JPH04166076A - Photosynthesis reactor system - Google Patents

Photosynthesis reactor system

Info

Publication number
JPH04166076A
JPH04166076A JP28985890A JP28985890A JPH04166076A JP H04166076 A JPH04166076 A JP H04166076A JP 28985890 A JP28985890 A JP 28985890A JP 28985890 A JP28985890 A JP 28985890A JP H04166076 A JPH04166076 A JP H04166076A
Authority
JP
Japan
Prior art keywords
light
photosynthetic
photosynthesis
sunlight
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28985890A
Other languages
Japanese (ja)
Other versions
JP2646834B2 (en
Inventor
Satoshi Nishikata
西方 聡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP28985890A priority Critical patent/JP2646834B2/en
Publication of JPH04166076A publication Critical patent/JPH04166076A/en
Application granted granted Critical
Publication of JP2646834B2 publication Critical patent/JP2646834B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M31/00Means for providing, directing, scattering or concentrating light
    • C12M31/08Means for providing, directing, scattering or concentrating light by conducting or reflecting elements located inside the reactor or in its structure
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Sustainable Development (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Molecular Biology (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Cultivation Of Plants (AREA)
  • Cultivation Of Seaweed (AREA)

Abstract

PURPOSE:To provide the subject system capable of photosynthesis by gathering the sun-light using a condenser, introducing the gathered sun-light through a light-guide unit to a photosynthesis reactor and intermittently applying the light to photosynthetic microorganisms, capable of preventing accumulation of excessive intermediate products having an inhibitory effect on dark reactions and having an improved photosynthetic rate. CONSTITUTION:In a photosynthesis reactor system for carrying out photosynthesis utilizing photosynthetic microorganisms by gathering the sun-light using a sun-light condenser 2, introducing the gathered sun-light 1 through a light-guide unit 3 to a photosynthesis reactor 5 and applying the sun-light through translucent rod units 4a and 4b to the photosynthetic microorganisms in the photosynthesis reactor 5, accumulation of NADPH, a photosynthesis intermediate having, in case of presence in excess, an inhibitory effect on following dark reactions can be prevented by chopping the sun-light introduced through the light-guide unit 3 using a chopping unit 11 and intermittently applying the sun-light to the photosynthetic microorganisms in the photosynthesis reactor 5. The photosynthetic rate can be improved thereby.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、太陽光を集光して光合成リアクターに導き
、光合成リアクター内で光合成微生物により光合成を行
なわせる光合成リアクタニジステムに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a photosynthetic reactanidistem in which sunlight is concentrated and guided to a photosynthetic reactor, and photosynthetic microorganisms perform photosynthesis within the photosynthetic reactor.

〔従来の技術〕[Conventional technology]

地球温暖化の主原因とされる炭酸ガス(CO□)が、発
電所、工場、自動車などから大量に排出されており、大
気からCO□を除去、固定化する技術の確立が緊急の課
題になっている。CO2を固定化する有力な手段の1つ
として、光合成微生物としての藻類あるいは光合成細菌
の光合成能力を利用した光合成リアクターが考えられる
。光合成リアクタ−は自然界で行なわれている光合成を
最適条件下にコントロールすることによって、環境条件
等に影響されずに光合成微生物の光合成能力を最大限に
発揮させてCO□を効率よく固定化する人工的システム
であり、従来第6図に示すようなシステムが知られてい
る 第6図は従来技術による光合成リアクターシステムの構
成の概要を示すブロック図である。第6図において2は
太陽光1を集光する太陽光集光装置、3は太陽光集光装
置2で集光した太陽光1を導<光ファイバー、レンズ系
などの光案内手段、4aおよび4bは太陽光1を光合成
リアクター5内に供給するための石英製ロッドなどの透
光性棒体、6は光合成リアクター5内の光合成微生物の
増殖に必要な水と、リン、鉄分などの無機栄養塩の供給
装置、7は光合成リアクター5に供給されるCO,,8
は光合成リアクター5で生成された有用物質の回収装置
、9は回収装置8で回収された有用物質、10は光合成
で生成された酸素である。
Carbon dioxide (CO□), the main cause of global warming, is emitted in large quantities from power plants, factories, automobiles, etc., and the establishment of technology to remove and fix CO□ from the atmosphere has become an urgent issue. It has become. One possible means of fixing CO2 is a photosynthetic reactor that utilizes the photosynthetic ability of algae or photosynthetic bacteria as photosynthetic microorganisms. A photosynthesis reactor is an artificial technology that maximizes the photosynthetic ability of photosynthetic microorganisms and efficiently fixes CO□ without being affected by environmental conditions by controlling the photosynthesis that occurs in nature under optimal conditions. FIG. 6 is a block diagram showing an outline of the configuration of a photosynthetic reactor system according to the prior art. In FIG. 6, 2 is a solar light concentrating device for concentrating sunlight 1, 3 is a light guide means such as an optical fiber or a lens system, 4a and 4b is for guiding the sunlight 1 collected by the solar concentrator 2; 6 is a translucent rod such as a quartz rod for supplying sunlight 1 into the photosynthetic reactor 5, and 6 is water necessary for the growth of photosynthetic microorganisms in the photosynthetic reactor 5, and inorganic nutrients such as phosphorus and iron. supply device, 7 is CO supplied to the photosynthesis reactor 5, , 8
9 is a recovery device for useful substances produced in the photosynthetic reactor 5, 9 is a useful substance recovered in the recovery device 8, and 10 is oxygen produced by photosynthesis.

