JPH04170729A - Optical head - Google Patents

Optical head

Info

Publication number
JPH04170729A
JPH04170729A JP2295296A JP29529690A JPH04170729A JP H04170729 A JPH04170729 A JP H04170729A JP 2295296 A JP2295296 A JP 2295296A JP 29529690 A JP29529690 A JP 29529690A JP H04170729 A JPH04170729 A JP H04170729A
Authority
JP
Japan
Prior art keywords
transparent plate
optical
laser diode
light
beams
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2295296A
Other languages
Japanese (ja)
Inventor
Naoyuki Tamaru
田丸 直幸
Takanari Tanabe
隆也 田辺
Yoshimasa Katagiri
祥雅 片桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2295296A priority Critical patent/JPH04170729A/en
Publication of JPH04170729A publication Critical patent/JPH04170729A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Recording Or Reproduction (AREA)
  • Optical Head (AREA)

Abstract

PURPOSE:To obtain a focus error signal without using an external signal by a method wherein a light-path-length change means which changes the light path length of individual optical beams is installed between a multi-laser diode which radiate a plurality of optical beams and an optical beam irradiation object medium. CONSTITUTION:Optical beams radiated from individual beam emitting parts 11 to 13 at a three-beam laser diode 1 are incident on a stepped transparent plate 3. The individual optical beams which have been incident on the transparent plate 3 are passed through respectively different stepped faces 31 to 33, and their transmission light path lengths are changed. The individual optical beams which have been subjected to the changed action of the light path lengths by means of the transparent plate 3 are narrowed down to very small spots by using an object lens 4, and their images are formed on an optical recording medium 5. Reflected beams of light at the medium 5 are fed back to the light-emitting parts 11 to 13; composite resonance optical outputs on the basis of the feedback are detected by using a photodetector 2. Since the optical path lengths of the individual optical beams have been changed by using the transparent plate 3, their focal positions are different in the depth direction of the medium 5 at the individual optical beams.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光ビーム照射対象媒体の反射面からの反射光
とレーザダイオード出射光との光学的相互作用で情報の
授受を行う複合共振型光ヘッドに関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a complex resonant type laser diode that transmits and receives information through optical interaction between light reflected from a reflecting surface of a medium to be irradiated with a light beam and light emitted from a laser diode. This relates to optical heads.

(従来の技術) 複合共振型光ヘッドでは、従来、ウオブリング法と呼ば
れている方法を適用して、焦点信号検出と焦点制御が行
われていた。
(Prior Art) In a composite resonant optical head, focus signal detection and focus control have conventionally been performed by applying a method called a wobbling method.

即ち、ヘッドを焦点方向に外部信号で微小に加振させ、
その時の再生信号中の振幅変動の加振成分から焦点誤差
の方向と大きさを求めていた。−さらに、検出した焦点
信号をもとに、焦点制御用アクチュエータを駆動して、
レンズの位置制御等を行っていた。
In other words, the head is slightly vibrated in the direction of the focal point using an external signal,
The direction and magnitude of the focus error were determined from the excitation component of the amplitude fluctuation in the reproduced signal at that time. −Furthermore, based on the detected focus signal, drive the focus control actuator,
It controlled the position of the lens.

(発明が解決しようとする課題) しかし、上記方法を適用した複合共振型光ヘッドでは、
加振させるための機構、例えば圧電素子等が大きくなり
、光ヘッドの小形化を実現することが困難である。さら
に、外部の加振信号が制御帯域内にもれこみ、制御性能
を劣化させる等の欠点がある。
(Problems to be Solved by the Invention) However, in the composite resonant optical head to which the above method is applied,
The mechanism for excitation, such as a piezoelectric element, becomes large, making it difficult to downsize the optical head. Furthermore, there are drawbacks such as external excitation signals leaking into the control band and deteriorating control performance.

本発明は、かかる事情に鑑みてなされたものであり、そ
の目的は、簡易な構成で複数の光ビームの光路長を変化
させることができ、外部信号を用いることなく焦点制御
に必要な焦点誤差信号を高精度に得られる光ヘッドを提
供することにある。
The present invention has been made in view of the above circumstances, and an object thereof is to be able to change the optical path length of a plurality of light beams with a simple configuration, and to reduce the focus error necessary for focus control without using an external signal. An object of the present invention is to provide an optical head that can obtain signals with high precision.

