene according to the method of the present invention involves adding tertiary butyl alcohol in the gas phase at a temperature of 100 to 250°C in the presence of titanium oxide or zirconium oxide containing 1 to 5% by weight of So4 groups. It is characterized by heating and dehydration. The catalyst used in the present invention is titanium oxide or zirconium oxide having SO 4 group, and SO 4
The group is contained in the above oxide in an amount of 1 to 5% by weight. In this way, titanium oxide or zirconium oxide having SO 4 groups can be prepared, for example, by a mixture of a hydrated oxide of titanium or zirconium and sulfuric acid, or a hydrated oxide of titanium or zirconium and a sulfate thereof at a temperature of about 400 to 700°C. It can be obtained by firing at a temperature of It can be arbitrarily adjusted by adjusting the temperature, firing time, etc. Titanium oxide and zirconium oxide that do not contain SO 4 groups do not have high catalytic activity at low temperatures. In the method of the present invention, the reaction is usually carried out in the gas phase, and the reaction temperature is preferably in the range of 100 to 250°C. Further, the pressure during the reaction may be normal pressure or elevated pressure, but normally a pressure of normal pressure to 10 kg/cm 2 is appropriate. The amount of tertiary alcohol supplied per hour relative to the catalyst volume, that is, LHSV is 0.1~
50 hr -1 , particularly about 0.5 to 15 hr -1 is suitable.
In the case of using a gas phase reaction as described above, for example, a method can be used in which the raw material is vaporized and passed through a reaction vessel filled with a catalyst. In this case,
Although it is not necessary to use a diluent, an inert gas such as nitrogen or water vapor may be used if necessary. In particular, when water vapor is used as a diluent, the selectivity of the reaction is increased and the catalytic activity is maintained for a longer period of time. However, if necessary, the reaction can also be carried out under conditions which maintain the liquid phase under pressure. As mentioned above, the catalyst used in the method of the present invention is also effective as a dealcoholization catalyst for converting tertiary ethers into tertiary olefins. The selectivity and durability of catalyst activity are increased. Therefore, in the method of the present invention, by heating a mixture of tertiary butyl alcohol and the corresponding tertiary ether, namely methyl tertiary butyl ether, in the presence of the catalyst, The required isobutylene can be obtained from multiple raw materials at the same time, and water vapor will be present in the reaction system due to the dehydration of tertiary butyl alcohol. By supplying only a small amount, the selectivity of the dealcoholization reaction can be increased. As described above, according to the method of the present invention, the required isobutylene can be obtained with high conversion rate and high selectivity by thermal decomposition of tertiary butyl alcohol at low temperatures. The catalyst used is stable under the reaction conditions and maintains its activity over a long period of time. Furthermore, according to the method of the present invention, isobutylene can be obtained with high conversion and high selectivity by simultaneously using methyl tertiary butyl ether as a raw material. Examples of the method of the present invention are listed below, but the present invention is not limited to these Examples in any way. Examples 1 to 6 Metatitanic acid, which is an industrial intermediate product produced by Onahama Sakai Chemical Co., Ltd. in the production of titania using the sulfuric acid method, and was suspended in water, was dried at a temperature of 70 to 80°C. This metatitanic acid was mixed with 0.5% by weight of stearic acid and formed into pellets with a diameter of 5 mm and a thickness of 3 mm.The pellets were then heated at 550°C in an air atmosphere for 30 minutes.
Baked for an hour. The catalyst pellets thus obtained were crushed and then classified into 32 to 60 meshes.
The SO 4 group content of this catalyst was 2.9% by weight. A predetermined amount of this catalyst was packed into a stainless steel reactor having an inner diameter of 17 mm, and tertiary butyl alcohol and water were supplied to the reactor under the predetermined conditions shown in the table to carry out a dehydration reaction. The produced gas from the reaction vessel is
It was introduced into a trap cooled with ice water and a trap cooled with dry ice, where it was condensed and collected. The collected reaction product was analyzed by gas chromatography to quantify the remaining raw material and isobutylene, and the conversion rate of tertiary butyl alcohol and isobutylene selectivity were determined by the following formula. Tertiary butyl alcohol conversion (%) = [(Number of moles of tertiary butyl alcohol reacted per hour) / (Number of moles of tertiary butyl alcohol fed per hour)] × 100 Isobutylene selectivity (%) ) = [(Number of moles of isobutylene produced per hour)/(Number of moles of tertiary butyl alcohol reacted per hour)] x 100 As shown in the table, according to the method of the present invention, 200 The conversion rate of tertiary butyl alcohol is almost 100% at low temperatures around ℃, and the isobutylene selectivity is also very high, and in favorable cases it is almost 100%.
Reach 100%. Example 7 In the same reactor as in the previous example, tertiary butyl alcohol (TBA), methyl tertiary butyl ether (MTBE) and water were added at 0.16 mol/hour and 0.13 mol/hour, respectively.
It was fed at a rate of 0.71 mol/hour and 0.71 mol/hour, and the reaction was carried out under atmospheric pressure and a temperature of 200°C. The results were as follows. Conversion rate of TBA 96% Conversion rate of MTBE 99% Isobutylene selectivity 99% Methanol selectivity 99% Where, isobutylene selectivity (%) = [(Number of moles of isobutylene produced per hour) / (time Total number of moles of TBA and MTBE reacted per reaction)〕×100 Selectivity of methanol