このようなシステムで光合成リアクター内の光合成微生
物は、光合成に必要な太陽光、水、CO□さらには無機
塩の供給を受けて光合成を行なう。
In such a system, photosynthetic microorganisms in the photosynthetic reactor perform photosynthesis in response to the supply of sunlight, water, CO□, and even inorganic salts necessary for photosynthesis.

光合成の結果として酸素を発生しつつ光合成微生物の増
殖が行なわれる。増殖された光合成微生物は、菌体蛋白
として食用、飼料用に利用されるほか、光合成条件によ
っては、水素、アミノ酸など゛も有用物質として回収さ
れる。
Photosynthetic microorganisms grow while producing oxygen as a result of photosynthesis. The grown photosynthetic microorganisms are used as bacterial cell proteins for food and feed, and depending on the photosynthetic conditions, hydrogen, amino acids, etc. can also be recovered as useful substances.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

光合成微生物の増殖速度に影響を与える因子としては、
水が存在することと、水温、CO□濃度、太陽光量、無
機栄養塩濃度などがある。この内太陽光量は自然条件に
より定まってしまうものであるから、これが従来システ
ムにおいて有用物質生成速度の増大にとり大きな制約条
件となっていた。
Factors that affect the growth rate of photosynthetic microorganisms include:
These include the presence of water, water temperature, CO□ concentration, amount of sunlight, and inorganic nutrient concentration. Of these, the amount of sunlight is determined by natural conditions, and this has been a major constraint for increasing the production rate of useful substances in conventional systems.

すなわち、光合成リアクターなどの場合は、リアクター
の深さを深くすることにより設置面積の増大を要するこ
となく有用物質の生成速度を増大させることができるが
、太陽光量の場合はエネルギー密度の上限が定まってい
るので、生成速度の増大のためには太陽光集光装置の受
光面積を広げなければ達成することができない。この結
果広大な受光面積が必要になるので問題となっていた。
In other words, in the case of a photosynthetic reactor, etc., the production rate of useful substances can be increased by increasing the depth of the reactor without requiring an increase in the installation area, but in the case of sunlight, there is an upper limit to the energy density. Therefore, increasing the generation rate cannot be achieved unless the light-receiving area of the solar light concentrator is expanded. As a result, a large light-receiving area is required, which poses a problem.

本発明は上記の従来技術の問題点に鑑みなされたもので
あり、その目的は太陽光集光装置の所要受光面積を狭小
化することができる光合成リアクターシステムを提供す
ることにある。
The present invention was made in view of the problems of the prior art described above, and its purpose is to provide a photosynthesis reactor system that can reduce the required light receiving area of a solar light concentrator.