(課題を解決するための手段) 上記目的を達成するため、本発明では、光ビーム照射対
象媒体に対して一の端面から複数の光ビームを出射する
マルチレーザダイオードと、その他端面側に配置された
複数の光検出器とからなる複合共振型光ヘッドにおいて
、マルチレーザダイオードと光ビーム照射対象媒体との
間に各光ビームの光路長を変更する光路長変更手段を配
置した。
(Means for Solving the Problems) In order to achieve the above object, the present invention includes a multi-laser diode that emits a plurality of light beams from one end face to a medium to be irradiated with a light beam, and a multi-laser diode that is arranged on the other end face side. In the composite resonant optical head consisting of a plurality of photodetectors, an optical path length changing means for changing the optical path length of each light beam is disposed between the multi-laser diode and the medium to be irradiated with the light beam.

(作 用) 本発明によれば、マルチレーザダイオードの一の端面か
ら出射した複数の先ビームは、光路長変更手段に入射さ
れる。光路長変更手段に入射した各光ビームは、光路長
変更手段を通過することにより、光路長変更手段の通過
光路長が、各光ビームによってそれぞれ異なるように変
化される。
(Function) According to the present invention, the plurality of forward beams emitted from one end face of the multi-laser diode are input to the optical path length changing means. Each of the light beams incident on the optical path length changing means passes through the optical path length changing means, so that the optical path length of the optical path length changing means is changed to be different for each light beam.

光路長変更手段において光路長の変更作用を受けた各光
ビームは、微小スポットとして光ビーム照射対象媒体上
に結像される。
Each light beam whose optical path length has been changed by the optical path length changing means is imaged as a minute spot on the medium to be irradiated with the light beam.

光ビーム照射対象媒体における反射光は、入射光路を逆
方向に辿り、マルチレーザダイオードの各ビーム発光部
に帰還され、これに基づく複合共振光出力が、他端面側
に配置された光検出器により検出される。
The reflected light from the medium to be irradiated with the light beam follows the incident optical path in the opposite direction and is returned to each beam emitting part of the multi-laser diode, and the composite resonant light output based on this is detected by the photodetector placed on the other end surface. Detected.

(実施例) 第1図は、本発明に係る複合共振型光ヘッドの第1の実
施例を示す構成図で、3ビームマルチレーザを用いた場
合の構成例を示している。
(Embodiment) FIG. 1 is a configuration diagram showing a first embodiment of a composite resonant optical head according to the present invention, and shows an example of the configuration when a three-beam multi-laser is used.

第1図において、1は3ビームレーザダイオードで、3
個のビーム発光部11.12.13を有している。2は
光検出器で、3ビームレーザダイオード1のビーム人出
射端面と対向する他端面に近接して配置されている。
In Fig. 1, 1 is a 3-beam laser diode;
It has three beam emitting sections 11, 12, and 13. Reference numeral 2 denotes a photodetector, which is disposed close to the other end face of the three-beam laser diode 1 that faces the beam output end face.

3は光路長変更手段としての段差付き透明板で、例えば
−面側に階段状の段差面31,32.33が形成された
ガラスからなり、平坦な他面が3ビームレーザダイオー
ド1の光ビーム人出射端面と対向し、かつ、段差面31
がビーム発光部11と、段差面32がビーム発光部12
と、段差面33がビーム発光部13とそれぞれ対向する
ように、3ビームレーザダイオードlに近接して配置さ
れており、3ビームレーザダイオード1の各ビーム発光
部11.12.13から出射された各光ビームの光路長
を変化させる。
Reference numeral 3 denotes a transparent plate with steps as an optical path length changing means, which is made of glass with step-like step surfaces 31, 32, and 33 formed on the negative side, and the other flat surface is used for the light beam of the three-beam laser diode 1. Opposed to the person exit end face and step surface 31
is the beam emitting part 11, and the stepped surface 32 is the beam emitting part 12.
The step surface 33 is arranged close to the 3-beam laser diode 1 so that it faces the beam-emitting section 13, respectively, and the beams emitted from the respective beam-emitting sections 11, 12, and 13 of the 3-beam laser diode 1 are The optical path length of each light beam is varied.