【表】 =〔(時間当りに生成したメタノールのモル
数)/(時間当りに反応したMTBEのモル
数)〕×100 実施例 8 硝酸ジルコニルZrO(NO32・2H2O(和光純薬
工業(株)製特級品)250gを水2に溶解し、室温
で撹拌しながら17%アンモア水300gを30分間か
けて滴下した。デカンテーシヨンした後、3回水
洗し、100℃で2時間熱風乾燥した。 このようにして得られた水酸化ジルコニルに3
重量%相当の硫酸で水で稀釈して含浸させた。次
いで、70〜80℃で一夜乾燥後、空気雰囲気中で
500℃にて3時間焼成した。これを32〜60メツシ
ユに破砕、分級した。SO4基の含量は2.5重量%
であつた。 この触媒10mlを用いると共に、第三級ブチルア
ルコールに代えて第三級アルミアルコールを用い
た以外は、実施例2と同じ条件で脱水反応を行な
つた結果、第三級アルミアルコールの転化率は99
%、2−メチルブテン−2及び2−メチルブテン
−1の選択率は98%であつた。 比較例 1 チタニウムテトライソプロポキシド(和光純薬
工業(株)製1級品)をエタノール水溶液に滴下して
水酸化チタンを得、これを実施例1における触媒
の製法に準じて、乾燥、焼成及び破砕分級処理し
て、SO4基を含有しないチタニア触媒を得た。こ
の触媒を用いて、実施例3と同じ条件下にTBA
の脱水反応を行なつた。 TBAの転化率は4%であり、イソブチレンの
選択率は98%であつた。 比較例 2 日揮化学(株)製アルミナ触媒N611を破砕した後、
32〜60メツシユに分級し、これを触媒として用い
て、実施例2と同じ条件下にTBAの脱水反応を
行なつた。 TBAの転化率は76%、イソブチレンの選択率
は99%であつた。
[Table] = [(Number of moles of methanol produced per hour) / (Number of moles of MTBE reacted per hour)] × 100 Example 8 Zirconyl nitrate ZrO (NO 3 ) 2・2H 2 O (Wako Pure Chemical Industries, Ltd. 250 g of special grade product manufactured by Kogyo Co., Ltd.) was dissolved in 2 parts of water, and 300 g of 17% ammour water was added dropwise over 30 minutes while stirring at room temperature. After decanting, it was washed with water three times and dried with hot air at 100°C for 2 hours. The zirconyl hydroxide thus obtained has 3
It was diluted with water and impregnated with sulfuric acid equivalent to % by weight. Then, after drying at 70-80℃ overnight, in an air atmosphere.
It was baked at 500°C for 3 hours. This was crushed and classified into 32 to 60 pieces. The content of SO 4 groups is 2.5% by weight
It was hot. A dehydration reaction was carried out under the same conditions as in Example 2, except that 10 ml of this catalyst was used and tertiary aluminum alcohol was used instead of tertiary butyl alcohol. As a result, the conversion rate of tertiary aluminum alcohol was 99
%, the selectivity of 2-methylbutene-2 and 2-methylbutene-1 was 98%. Comparative Example 1 Titanium tetraisopropoxide (first grade product manufactured by Wako Pure Chemical Industries, Ltd.) was dropped into an ethanol aqueous solution to obtain titanium hydroxide, which was dried and calcined according to the catalyst manufacturing method in Example 1. Then, a titania catalyst containing no SO 4 groups was obtained by crushing and classifying. Using this catalyst, TBA was prepared under the same conditions as in Example 3.
A dehydration reaction was carried out. The conversion rate of TBA was 4% and the selectivity of isobutylene was 98%. Comparative Example 2 After crushing alumina catalyst N611 manufactured by JGC Chemical Co., Ltd.
It was classified into 32 to 60 meshes, and using this as a catalyst, a dehydration reaction of TBA was carried out under the same conditions as in Example 2. The TBA conversion rate was 76% and the isobutylene selectivity was 99%.