〔課題を解決するための手段〕[Means to solve the problem]

本発明では、前述の目的は、 1)太陽光集光装置で集光した太陽光を光案内装置で光
合成リアクターに導き、この光合成リアクター内で前記
太陽光を光合成微生物に照射し、この光合成微生物によ
り光合成を行なわせる光合成リアクターシステムにおい
て、光合成リアクター内での光合成微生物への太陽光の
照射を断続的に行なうこと、 2)前記第1項に記載した手段において、光案内手段で
導いてきた太陽光をチョッピング装置によりチョッピン
グすることで、光合成リアクター内の光合成微生物への
前記太陽光の照射を断続的に行なうこと、 3)前記第1項に記載した手段において、光案内手段で
導いてきた太陽光を光路切換装置により伝達経路を切換
えることで、光合成リアクター内の光合成微生物に空間
的に順次切換えて照射すること、4)前記第1項に記載
した手段において、光案内手段で導いてきた太陽光を、
光路切換手段により伝達経路を切換えて複数の光合成リ
アクターに順次切換伝達することで、前記光合成リアク
ター内の光合成微生物への前記太陽光の照射を断続的に
行なうこと、で達成される。
In the present invention, the above-mentioned objects are as follows: 1) Guide sunlight collected by a sunlight concentrator to a photosynthetic reactor using a light guiding device, irradiate the sunlight to a photosynthetic microorganism within the photosynthetic reactor, and 2) In the means described in item 1 above, in a photosynthetic reactor system that allows photosynthesis to be carried out by irradiating sunlight on photosynthetic microorganisms in the photosynthetic reactor, 3) intermittently irradiating the photosynthetic microorganisms in the photosynthetic reactor with the sunlight by chopping the light with a chopping device; 4) In the means described in item 1 above, the sunlight guided by the light guiding means is the light,
This is achieved by intermittently irradiating the photosynthetic microorganisms in the photosynthetic reactor with the sunlight by switching the transmission path using an optical path switching means and sequentially switching and transmitting the light to a plurality of photosynthetic reactors.

〔作用〕[Effect]

本発明は光合成微生物に光を断続的に照射すると光合成
により得られる有用物質の生成速度(光合成速度)が増
大するという現象に基づきなされたちのであり、断続的
な光が光合成速度を増大させる理由は次記の通りである
The present invention was made based on the phenomenon that when photosynthetic microorganisms are irradiated with light intermittently, the production rate of useful substances obtained through photosynthesis (photosynthetic rate) increases.The reason why intermittent light increases the photosynthetic rate is The details are as follows.

光合成とは光のエネルギーによりCO□と水から有機物
を合成する反応であるが、光によりNADヌ PHにコチンアミドアデニンジ先タレオチドリン酸)と
ATP  (アデノシン3リン酸)の合成を行なう明反
応と、これに続<NADPHとATPを用いてC(hの
還元固定化(糖、炭水化物の合成)を行なう光を必要と
しない暗反応とから成立っている。ところでこの連続し
た反応の中間生成物であるNADPHは、後続する暗反
応で消費される以上に明反応で性成を行なうと暗反応に
阻害を与えることが知られている。しかし光を断続的に
照射することで暗反応で消費される分のNADPHを明
反応で生成するようにすれば、NADPHは蓄積されな
いから光合成は阻害されず、光合成速度が増大するので
ある。(参考文献;光合成の世界、岩波洋造著、講談社
刊) 本発明では、太陽光集光装置で集光され光案内手段で案
内されてきた太陽光を、光合成リアクターに入る前に、
チョッピング装置あるいは光路切換装置等により断続さ
せて光合成微生物を照射するようにするものである。
Photosynthesis is a reaction that uses the energy of light to synthesize organic substances from CO This is followed by a dark reaction that does not require light and uses NADPH and ATP to reduce and fix C (synthesis of sugars and carbohydrates). By the way, the intermediate products of this continuous reaction It is known that NADPH inhibits the dark reaction if it is formed in the light reaction more than it is consumed in the subsequent dark reaction.However, by intermittent irradiation with light, it is consumed in the dark reaction. If the amount of NADPH that is consumed is generated by the light reaction, NADPH will not be accumulated, so photosynthesis will not be inhibited and the rate of photosynthesis will increase. (Reference: The World of Photosynthesis, written by Yozo Iwanami, published by Kodansha) In the present invention, before entering the photosynthesis reactor, the sunlight that has been collected by the sunlight concentrator and guided by the light guide means is
The photosynthetic microorganisms are irradiated intermittently using a chopping device or an optical path switching device.