なお、段差付き透明板3が3ビームレーザダイオード1
に近接配置したのは、3ビームレーザダイオード1の出
射光ビームが広がってしまう前に通過するようにしたも
のである。従って、段差付き透明板3は、3ビームレー
ザダイオード1のビーム人出射端面に接して、即ち、接
着して配置しても勿論良い。また、段差付き透明板3は
、ガラスではなく、各種透明プラスチックでも適用可能
である。プラスチックの場合には、押出し成形やインジ
ェクション成形で作製される。
Note that the stepped transparent plate 3 is the 3-beam laser diode 1.
The three-beam laser diode 1 is placed close to the laser diode 1 so that the light beam emitted from the laser diode 1 passes through the laser diode 1 before spreading. Therefore, it goes without saying that the stepped transparent plate 3 may be disposed in contact with the beam output end face of the three-beam laser diode 1, that is, in an adhesive manner. Furthermore, the stepped transparent plate 3 may be made of various transparent plastics instead of glass. In the case of plastic, it is produced by extrusion molding or injection molding.

4は対物レンズで、段差付き透明板3を通過した3ビー
ムレーザダイオード1の各出射光ビームを微小スポット
に絞り、対物レンズ4の焦点面付近に配置された光記録
媒体5上に結像させる。
Reference numeral 4 denotes an objective lens, which narrows each emitted light beam of the three-beam laser diode 1 that has passed through the stepped transparent plate 3 into a minute spot, and forms an image on an optical recording medium 5 placed near the focal plane of the objective lens 4. .

このような構成において、3ビームレーザダイオード1
の各ビーム発光部11,12.13から出射された光ビ
ームは、そのビーム径が広がる前に段差付き透明板3に
入射する。
In such a configuration, a three-beam laser diode 1
The light beams emitted from each of the beam emitting sections 11, 12, and 13 enter the stepped transparent plate 3 before the beam diameter widens.

段差付き透明板3に入射した各光ビームは、それぞれ段
差付き透明板3の異なる段差面31゜32.33を通過
することになり、段差付き透明板3の通過光路長が、各
光ビームによってそれぞれ異なるように変化される。
Each light beam incident on the stepped transparent plate 3 passes through different stepped surfaces 31°, 32, and 33 of the stepped transparent plate 3, and the optical path length of the stepped transparent plate 3 is determined by each light beam. Each changes differently.

段差付き透明板3で光路長の変更作用を受けた各光ビー
ムは、次に、対物レンズ4に入射し、ここで微小スポッ
トに絞られ、光記録媒体5上に結像される。
Each light beam whose optical path length has been changed by the stepped transparent plate 3 then enters the objective lens 4, where it is focused into a minute spot and imaged onto the optical recording medium 5.

光記録媒体5における反射光は、入射光路を逆方向に辿
り、3ビームレーザダイオード1の各ビーム発光部11
,12.13 (活性層)に帰還され、これに基づく複
合共振光出力が、3ビームレーザダイオード1の他端面
に配置された光検出器2により検出される。
The reflected light on the optical recording medium 5 follows the incident optical path in the opposite direction, and passes through each beam emitting section 11 of the three-beam laser diode 1.
, 12.13 (active layer), and the composite resonance optical output based thereon is detected by the photodetector 2 disposed on the other end surface of the three-beam laser diode 1.

このとき、各光ビームは、段差付き透明板3により光路
長が変化されているため、焦点位置が光ビーム毎に光記
憶媒体5の深さ方向で異なる。
At this time, since the optical path length of each light beam is changed by the stepped transparent plate 3, the focal position differs for each light beam in the depth direction of the optical storage medium 5.

第2図は、第1図の光ヘッドにおける各出射光ビームの
デフォーカス特性例を示す図である。第2図において、
横軸は焦点方向の距離を表し、図中右側にいくほど光記
録媒体と光ヘッドとの距離が遠ざかることを意味する。
FIG. 2 is a diagram showing an example of defocusing characteristics of each output light beam in the optical head of FIG. 1. In Figure 2,
The horizontal axis represents the distance in the focal direction, meaning that the distance between the optical recording medium and the optical head becomes farther toward the right in the figure.