Claims (1)

【特許請求の範囲】 1 1〜5重量%のSO4基を含有する酸化チタン
又は酸化ジルコニウムの存在下に第三級ブチルア
ルコールを気相にて100〜250℃の温度で加熱脱水
することを特徴とするイソブチレンの製造方法。 2 第三級ブチルアルコールと共にメチル第三級
ブチルエーテルを加熱脱水することを特徴とする
特許請求の範囲第1項記載のイソブチレンの製造
方法。
[Claims] 1. Dehydrating tertiary butyl alcohol by heating in the gas phase at a temperature of 100 to 250°C in the presence of titanium oxide or zirconium oxide containing 1 to 5% by weight of SO 4 groups. Characteristic method for producing isobutylene. 2. The method for producing isobutylene according to claim 1, which comprises heating and dehydrating methyl tertiary butyl ether together with tertiary butyl alcohol.
JP59118895A 1984-06-08 1984-06-08 Production of tertiary olefin Granted JPS6126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59118895A JPS6126A (en) 1984-06-08 1984-06-08 Production of tertiary olefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59118895A JPS6126A (en) 1984-06-08 1984-06-08 Production of tertiary olefin

Publications (2)

Publication Number Publication Date
JPS6126A JPS6126A (en) 1986-01-06
JPH0417166B2 true JPH0417166B2 (en) 1992-03-25

Family

ID=14747812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59118895A Granted JPS6126A (en) 1984-06-08 1984-06-08 Production of tertiary olefin

Country Status (1)

Country Link
JP (1) JPS6126A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE421568B (en) * 1980-05-28 1982-01-04 Optisk Forskning Inst DEVICE FOR DIVIDING A LIGHT BREAD INTO A MULTIPLE RADIATION OR vice versa
US4671928A (en) * 1984-04-26 1987-06-09 International Business Machines Corporation Method of controlling the sintering of metal particles
JP5849004B2 (en) * 2012-03-28 2016-01-27 花王株式会社 Olefin production method
JP5883328B2 (en) * 2012-03-28 2016-03-15 花王株式会社 Olefin production method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5046588A (en) * 1973-01-17 1975-04-25
JPS559011A (en) * 1978-07-05 1980-01-22 Asahi Chem Ind Co Ltd Preparation of isobutylene from aqueous solution of tert- butanol
JPS58151327A (en) * 1982-02-25 1983-09-08 New Japan Chem Co Ltd Manufacture of solid acid composition
JPS5913734A (en) * 1982-07-14 1984-01-24 Mitsui Petrochem Ind Ltd Preparation of tertiary olefin
JPS60132650A (en) * 1983-12-19 1985-07-15 Agency Of Ind Science & Technol Catalyst for synthesizing lower olefin and branched hydrocarbon

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5046588A (en) * 1973-01-17 1975-04-25
JPS559011A (en) * 1978-07-05 1980-01-22 Asahi Chem Ind Co Ltd Preparation of isobutylene from aqueous solution of tert- butanol
JPS58151327A (en) * 1982-02-25 1983-09-08 New Japan Chem Co Ltd Manufacture of solid acid composition
JPS5913734A (en) * 1982-07-14 1984-01-24 Mitsui Petrochem Ind Ltd Preparation of tertiary olefin
JPS60132650A (en) * 1983-12-19 1985-07-15 Agency Of Ind Science & Technol Catalyst for synthesizing lower olefin and branched hydrocarbon

Also Published As

Publication number Publication date
JPS6126A (en) 1986-01-06

Similar Documents

Publication Publication Date Title
Tao et al. Sustainable production of acrolein: Acidic binary metal oxide catalysts for gas-phase dehydration of glycerol
US4751248A (en) Preparation of alcohols from synthesis gas
US5753716A (en) Use of aluminum phosphate as the dehydration catalyst in single step dimethyl ether process
WO2015173780A1 (en) Process for the production of alkenols and use thereof for the production of 1,3-butadiene
CN109890782A (en) Produce the single-stage process of butadiene
JP2694177B2 (en) One-step synthetic method for methyl-t-butyl ether
EP0506428B1 (en) Synthesis of methyl t-butyl ether using Group IV oxides treated with sulfates or sulfuric acid
US20220395813A1 (en) Supported tantalum catalyst for the production of 1,3-butadiene
JP6091310B2 (en) Method for producing butadiene
EP0333077B1 (en) Method for one-step synthesis of methyl t-butyl ether
US5847223A (en) Process for the preparation of methyl mercaptan
Lopez et al. Heterogeneous catalysis of aldolisations on activated hydrotalcites
KR100618363B1 (en) Olefin hydration process
JPH0417166B2 (en)
Chumachenko et al. Activities of industrial alumina based catalysts in the dehydration of ethanol to ethylene
JP7262189B2 (en) Catalyst for producing conjugated diene, method for producing catalyst, and method for producing conjugated diene
Tleimat-Manzalji et al. Aerogels and xerogels for catalytic applications
KR102052708B1 (en) Catalyst for dehydration of glycerin, preparing method thereof and production method of acrolein using the catalyst
Sagou et al. Dehydrogenation of Methanol to Formaldehyde by ZnO–SiO2 and Zn2SiO4 Catalysts
KR100288611B1 (en) Modified solid acid catalyst and preparation of dimethyl ether using same
US9187395B2 (en) Method for preparing acrolein from glycerol
Senapati et al. Vapour phase synthesis of 2-methylpyridine and 4-methylpyridine over potassium salts of 12-tungstophosphoric acid
CN114433076B (en) Supported hydrogenolysis catalyst and preparation method and application thereof
JP2644336B2 (en) Method for producing dimethyl ether
JP2694178B2 (en) One-step synthetic method for methyl-t-butyl ether