〔実施例〕〔Example〕

以下本発明の実施例を、図面を参照して詳細に説明する
。第1図は本発明の一実施例による光合成りアクタ−シ
ステムの構成の概要を示すブロック図である。第2図は
第1図に示したチョッピング装置の斜視図である。第1
図および第2図において第6図の従来例と同一部分には
同じ符号を付し、その説明を省略する。11は太陽光集
光装置2と光合成リアクター5の中間に介装されたチョ
ッピング装置である。チョッピング装置11は光不透過
性材料製の扇形状の回転円板11aと、回転円板11a
を駆動する電動1!llbとから構成される。3にはチ
ョッピング装置11でチョッピングされた太陽光を光合
成リアクター5に導くための光ファイバー8 レンズ系
などの光案内手段であり、所定の間隙12を隔てて光案
内手段3の末端と対向しており、かつその経路が光案内
手段3の太陽光1の経路と一致するよう配置されている
。チョッピング装置11の回転円板11aは間隙12中
に介在されるよう配置され、回転円板11aが回転する
ことで光案内手段3中を導かれてきた太陽光1を断続す
る。よってチョッピング装置11を通過した太陽光1は
断続光となって光案内手段3aを経由して光合成リアク
ター5に導かれる。
Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a block diagram showing an outline of the configuration of a photosynthetic actor system according to an embodiment of the present invention. FIG. 2 is a perspective view of the chopping device shown in FIG. 1. 1st
In the drawings and FIG. 2, the same parts as those in the conventional example shown in FIG. 6 are given the same reference numerals, and their explanations will be omitted. Reference numeral 11 denotes a chopping device interposed between the sunlight condensing device 2 and the photosynthesis reactor 5. The chopping device 11 includes a fan-shaped rotating disk 11a made of a light-opaque material, and a rotating disk 11a.
Electric drive 1! llb. 3 is a light guiding means such as an optical fiber 8 and a lens system for guiding the sunlight chopped by the chopping device 11 to the photosynthetic reactor 5, and is opposed to the end of the light guiding means 3 with a predetermined gap 12 in between. , and is arranged so that its path coincides with the path of the sunlight 1 of the light guiding means 3. A rotating disk 11a of the chopping device 11 is disposed to be interposed in the gap 12, and as the rotating disk 11a rotates, the sunlight 1 guided through the light guiding means 3 is interrupted. Therefore, the sunlight 1 that has passed through the chopping device 11 becomes intermittent light and is guided to the photosynthesis reactor 5 via the light guide means 3a.

第2図において回転円板11aの形状は半円形として図
示した。この例では断続光のONと○FFの時間比率は
1:1になるが、この時間比率は回転円板の扇形の形状
を変えることにより任意に調整可能である。また、断続
光の断続周期は、電動機の回転数を変えることにより任
意に調整可能である。これら断続光のON・OFF時間
比率、断続周期は、光合成リアクター5内の光合成微生
物の光合成反応において、中間生成物であるNADPH
が蓄積せず光合成が最適になるよう選定される。
In FIG. 2, the shape of the rotating disk 11a is shown as a semicircle. In this example, the time ratio between ON and FF of the intermittent light is 1:1, but this time ratio can be arbitrarily adjusted by changing the fan shape of the rotating disk. Furthermore, the intermittent period of the intermittent light can be arbitrarily adjusted by changing the rotation speed of the electric motor. The ON/OFF time ratio and intermittent period of these intermittent lights are determined by
The selection is made so that photosynthesis is optimized without accumulation of

本発明によるチョッピング装置により断続光となった太
陽光を供給される光合成リアクター5内の光合成微生物
の光合成は中間生成物であるNADPHを蓄積しないた
め増殖が活発に行なわれ、従来例と比較して大きな光合
成速度が得られる。
The photosynthetic microorganisms in the photosynthetic reactor 5, which is supplied with intermittent sunlight by the chopping device of the present invention, do not accumulate the intermediate product NADPH, so the photosynthetic microorganisms multiply actively, and compared to the conventional example. A large photosynthesis rate can be obtained.