縦軸は3ビームレーザダイオード1の他端面側に配置し
た光検出器2で検出したレーザパワーを表している。ま
た、#1、#2.#3はビーム発光部11.12.13
による各光ビームの番号、A、B、Cは光記録媒体5の
位置であり、Aは光記録媒体5が光ヘッドに近い場合を
、Cは遠い場合を示している。
The vertical axis represents the laser power detected by the photodetector 2 placed on the other end surface side of the three-beam laser diode 1. Also, #1, #2. #3 is beam emitter 11.12.13
The numbers A, B, and C of each light beam are the positions of the optical recording medium 5, where A indicates that the optical recording medium 5 is close to the optical head, and C indicates that it is far away.

上記したように、各光ビーム毎に光路長が異なるため、
各光ビームのデフォーカス特性曲線は一致せず、距離方
向に平行にずれている。
As mentioned above, since the optical path length is different for each light beam,
The defocus characteristic curves of the respective light beams do not match and are shifted parallel to the distance direction.

例えば、光記録媒体5がAの位置にある場合、ビーム#
3と#1とのレーザパワーの差はP3A−PlAとなり
、極性は負である。一方、光記録媒体5が遠方に移動し
、Cの位置にあると、レーザパワーの差はP3CPIC
となり、極性は正になり、大きさはほぼ同様である。
For example, when the optical recording medium 5 is at position A, beam #
The difference in laser power between #3 and #1 is P3A-PlA, and the polarity is negative. On the other hand, when the optical recording medium 5 moves far away and is at position C, the difference in laser power is P3CPIC
Therefore, the polarity is positive and the sizes are almost the same.

このレーザパワーの差を各位置で求めると、第3図に示
すようなS字形の焦点検出特性が得られる。8字の中央
は#2の光ビームが合焦点にある場合である。即ち、光
ビーム#3と光ビーム#1とのレーザパワーの差が零に
なるように、ヘッドを制御すれば中央の光ビーム(#2
)は自ずから合焦点位置に位置決めされる。この制御に
ついては後述する。
If this difference in laser power is determined at each position, an S-shaped focus detection characteristic as shown in FIG. 3 will be obtained. The center of the figure 8 is the case where the #2 light beam is at the focused point. That is, if the head is controlled so that the difference in laser power between light beam #3 and light beam #1 becomes zero, the central light beam (#2
) is automatically positioned at the in-focus position. This control will be described later.

第2図の各光ビームによるデフォーカス特性曲線のずれ
量はレンズ系の倍率、開口数等により変化するが、通常
の光デイスク用レンズの使用では数十μmの段差付き透
明板3が必要である(第4図参照)。
The amount of deviation of the defocus characteristic curve due to each light beam in Figure 2 varies depending on the magnification, numerical aperture, etc. of the lens system, but when using a normal optical disk lens, a transparent plate 3 with a step of several tens of μm is required. Yes (see Figure 4).

第4図は、透明板の厚さと結像位置との関係の計算結果
の一例を示すグラフである。この計算では、焦点距離f
を4關、透明板3の屈折率nを1.5としている。第4
図の横軸は透明板の厚さを、縦軸は結像位置の変化量(
デフォーカス量)をそれぞれ示している。
FIG. 4 is a graph showing an example of the calculation result of the relationship between the thickness of the transparent plate and the imaging position. In this calculation, the focal length f
4, and the refractive index n of the transparent plate 3 is 1.5. Fourth
The horizontal axis of the figure represents the thickness of the transparent plate, and the vertical axis represents the amount of change in the imaging position (
defocus amount).

第4図から分かるように、厚さ30μmの透明板3によ
り約10μmのデフォーカス量が得られる。
As can be seen from FIG. 4, a defocus amount of approximately 10 μm can be obtained by the transparent plate 3 having a thickness of 30 μm.

10μm程度のデフォーカス量で、第2図に示す特性曲
線が十分に分離されるため、透明板3の段差量は30μ
m程度あれば良い。なお、この計算では透明板の屈折率
nを1.5としているが、さらに大きい屈折率の材料を
使用すれば、段差量は小さくなる。
Since the characteristic curve shown in FIG. 2 is sufficiently separated with a defocus amount of about 10 μm, the step amount of the transparent plate 3 is 30 μm.
It is sufficient if it is about m. Note that in this calculation, the refractive index n of the transparent plate is set to 1.5, but if a material with a higher refractive index is used, the amount of step difference will be reduced.

また、光ビーム#3と光ビーム#1とのレーザパワーの
差が零になるように、ヘッドを制御すれば中央の光ビー
ム(#2)は自ずから合焦点位置に位置決めされること
について既に述べたが、次に、この焦点制御系の構成例
を第5図により説明する。
In addition, it has already been mentioned that if the head is controlled so that the difference in laser power between light beam #3 and light beam #1 becomes zero, the central light beam (#2) will automatically be positioned at the focused position. However, next, an example of the configuration of this focus control system will be explained with reference to FIG.

第5図は、第1図の光ヘッドの焦点制御系の一例を示す
構成図である。第5図において、100は光ビーム#1
に基づく光検出器2の光検出部21による再生信号R8
1を増幅する再生信号増幅器、101は光ビーム#3に
基づく光検出部23による再生信号R83を増幅する再
生信号増幅器、102は増幅された再生信号R81と再
生信号RS 3とのレベル差を得る減算回路、103は
減算回路102の出力信号DFを増幅し光ヘッドI(D
の焦点アクチュエータ104に入力する制御増幅器であ
る。
FIG. 5 is a configuration diagram showing an example of a focus control system of the optical head shown in FIG. 1. In Fig. 5, 100 is light beam #1
Reproduction signal R8 by the photodetector 21 of the photodetector 2 based on
101 is a reproduced signal amplifier that amplifies the reproduced signal R83 by the photodetector 23 based on the light beam #3, and 102 obtains the level difference between the amplified reproduced signal R81 and the reproduced signal RS3. A subtraction circuit 103 amplifies the output signal DF of the subtraction circuit 102 and outputs the optical head I (D
is a control amplifier input to the focus actuator 104 of .

このような構成において、光記録媒体(第5図には図示
せず)における反射光は、対物レンズ4、段差付き透明
板3を介し、3ビームレーザダイオード1の各ビーム発
光部11.12.13 (活性層)に帰還され、これに
基づく複合共振光出力が、3ビームレーザダイオード1
の他端面に配置された光検出部21.22.23により
検出される。
In such a configuration, reflected light from an optical recording medium (not shown in FIG. 5) passes through the objective lens 4 and the stepped transparent plate 3 to each beam emitting section 11, 12, . 13 (active layer), and the composite resonance optical output based on this is fed back to the 3-beam laser diode 1
It is detected by the photodetecting sections 21, 22, and 23 arranged on the other end surface.

光検出部21による再生信号R81は再生信号増幅器1
00で、また、光検出部23による再生信号R83は再
生信号増幅器101で増幅作用を受けた後、減算回路1
02に入力される。
The reproduced signal R81 from the photodetector 21 is transmitted to the reproduced signal amplifier 1.
00, and the reproduced signal R83 from the photodetector 23 is amplified by the reproduced signal amplifier 101 and then sent to the subtraction circuit 1.
02 is input.

減算回路102では、増幅作用を受けた再再生信号R8
1とR83の入力の差が取られる。この差は、焦点誤差
量とほぼ比例関係にある。
In the subtraction circuit 102, the replay signal R8 which has been amplified is
The difference between the inputs of 1 and R83 is taken. This difference is approximately proportional to the focus error amount.

減算回路102の出力信号DFは、制御増幅器103で
増幅され、焦点アクチュエータ104に入力される。こ
れにより、光ヘッドHDが駆動され、光ヘッドHDと光
記録媒体5とが常に一定の距離関係に保持される。この
時、中央の光ビーム#2は合焦点の位置にあり、データ
の記録再生が良好に行える。なお、ここで制御増幅器1
03にフィルタを設けても良い。
The output signal DF of the subtraction circuit 102 is amplified by the control amplifier 103 and input to the focus actuator 104. As a result, the optical head HD is driven, and the optical head HD and the optical recording medium 5 are always kept in a constant distance relationship. At this time, the central light beam #2 is at the focused position, and data can be recorded and reproduced satisfactorily. In addition, here, the control amplifier 1
03 may be provided with a filter.