第3図は本発明の異なる実施例による光合成リアクター
システムの構成の概要を示すブロック図である。第4図
は第3図に示した光路切換装置の斜視図である。第5図
は第4図に対する上面図である。第3図ないし第5図に
おいて、第1図、第2図ならびに第6図と同一部分には
同じ符号を付し、その説明を省略する。13は太陽光集
光装W2と光合成リアクター5の中間に介装された光路
切換装置である。光路切換装置13は反射ミラー13a
成される。3c、 3d−は光路切換え装置13で断続
された太陽光を光合成リアクター5に導くための光ファ
イバー、レンズ系などの複数の光案内手段であり、光案
内手段3とともに、0点にその経路中心線が一致するよ
う等間隔の角度θを隔てて、扇状に配置されている。光
路切換装置13はミラー13aの面が0点と一致するよ
うに設置され、光案内手段3から光案内手段3bに太陽
光1を導く場合は、ミラー13aの垂線が光案内手段3
の経路中心線か5ら光案内手段3bの配置されている方
に向がって1/2 θとなるようミラー13aを位置さ
せ、次に光案内手段3から光案内手段3cに太陽光1を
導く場合は、ミラー13aの垂線が光案内手段3の経路
中心線から光案内手段3cの配置されている方に向かっ
て1/2 θ×2=θとなるようミラー13aを位置さ
せる。こうしたミラー13aの回動を交互に繰返すこと
で光案内手段3からの太陽光1を光案内手段3bならび
に3cに交互に切換える。光案内手段の総数が光案内手
段3も含めてn本有る場合にミラー13aが回動される
位置は、1/2θ、θ、・・・θ/2(n−1)である
。ミラー13aをこのように回動させる必要上電動機1
3bとしては、ステップモータが好ましい。このように
して光経路切換装置13を経由した太陽光1は断続光と
なり、光案内手段3b、 3cを通って光合成リアクタ
ー5に導かれ、光案内手段3bからの光は透光性棒体4
aに、光案内手段3bからの光は透光性棒体4bを通っ
て光合成リアクター5内に供給される。したがって太陽
光1は断続光となり透光性棒体4a周辺の光合成微生物
と透光性棒体4b周辺の光合成微生物に交互に照射され
る。
FIG. 3 is a block diagram schematically showing the configuration of a photosynthetic reactor system according to a different embodiment of the present invention. FIG. 4 is a perspective view of the optical path switching device shown in FIG. 3. FIG. 5 is a top view of FIG. 4. In FIGS. 3 to 5, the same parts as in FIGS. 1, 2, and 6 are designated by the same reference numerals, and their explanations will be omitted. 13 is an optical path switching device interposed between the sunlight condensing device W2 and the photosynthesis reactor 5. The optical path switching device 13 is a reflection mirror 13a.
will be accomplished. 3c and 3d- are a plurality of light guiding means such as optical fibers and lens systems for guiding the sunlight interrupted by the optical path switching device 13 to the photosynthetic reactor 5, and together with the light guiding means 3, the center line of the path is set at the zero point. They are arranged in a fan shape at equal angles θ such that the angles θ are the same. The optical path switching device 13 is installed so that the surface of the mirror 13a coincides with the zero point, and when guiding the sunlight 1 from the light guide means 3 to the light guide means 3b, the perpendicular line of the mirror 13a is aligned with the light guide means 3.
The mirror 13a is positioned so that the angle is 1/2 θ from the path center line 5 toward the direction where the light guide means 3b is arranged, and then sunlight 1 is directed from the light guide means 3 to the light guide means 3c. , the mirror 13a is positioned so that the perpendicular to the mirror 13a is 1/2 θ×2=θ from the path center line of the light guide means 3 toward the direction where the light guide means 3c is arranged. By repeating such rotation of the mirror 13a alternately, the sunlight 1 from the light guiding means 3 is alternately switched to the light guiding means 3b and 3c. When the total number of light guiding means is n including the light guiding means 3, the positions at which the mirror 13a is rotated are 1/2θ, θ, . . . θ/2(n−1). Because it is necessary to rotate the mirror 13a in this way, the electric motor 1
3b is preferably a step motor. In this way, the sunlight 1 that has passed through the optical path switching device 13 becomes intermittent light and is guided to the photosynthesis reactor 5 through the light guiding means 3b and 3c, and the light from the light guiding means 3b is transmitted to the light transmitting rod 4.
In a, the light from the light guide means 3b is supplied into the photosynthesis reactor 5 through the transparent rod 4b. Therefore, the sunlight 1 becomes intermittent light and is alternately irradiated onto the photosynthetic microorganisms around the translucent rod 4a and the photosynthetic microorganisms around the translucent rod 4b.

第3図の構成の場合、光合成微生物が断続光を照射され
ることで大きな光合成速度が得られることは、第1図で
示した実施例の場合と同じであるが、本構成の場合はこ
れに加えて、太陽光1を光経路切換装置13で切換えて
利用できるので、太陽光集光装置2で集光した太陽光1
を無駄なく全て有効に使用できるので、その分光合成速
度を増大させることができるのである。
In the case of the configuration shown in Figure 3, a large photosynthetic rate can be obtained by irradiating the photosynthetic microorganisms with intermittent light, which is the same as in the example shown in Figure 1, but in the case of this configuration, this is not the case. In addition, the sunlight 1 can be switched and used by the optical path switching device 13, so the sunlight 1 collected by the sunlight concentrator 2 can be used by switching the sunlight 1.
Since all of the energy can be used effectively without any waste, the photosynthesis rate can be increased by that amount.

なお第3図の構成においてミラ−13a回動の周期、所
定位置への保持時間などは、光合成速度が最大となるよ
う選定される。
In the configuration shown in FIG. 3, the period of rotation of the mirror 13a, the holding time at a predetermined position, etc. are selected so as to maximize the photosynthesis rate.

さらにまた、本構成においての今迄の説明では、太陽光
1は光経路切換装置13で複数の光案内手段に切換えた
上で同一の光合成リアクター5に導き、空間的に順次光
合成微性物を照射するとしてきたが、光合成リアクター
を複数設置してもよく、その場合太陽光1は複数の光合
成リアクター内の光合成微生物を順次切換えて照射する
こととなり、この場合にも太陽光集光装置2で集光した
太陽光1を有効に使用されることは同様である。
Furthermore, in the description up to now regarding this configuration, the sunlight 1 is switched to a plurality of light guide means by the light path switching device 13 and then guided to the same photosynthesis reactor 5, and the photosynthetic microorganisms are spatially sequentially transferred. However, multiple photosynthetic reactors may be installed, in which case the sunlight 1 will be sequentially switched to irradiate the photosynthetic microorganisms in the multiple photosynthetic reactors, and in this case also, the sunlight concentrator 2 Similarly, the concentrated sunlight 1 can be used effectively.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、太陽光集光装置で集光した太陽光を光
案内手段で光合成リアクターに導き、光合成リアクター
内の光合成微生物に照射して、光合成を行なわせる光合
成リアクターシステムにおいて、太陽光集光装置と光合
成リアクターの中間に介装したチョッピング装置あるい
は光経路切換装置等により、光合成微生物に断続光を照
射するよう構成したので、光合成の反応過程での中間生
成物であり、過剰の場合後続する暗反応を阻害す日 る物質でもあるNADP−#を適量に生成することがで
き、従ってNADP★は蓄積されないから光合成速度を
増大することができる。これによって太陽光集光装置の
受光面積を狭小にできるという効果を奏する。
According to the present invention, in a photosynthesis reactor system in which sunlight collected by a sunlight concentrator is guided to a photosynthesis reactor by a light guiding means and is irradiated to photosynthetic microorganisms in the photosynthesis reactor to perform photosynthesis, The photosynthetic microorganisms were configured to be irradiated with intermittent light using a chopping device or a light path switching device installed between the light device and the photosynthetic reactor. It is possible to produce an appropriate amount of NADP-#, which is a substance that inhibits the dark reactions that occur in the photosynthesis, and therefore, the rate of photosynthesis can be increased because NADP* is not accumulated. This has the effect of reducing the light receiving area of the solar light concentrator.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による光合成リアクターシス
テムの構成の概要を示すブロック図、第2図は第1図に
示したチョッピング装置の斜視図、第3図は本発明の異
なる実施例による光合成リアクターシステムの構成の概
要を示すブロック図、第4図は第3図に示した光路切換
装置の斜視図、第5図は第4図に対する上面図、第6図
は従来技術による光合成リアクターシステムの構成の概
要を示すブロック図である。 1:太陽光、2二太陽光集光装置、3:光案内手段、5
;光合成リアクター、6:供給装置、7:COz、8:
回収装置、9:有用物質、11:チ麺〈
FIG. 1 is a block diagram showing an overview of the configuration of a photosynthetic reactor system according to an embodiment of the present invention, FIG. 2 is a perspective view of the chopping device shown in FIG. 1, and FIG. 3 is a diagram according to a different embodiment of the present invention. 4 is a perspective view of the optical path switching device shown in FIG. 3, FIG. 5 is a top view of FIG. 4, and FIG. 6 is a photosynthetic reactor system according to the prior art. FIG. 2 is a block diagram showing an outline of the configuration. 1: Sunlight, 2: Solar light concentrator, 3: Light guide means, 5
; photosynthesis reactor, 6: supply device, 7: COz, 8:
Recovery device, 9: Useful substances, 11: Chi noodles