以上説明したように、本第1の実施例によれば、3ビー
ムレーザダイオード1と光記録媒体5との間に、段差付
き透明板3を配置したので、簡易な構成で複数の光ビー
ムの光路長を変化させることができ、外部信号を用いる
ことなく、2光ビームの出力レベル差を取ることにより
、焦点制御に必要な焦点誤差信号を容易に、かつ、高精
度に得ることができる。
As explained above, according to the first embodiment, since the stepped transparent plate 3 is disposed between the three-beam laser diode 1 and the optical recording medium 5, it is possible to generate multiple light beams with a simple configuration. By being able to change the optical path length and taking the output level difference between the two light beams without using an external signal, it is possible to easily and accurately obtain a focus error signal necessary for focus control.

第6図は、本発明に係る複合共振型光ヘッドの第2の実
施例を示す構成図である。
FIG. 6 is a configuration diagram showing a second embodiment of the composite resonant optical head according to the present invention.

本第2の実施例が前記第1の実施例と異なる点は、光路
長変更手段として段差付き透明板の代わりに、くさび形
透明板6を用いたことにある。
The second embodiment differs from the first embodiment in that a wedge-shaped transparent plate 6 is used as the optical path length changing means instead of the stepped transparent plate.

くさび形透明板6を可能な限り3ビームレーザダイオー
ド1に接近させて配置すると、ビーム径が微小となり、
第1図の実施例と同様に出射光ビームの光路長を変化さ
せることができ、前記第1の実施例と同様の効果を得る
ことができる。
By arranging the wedge-shaped transparent plate 6 as close to the three-beam laser diode 1 as possible, the beam diameter becomes minute;
As in the embodiment shown in FIG. 1, the optical path length of the emitted light beam can be changed, and the same effects as in the first embodiment can be obtained.

第7図は、本発明に係る光路長変更手段の他の実施例を
示す図である。
FIG. 7 is a diagram showing another embodiment of the optical path length changing means according to the present invention.

同図の(a)に示す例は、透明で長さの異なった立方体
、円柱、シリンダレンズ等からなる透明ブロック71.
72.73を各光ビームに対応させて並設したものであ
る。
In the example shown in (a) of the same figure, a transparent block 71.
72 and 73 are arranged in parallel corresponding to each light beam.

また、同図の(b)に示す例は、屈折率がnlの段差付
き透明板81と屈折率がn2の段差付き透明板82とを
組み合わせたものである。なお、両段差付き透明板81
と82とは、互いに接着しても、所定間隔をおいて配置
しても良い。
In addition, the example shown in FIG. 6B is a combination of a stepped transparent plate 81 with a refractive index of nl and a stepped transparent plate 82 with a refractive index of n2. In addition, the transparent plate 81 with both steps
and 82 may be adhered to each other or may be arranged at a predetermined interval.

また、同図の(c)に示す例は、透明板90上に透明層
91,92.93を順次積層したものである。各透明層
91.92.93は蒸着、スパッタあるいは結晶成長で
形成される。このように透明板は3本のビームの光路長
を変化できるものであれば、種々の態様が可能である。
In the example shown in FIG. 9C, transparent layers 91, 92, and 93 are sequentially laminated on a transparent plate 90. Each transparent layer 91, 92, 93 is formed by vapor deposition, sputtering or crystal growth. In this way, the transparent plate can have various forms as long as it can change the optical path lengths of the three beams.

光路長変更手段としての透明板の配置に関して、LDサ
ブマウントの上にレーザダイオードのチップと透明板を
配置すればよいことは言うまでもない。レーザダイオー
ドのチップはサブマウントを介して配置しても良い。
Regarding the placement of the transparent plate as the optical path length changing means, it goes without saying that the laser diode chip and the transparent plate may be placed on the LD submount. The laser diode chip may be placed via a submount.

なお、上記各実施例では、ビーム数として3を例に説明
したが、これに限定されるものではなく、2ビームでも
4ビ一ム以上でもほぼ同様の効果を得ることができる。
In each of the above embodiments, the number of beams is 3, but the invention is not limited to this, and substantially the same effect can be obtained with 2 beams, 4 beams or more.

また、光路長変更手段としての透明板を、3ビームレー
ザダイオードに近接して配置したが、これも限定される
ものではなく、例えば、光記録媒体5と対物レンズ4の
間に配置しても勿論良い。
In addition, although the transparent plate serving as the optical path length changing means is placed close to the three-beam laser diode, this is not limited to this. For example, the transparent plate may be placed between the optical recording medium 5 and the objective lens 4. Of course it's good.

(発明の効果) 以上説明したように、本発明によれば、小形で、かつ、
簡易な構成で複数ビームの光路長を変化させることがで
き、複数ビームの出力レベルの差をとることにより、焦
点誤差信号が容易に、かつ、高精度に得られる。
(Effects of the Invention) As explained above, according to the present invention, it is small and
The optical path length of the plurality of beams can be changed with a simple configuration, and a focus error signal can be easily obtained with high precision by taking the difference in the output level of the plurality of beams.

また、小形、軽量な光ヘッドが実現できる。Furthermore, a small and lightweight optical head can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る複合共振型光ヘッドの第1の実施
例を示す構成図、第2図は第1図の光ヘッドのデフォー
カス特性例を示す図、第3図は第1図の光ヘッドの焦点
検出特性例を示す図、第4図は透明板の厚さと結像位置
との関係の計算結果の一例を示すグラフ、第5図は第1
図の光ヘッドにおける焦点制御系の構成例を示す図、第
6図は本発明に係る複合共振型光ヘッドの第2の実施例
を示す構成図、第7図は本発明に係る光路長変更手段の
他の実施例を示す図である。 図中、1・・・3ビームレーザダイオード、11゜12
.13・・・3ビームレーザダイオードのビーム発光部
、2・・・光検出器、21.22.23・・・光検出部
、3・・・段差付き透明板、31,32,33・・・段
差面、4・・・対物レンズ、5・・・光記録媒体、6・
・・(さび形透明板、71〜73・・・透明ブロック、
81.82・・・屈折率の異なる段差付き透明板、90
・・・透明板、91〜93・・・透明層、100 、1
01・・・再生信号増幅器、102・・・減算回路、1
03・・・制御増幅器、104・・・焦点アクチュエー
タ。 特許出願人  日本電信電話株式会社 代理人弁理士  吉  1) 精  孝第1図 第3図 透明板の厚さと結像筐筒との関係?示すグラフ第4図 光ヘアド HD 6くさび形透明板 本発明の第2の実施例2示す構成図 第6図 ;′− (a)           ( 光路長変更手段の他の1 第7図 90透明板 紀囲例
FIG. 1 is a block diagram showing a first embodiment of a composite resonant optical head according to the present invention, FIG. 2 is a diagram showing an example of defocusing characteristics of the optical head of FIG. 1, and FIG. Fig. 4 is a graph showing an example of the calculation result of the relationship between the thickness of the transparent plate and the imaging position, and Fig. 5 is a graph showing an example of the focus detection characteristics of the optical head.
FIG. 6 is a configuration diagram showing a second embodiment of the composite resonant optical head according to the present invention, and FIG. 7 is a diagram showing an example of the configuration of the focus control system in the optical head shown in FIG. It is a figure which shows another Example of a means. In the figure, 1...3 beam laser diode, 11°12
.. 13... Beam emitting part of 3-beam laser diode, 2... Photodetector, 21.22.23... Photodetecting part, 3... Transparent plate with step, 31, 32, 33... Stepped surface, 4... Objective lens, 5... Optical recording medium, 6.
...(rust-shaped transparent plate, 71-73...transparent block,
81.82...Stepped transparent plate with different refractive index, 90
...Transparent plate, 91-93...Transparent layer, 100, 1
01... Reproduction signal amplifier, 102... Subtraction circuit, 1
03... Control amplifier, 104... Focus actuator. Patent Applicant: Nippon Telegraph and Telephone Corporation Patent Attorney Yoshi 1) Takashi Sei Figure 1 Figure 3 Relationship between the thickness of the transparent plate and the imaging housing? Graphs shown in Fig. 4 Optical Hair HD 6 Wedge-shaped Transparent Plate Second Embodiment of the Invention Second Embodiment of the Present Invention Fig. 6; Example

Claims (1)

【特許請求の範囲】 光ビーム照射対象媒体に対して一の端面から複数の光ビ
ームを出射するマルチレーザダイオードと、その他端面
側に配置された複数の光検出器とからなる複合共振型光
ヘッドにおいて、 マルチレーザダイオードと光ビーム照射対象媒体との間
に各光ビームの光路長を変更する光路長変更手段を配置
した ことを特徴とする光ヘッド。
[Claims] A composite resonant optical head comprising a multi-laser diode that emits a plurality of light beams from one end face to a medium to be irradiated with a light beam, and a plurality of photodetectors arranged on the other end face side. An optical head characterized in that optical path length changing means for changing the optical path length of each light beam is disposed between the multi-laser diode and the medium to be irradiated with the light beam.
JP2295296A 1990-11-02 1990-11-02 Optical head Pending JPH04170729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2295296A JPH04170729A (en) 1990-11-02 1990-11-02 Optical head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2295296A JPH04170729A (en) 1990-11-02 1990-11-02 Optical head

Publications (1)

Publication Number Publication Date
JPH04170729A true JPH04170729A (en) 1992-06-18

Family

ID=17818772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2295296A Pending JPH04170729A (en) 1990-11-02 1990-11-02 Optical head

Country Status (1)

Country Link
JP (1) JPH04170729A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001038923A1 (en) * 1999-11-23 2001-05-31 Nanovation Technologies, Inc. Optical mach-zehnder switch with movable phase shifter
WO2001038925A1 (en) * 1999-11-23 2001-05-31 Nanovation Technologies, Inc. Waveguide optical phase shifter
WO2001038922A3 (en) * 1999-11-23 2002-09-12 Nanovation Tech Inc Analog optical switch using an integrated mach-zehnder interferometer having a movable phase shifter
WO2001065300A3 (en) * 2000-03-03 2003-01-16 Onix Microsystems Inc Optical switch having equalized beam spreading in all connections
JP2009238371A (en) * 2009-07-17 2009-10-15 Sharp Corp Method and unit for optical recording and reproduction

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001038923A1 (en) * 1999-11-23 2001-05-31 Nanovation Technologies, Inc. Optical mach-zehnder switch with movable phase shifter
WO2001038925A1 (en) * 1999-11-23 2001-05-31 Nanovation Technologies, Inc. Waveguide optical phase shifter
WO2001038922A3 (en) * 1999-11-23 2002-09-12 Nanovation Tech Inc Analog optical switch using an integrated mach-zehnder interferometer having a movable phase shifter
WO2001065300A3 (en) * 2000-03-03 2003-01-16 Onix Microsystems Inc Optical switch having equalized beam spreading in all connections
JP2009238371A (en) * 2009-07-17 2009-10-15 Sharp Corp Method and unit for optical recording and reproduction

Similar Documents

Publication Publication Date Title
JP3638194B2 (en) Optical pickup device
JPH0581884B2 (en)
EP1096483B1 (en) Optical pickup
JP2003123307A (en) Optical head and disk device
JP2682087B2 (en) Optical pickup device
US6009066A (en) Optical pickup of two different wavelength laser sources with an objective lens having an annular shielding region
JP2633535B2 (en) Optical pickup device
JPH04170729A (en) Optical head
EP1191522B1 (en) Optical pickup apparatus
US6912234B2 (en) Optical pickup apparatus and laser diode chip
JPH0894938A (en) Cofocal microscope and optical recording and reproducing device
KR100882062B1 (en) Objective lens for optical pickup apparatus, optical pickup apparatus and method of designing optical element
JP3860953B2 (en) Optical head device
JP2002100068A (en) Optical pickup device
JP2002032928A (en) Optical head device
JPS60234247A (en) Optical head
KR100641088B1 (en) Optical Pickup Apparatus
JP2585761B2 (en) Light head
KR100464427B1 (en) Optical pickup and optical recording and/or reproducing apparatus employing it
JPH07153111A (en) Optical head
JPS6371946A (en) Optical information recording and reproducing device
US20110044155A1 (en) Optical pickup device
JP2709090B2 (en) Waveguide type optical head
JPH06119654A (en) Optical pickup
JP2501097B2 (en) Optical head device