Claims (1)

【特許請求の範囲】 1)太陽光集光装置で集光した太陽光を光案内手段で光
合成リアクターに導き、この光合成リアクター内で前記
太陽光を光合成微生物に照射し、この光合成微生物によ
り光合成を行なわせる光合成リアクターシステムにおい
て、光合成リアクター内での光合成微生物への太陽光の
照射を断続的に行なうことを特徴とする光合成リアクタ
ーシステム。 2)請求項1記載のものにおいて、光案内手段で導いて
きた太陽光をチョッピング装置によりチョッピングする
ことで、光合成リアクター内の光合成微生物への前記太
陽光の照射を断続的に行なうことを特徴とする光合成リ
アクターシステム。 3)請求項1記載のものにおいて、光案内手段で導いて
来た太陽光を、光路切換装置により伝達経路を切換える
ことで、光合成リアクター内の光合成微生物に空間的に
順次切換えて照射することを特徴とする光合成リアクタ
ーシステム。 4)請求項1記載のものにおいて、光案内手段で導いて
きた太陽光を、光路切換手段により伝達経路を切換えて
複数の光合成リアクターに順次切換伝達することにより
、前記光合成リアクター内の光合成微生物への前記太陽
光の照射を断続的に行なうことを特徴とする光合成リア
クターシステム。
[Scope of Claims] 1) Directing sunlight collected by a sunlight concentrator to a photosynthesis reactor by a light guide means, irradiating the sunlight to photosynthetic microorganisms within the photosynthesis reactor, and causing photosynthesis by the photosynthetic microorganisms. A photosynthetic reactor system characterized in that photosynthetic microorganisms within the photosynthetic reactor are intermittently irradiated with sunlight. 2) The method according to claim 1, characterized in that the sunlight guided by the light guide means is chopped by a chopping device, so that the photosynthetic microorganisms in the photosynthesis reactor are intermittently irradiated with the sunlight. photosynthesis reactor system. 3) In the product according to claim 1, the sunlight guided by the light guiding means is spatially sequentially switched and irradiated onto the photosynthetic microorganisms in the photosynthetic reactor by switching the transmission path by an optical path switching device. Features of the photosynthesis reactor system. 4) In the device according to claim 1, the sunlight guided by the light guide means is transferred to the photosynthetic microorganisms in the photosynthetic reactor by switching the transmission path by the optical path switching means and sequentially switching and transmitting the sunlight to the plurality of photosynthetic reactors. A photosynthesis reactor system characterized in that irradiation with the sunlight is performed intermittently.
JP28985890A 1990-10-26 1990-10-26 Photosynthetic reactor system Expired - Fee Related JP2646834B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28985890A JP2646834B2 (en) 1990-10-26 1990-10-26 Photosynthetic reactor system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28985890A JP2646834B2 (en) 1990-10-26 1990-10-26 Photosynthetic reactor system

Publications (2)

Publication Number Publication Date
JPH04166076A true JPH04166076A (en) 1992-06-11
JP2646834B2 JP2646834B2 (en) 1997-08-27

Family

ID=17748673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28985890A Expired - Fee Related JP2646834B2 (en) 1990-10-26 1990-10-26 Photosynthetic reactor system

Country Status (1)

Country Link
JP (1) JP2646834B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007125490A (en) * 2005-11-02 2007-05-24 National Institute Of Advanced Industrial & Technology Anaerobic ammonia treatment method
WO2012117490A1 (en) * 2011-02-28 2012-09-07 Katayose Shigeru Primary treatment method in household septic tank
US9598779B2 (en) 2013-07-05 2017-03-21 Panasonic Intellectual Property Management Co., Ltd. Method for reducing carbon dioxide
US9598781B2 (en) 2013-05-21 2017-03-21 Panasonic Intellectual Property Management Co., Ltd. Carbon dioxide reducing method, carbon dioxide reducing cell, and carbon dioxide reducing apparatus
JP2017147973A (en) * 2016-02-24 2017-08-31 Necエンジニアリング株式会社 Light energy time-sharing distribution apparatus, plant factory, building, light energy time-sharing distribution method, and rotating cylinder
JP2020054287A (en) * 2018-10-02 2020-04-09 一般財団法人電力中央研究所 Method for inhibiting plant growth and illumination device for inhibiting plant growth

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007125490A (en) * 2005-11-02 2007-05-24 National Institute Of Advanced Industrial & Technology Anaerobic ammonia treatment method
WO2012117490A1 (en) * 2011-02-28 2012-09-07 Katayose Shigeru Primary treatment method in household septic tank
JP5550780B2 (en) * 2011-02-28 2014-07-16 滋 片寄 Primary treatment method in household septic tank
US9598781B2 (en) 2013-05-21 2017-03-21 Panasonic Intellectual Property Management Co., Ltd. Carbon dioxide reducing method, carbon dioxide reducing cell, and carbon dioxide reducing apparatus
US9598779B2 (en) 2013-07-05 2017-03-21 Panasonic Intellectual Property Management Co., Ltd. Method for reducing carbon dioxide
JP2017147973A (en) * 2016-02-24 2017-08-31 Necエンジニアリング株式会社 Light energy time-sharing distribution apparatus, plant factory, building, light energy time-sharing distribution method, and rotating cylinder
JP2020054287A (en) * 2018-10-02 2020-04-09 一般財団法人電力中央研究所 Method for inhibiting plant growth and illumination device for inhibiting plant growth

Also Published As

Publication number Publication date
JP2646834B2 (en) 1997-08-27

Similar Documents

Publication Publication Date Title
Takano et al. CO 2 removal by high-density culture of a marine cyanobacterium Synechococcus sp. using an improved photobioreactor employing light-diffusing optical fibers
EP0130586B1 (en) Apparatus for plant culture
KR101222145B1 (en) Photobioreactor
JP2010057485A (en) Method for immobilizing carbon dioxide, and alga-culturing apparatus for immobilizing carbon dioxide
JP2000504924A (en) Rotary solar photobioreactor used for the production of algae biomass from gas, especially gas containing CO2
JPH04166076A (en) Photosynthesis reactor system
FR2361060A1 (en) Industrial cultivation of photosynthetic material by solar irradiation - with heat trap screens to supply electricity from surplus solar energy
KR20120037313A (en) Photobioreactor
KR20100085546A (en) The shielding apparatus for the plant cultivation whit solar cell
KR20190143045A (en) Plant Growth System Linked to Distributed Generation System
JPH05244932A (en) Cultivation of algae
JPH0484883A (en) Culture device for photosynthetic organism
JP2912684B2 (en) Biotechnology fixed carbon dioxide combination method
JPH1066996A (en) Formation of methane and device therefor
KR102269410B1 (en) Smartfarm applying Solar Module
JPH02283218A (en) Cultivation using polarizer in greenhouse
RU94024594A (en) Method and installation cultivating photosynthesizing micro-organisms
JPH0236207B2 (en)
JPH04130079A (en) Method for immobilizing carbon dioxide by utilizing plant and aerobic microorganism
Jangiam et al. Biological Hydrogen Production from Amphora sp. Isolated from Eastern Coast of Thailand
WO2008005926A2 (en) Bioreactor vessel with natural lighting system
WO1999001537A1 (en) A bioreactor for the growth of photosynthetic microorganisms
JPH0640817B2 (en) Continuous production method of photosynthetic microorganisms
RU2071248C1 (en) Animal farm
JPH048009B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees