JPH04163399A - Transfer paper - Google Patents

Transfer paper

Info

Publication number
JPH04163399A
JPH04163399A JP28723390A JP28723390A JPH04163399A JP H04163399 A JPH04163399 A JP H04163399A JP 28723390 A JP28723390 A JP 28723390A JP 28723390 A JP28723390 A JP 28723390A JP H04163399 A JPH04163399 A JP H04163399A
Authority
JP
Japan
Prior art keywords
paper
cross direction
curl
dehumidification
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28723390A
Other languages
Japanese (ja)
Other versions
JP2893925B2 (en
Inventor
Koichi Makiyama
牧山 皓一
Tsutomu Kurihara
努 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP28723390A priority Critical patent/JP2893925B2/en
Publication of JPH04163399A publication Critical patent/JPH04163399A/en
Application granted granted Critical
Publication of JP2893925B2 publication Critical patent/JP2893925B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Paper (AREA)

Abstract

PURPOSE:To obtain transfer paper reduced in curl after carrying out heat setting with a duplicating machine, printer, etc., by thermally drying paper until specific water content while providing a restriction force to paper after pressing in the cross direction and specific conditions. CONSTITUTION:The objective paper obtained by thermally drying paper after pressing until 4-6% water content while providing a restriction force to the paper in the cross direction in such condition that restriction force given in cross direction of paper is in the range expressed by the formula [y is restriction force (g/mm<2>) given in cross direction of paper ; x is ratio of vertical wave propagation rate of ultrasonic pulse of paper and is in the range of 1.2 to 1.8].

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、複写機、プリンターなどで熱定着した後のカ
ール(以下、熱定着後カールという)を小さくした転写
用紙に関するものである。
The present invention relates to a transfer paper that has reduced curl after being heat-fixed in a copying machine, printer, etc. (hereinafter referred to as post-heat-fixing curl).

【従来の技術】[Conventional technology]

複写機、プリンターなどで紙面上のトナー像を熱定着す
る際、紙の片面から熱が加わるため、加熱面からの脱湿
により、紙がカールし、紙詰まり、排紙トレイ収容性不
良、ソーター収容性不良等のトラブルが発生する。熱定
着後カールは、複写機、プリンター等の紙走行性能に大
きく影響を与える重要な特性であるといえる。 従来、熱定着後カールを改善しようとする試みは、各社
告様の方法で行われていたが、熱定着後カールの発生機
構が不明なため、有効な対策が実施できず、紙抄造条件
の一部変更、パルプ叩解度及びドライヤー差圧で対処し
ているのが実情である。また、転写用紙の改善に関する
ものとしては、例えば、特公昭48−96801号公報
、特公昭5]−102107号公報、特公昭54−96
107号公報等に、ガラス繊維やロックウール等の無機
繊維を木材バルブ繊維と混抄することが開示されており
、特開昭57−202057号公報には、有機又は無機
の填料を多量(18%以上)添加することが開示されて
いる。
When a toner image is thermally fixed on a paper surface using a copier or printer, heat is applied from one side of the paper, which causes the paper to curl due to dehumidification from the heated surface, resulting in paper jams, poor paper output tray accommodation, and problems with the sorter. Problems such as poor accommodation may occur. Curl after heat fixation can be said to be an important characteristic that greatly affects paper running performance in copiers, printers, etc. In the past, attempts to improve post-heat fixing curling were carried out by various companies, but since the mechanism by which post-heat fixing curling occurred was unknown, effective countermeasures could not be implemented, and papermaking conditions The actual situation is that some changes have been made, such as pulp beating level and dryer differential pressure. Further, regarding improvement of transfer paper, for example, Japanese Patent Publication No. 48-96801, Japanese Patent Publication No. 5]-102107, Japanese Patent Publication No. 54-96
107, etc., disclose that inorganic fibers such as glass fibers and rock wool are mixed with wood valve fibers, and JP-A-57-202057 discloses that a large amount of organic or inorganic filler (18% above) is disclosed.

【発明が解決しようとする課題】[Problem to be solved by the invention]

本発明者等は、熱定着後カールの発生機構について精力
的に研究を重ねた結果、以ドの知見を得た。すなわち、
−船釣に原稿として多く使用されている線画(像密度が
低い)をコピーまたはプリントする場合、トナー層が熱
定着後カールに与える影響が少ないので、熱定着後カー
ルの要因は、紙の特性値に限定できる。熱定着後カール
は、紙の片面に熱が加わることにより、紙の表層、裏層
から水分が蒸発し、それに伴なって紙か収縮する。 このときの紙の表層と裏層の収縮量の差か熱定着後カー
ルとなって現れる。この熱定着後カールは、次式で表さ
れる。 に=−((1t lβ1+β+’)  (112β2+
β2゛))2[ K、カール曲率(曲率半径の逆数) (17mm)II
I:紙の表層の熱定着による含有水分率変化(%) +12・紙の裏層の熱定着による含有水分率変化β1:
紙の表層の脱湿収縮率(%/水分1%変化)β21紙の
表層の脱湿収縮率(%/水分1%変化)β1′ 二組の
表層の脱湿収縮歪み(%)β2′ 1紙の裏層の脱湿収
縮歪み(%)t:紙の厚さ(mm) 上記式(1〉において、熱定着後カールに影響を及はす
要因は、■脱湿収縮率、■脱湿収縮歪み、■含有水分率
変化、■厚さである。 ところで、上記特公昭48−968旧号公報、特公昭5
1−102107号公報、特公昭54−96107号公
報等に開示されている場合は、脱湿収縮率及び含有水分
率変化を少なくするものであるが、無機繊維を配合した
場合は、強度が大11に低下するため、抄紙上及び品質
上問題があり、また、合成繊維を配合した場合は、耐熱
性が低下し、熱定着時の変形(シワ、波打ち)、収縮が
問題となる。更に、これら無機繊維や合成繊維は、木材
パルプ繊維よりも高価なため、コストアップの要因とな
る。また、特開昭57−204057号公報に開示され
ている場合は、填料を多く配合するため、こわさの低下
、紙粉発生量の増加などが問題になる。 一方、紙の厚さを厚くして、熱定着後カールを小さくす
る対策は、同一密度であれば、坪量の増加になり、コス
トアップとなる。また、同一坪量で厚さを厚くすれば、
平滑性の低下が問題となる。 本発明者等は、繊維配向をランダムにすること、即ち、
超音波パルスの縦波飯温速度比を1.00〜1.25の
範囲にすることを先に提案した(特開平1−38402
号公報)。その転写用紙は、熱定着後カールを減少させ
るのに有効なものであるが、製造のための抄紙速度を速
くすることができないという欠点があった。即ち、抄紙
速度を速くすると、繊維が流れ方向に配列しやすくなる
という欠点があった。 本発明は、従来の技術における上記のような問題点に鑑
みてなされたものである。 従って、本発明の目的は、抄紙速度、原料種類等の制約
を受けないで製造することのできる熱定着後カールの小
さい転写用紙を提供することにある。
The inventors of the present invention have made the following findings as a result of intensive research into the mechanism by which curl occurs after heat fixing. That is,
- When copying or printing line drawings (low image density), which are often used as manuscripts for boat fishing, the toner layer has little effect on curling after heat fixing, so the curl after heat fixing is caused by paper characteristics. Can be limited to values. Post-heat-fixing curl occurs when heat is applied to one side of the paper, causing moisture to evaporate from the front and back layers of the paper, causing the paper to shrink. The difference in the amount of shrinkage between the front and back layers of the paper at this time appears as curls after heat fixing. This curl after heat fixation is expressed by the following equation. =-((1t lβ1+β+') (112β2+
β2゛))2[K, curl curvature (reciprocal of radius of curvature) (17mm) II
I: Change in moisture content due to heat fixation on the surface layer of paper (%) +12・Change in moisture content due to heat fixation on the back layer of paper β1:
Dehumidification shrinkage rate of the surface layer of paper (%/1% change in moisture) β21 Dehumidification shrinkage rate of the surface layer of paper (%/1% change in moisture) β1' Dehumidification shrinkage strain of two sets of surface layers (%) β2' 1 Dehumidification shrinkage strain (%) of the backing layer of paper t: Paper thickness (mm) In the above formula (1), the factors that affect the curl after heat fixing are ■ dehumidification shrinkage rate, ■ dehumidification These are shrinkage distortion, ■ change in moisture content, and ■ thickness.
In the cases disclosed in Japanese Patent Publication No. 1-102107, Japanese Patent Publication No. 54-96107, etc., the dehumidification shrinkage rate and changes in moisture content are reduced, but when inorganic fibers are blended, the strength is increased. 11, which causes problems in papermaking and quality.Furthermore, when synthetic fibers are blended, heat resistance decreases, causing problems with deformation (wrinkles, waving) and shrinkage during heat fixing. Furthermore, since these inorganic fibers and synthetic fibers are more expensive than wood pulp fibers, they become a factor in increasing costs. Furthermore, in the case disclosed in JP-A-57-204057, since a large amount of filler is blended, there are problems such as a decrease in stiffness and an increase in the amount of paper dust generated. On the other hand, if the density is the same, increasing the thickness of the paper to reduce curl after heat fixing will increase the basis weight and increase the cost. Also, if the thickness is increased with the same basis weight,
Decrease in smoothness becomes a problem. The inventors have discovered that randomizing the fiber orientation, i.e.
We previously proposed that the longitudinal wave-temperature velocity ratio of ultrasonic pulses be in the range of 1.00 to 1.25 (Japanese Patent Application Laid-Open No. 1-38402).
Publication No.). Although the transfer paper is effective in reducing curl after heat fixing, it has the disadvantage that the paper making speed for production cannot be increased. That is, when the paper making speed is increased, the fibers tend to be arranged in the machine direction. The present invention has been made in view of the above-mentioned problems in the conventional technology. Accordingly, an object of the present invention is to provide a transfer paper that can be manufactured without being restricted by papermaking speed, type of raw materials, etc., and has less curl after heat fixing.

【課題を解決するための手段】[Means to solve the problem]

本発明者等は、熱定着後カールの改善を、紙のクロス方
向脱湿収縮率とクロス方向脱湿収縮歪みの両面から検討
した結果、紙のクロス方向に繊維配向比に対応した適切
な範囲の拘束力を与えながら、紙を乾燥することにより
、クロス方向脱湿収縮率とクロス方向脱湿収縮歪みの両
方を小さくし、熱定着後カールを大1]に改善できるこ
とを見出だし、本発明を完成するに至った。 本発明の転写用紙は、プレス加圧後の紙を、紙のクロス
方向に与える拘束力が下記式で示される範囲になるよう
に、クロス方向に拘束力を与えて、含有水分率4〜6%
まで熱乾燥して製造されたものである。 50x−60≦y≦−250x+5H (y:紙のクロス方向に与える拘束力(g/mm2)x
:紙の超音波パルスの縦波飯温速度比。但しx=1.2
〜1.8の範囲の値を示す)本明細書において、「クロ
ス方向の脱湿収縮率」とは、湿度25〜90%旧■で繰
り返し吸脱湿処理した後の可逆的寸法変化時の%寸法変
化/%水分変化を意味する。 第1図は、クロス方向の脱湿収縮処理における含有水分
率と寸法変化率との関係を示すものである。吸脱湿処理
は、符号1から12まで順次に行われ、はぼ一定の関係
に達した時点(符号6〜12)の可逆的寸法変化時の%
寸法変化/%水分変化を脱湿収縮率とする。 また、「クロス方向の脱湿収縮歪み」とは、湿度25〜
90%RHで繰り返し脱湿処理した後の不可逆寸法変化
を意味する。第1−図の符号1と11の寸法変化率の差
を脱湿収縮歪みとする。 また、本明細書において、繊維配向比の指標となる[超
音波パルスの縦波伝播速度比」とは、下記式で示される
値を意味する。 超音波パルスの縦波伝播速度比 マシン方向(MD)の超音波伝播速度 クロス方向(CD)の超音波伝播速度 なお、[マシン方向(λ)D)」とは、抄紙機の流れ方
向を意味し、「クロス方向(CD)Jとは、抄紙機の流
れ方向に対して直角方向を意味する。 本発明における上記超音波パルスの縦波伝播速度比は、
第2図に示す測定方法によって求めることができる。す
なわち、厚さl Ommの気泡入りゴム板21上に、試
料22を載置し、150mmの間隔をあけて送波振動子
23と受波振動子24を接触させ、超音波パルスの縦波
を送波部25から送り出し、受波部26で受けて、送波
振動子から試料を通過させて受波振動子で受けるまでの
時間を測定し、伝播速度に変換する。試料について、そ
れぞれMD、 CD両方向の伝播速度を測定し、伝播速
度比を求める。 なお、図中、27は演算素子、28は表示素子である。 本発明の転写用紙は、プレス加圧後の紙(水分40〜6
0%)のクロス方向に繊維配向比に対応した適切な拘束
力を与えながら、ドイライヤーで水分4〜6%まで乾燥
することにより抄紙することができる。ドライヤー乾燥
中に紙のクロス方向収縮が抑制されるために、乾燥後に
紙の水分が変化した時の伸縮が、ドライヤー乾燥中に紙
のクロス方向に拘束力を与えない自由乾燥紙と比較して
、大ri+に小さくなる。 ドライヤー乾燥中に紙のクロス方向に与える拘束力は、
適切な範囲に設定することが重要である。 第3図にドライヤー乾燥中に紙のクロス方向に与える拘
束力と紙のクロス方向脱湿収縮率、クロス方向脱湿収縮
歪みとの関係を概念的に示す。 紙のクロス方向に与える拘束力が小さいと、脱湿収縮歪
みは小さくなるが、脱湿収縮率が大きいので、熱定着後
カールは大きくなる。紙のクロス方向に与える拘束力が
大きいと、脱湿収縮率は小さくなるが、脱湿収縮歪みが
大きくなるので、熱定着後カールは大きくなる。 いずれにしても、脱湿収縮率と脱湿収縮歪みの両方が小
さくなるように、紙のクロス方向に与える拘束力を適切
な値に調整することが重要である。 また、第3図から明らかなように、紙のクロス方向に与
える適切な拘束力は、試料の繊維配向比によっても異な
っている。 すなわち、転写用紙の繊維配向比に合わせた適切な範囲
の拘束力を、ドライヤー乾燥中に紙のクロス方向に与え
ることにより、脱湿収縮率と脱湿収縮歪みの少ない、熱
定着後カールの小さい転写用紙が製造できる。 本発明においては、その拘束力yを下記式5式% (y:紙のクロス方向に与える拘束力(g/mm2)x
:紙の超音波パルスの縦波伝播速度比。但しx=1.2
〜1.8の範囲の値を示す)の範囲になるように設定し
て加熱乾燥することにより、上記のように熱定着後カー
ルの小さい転写用紙が得られる。 ドライヤー乾燥中に紙のクロス方向に拘束力を与える方
法は、バキュームによる拘束(特開昭61−26669
3号、同58−70794号、同56−501732号
公報)、エアーブローによる拘束(特開昭61−501
461号、同62〜62998号公報)、フェルト及び
ロール等による紙の片面拘束(特公昭60−29800
号、同60−35477号、同52〜11.786号、
同52〜 ] ]、 784号、及び特開昭61−25
8094号公報)、フェルト及びカンバス等による紙の
両面拘束(特開昭49−50206号及び同51−35
7038号公報)等の種々の方法が採用できるが、重要
なことは、製造する紙の繊維配向比から上記式により求
められる拘束力yをクロス方向に与えるように、バキュ
ーム量、エアーブロー量、フェルト抑圧、ロール圧、カ
ンバス抑圧等を可変させ、含有水分率4%〜6%まで乾
燥することである。
The present inventors investigated the improvement of curl after heat fixing from both the cross-direction dehumidification shrinkage rate and cross-direction dehumidification shrinkage strain of paper, and found that an appropriate range corresponding to the fiber orientation ratio in the cross direction of paper was determined. It has been discovered that by drying the paper while giving a binding force of I was able to complete it. The transfer paper of the present invention has a moisture content of 4 to 6 by applying a binding force in the cross direction to the paper after pressurization so that the binding force in the cross direction of the paper falls within the range shown by the following formula. %
It is manufactured by heat drying. 50x-60≦y≦-250x+5H (y: restraining force applied in the cross direction of paper (g/mm2) x
:Longitudinal wave temperature velocity ratio of ultrasonic pulse on paper. However, x=1.2
- 1.8) In this specification, "cross-direction dehumidification shrinkage" refers to the reversible dimensional change after repeated moisture absorption and desorption treatment at a humidity of 25 to 90%. Means % dimensional change/% moisture change. FIG. 1 shows the relationship between the moisture content and the dimensional change rate in the cross direction dehumidification and shrinkage treatment. The moisture absorption and desorption treatment is performed sequentially from code 1 to 12, and the percentage of reversible dimensional change at the time when a nearly constant relationship is reached (codes 6 to 12)
The dimensional change/% moisture change is the dehumidification shrinkage rate. In addition, "cross-direction dehumidification shrinkage distortion" refers to humidity 25~
It means an irreversible dimensional change after repeated dehumidification treatment at 90% RH. The difference in the dimensional change rates between numbers 1 and 11 in Figure 1 is defined as dehumidification shrinkage strain. In addition, in this specification, the term "longitudinal wave propagation velocity ratio of ultrasonic pulse", which is an index of the fiber orientation ratio, means a value expressed by the following formula. Longitudinal wave propagation velocity ratio of ultrasonic pulse Ultrasonic propagation velocity in machine direction (MD) Ultrasonic propagation velocity in cross direction (CD) Note that [machine direction (λ)D)] means the flow direction of the paper machine "Cross direction (CD) J means a direction perpendicular to the flow direction of the paper machine. The longitudinal wave propagation velocity ratio of the ultrasonic pulse in the present invention is:
It can be determined by the measurement method shown in FIG. That is, a sample 22 is placed on a bubble-filled rubber plate 21 with a thickness of l Omm, and a transmitting transducer 23 and a receiving transducer 24 are brought into contact with each other with an interval of 150 mm, and longitudinal waves of ultrasonic pulses are transmitted. The wave is sent out from the wave transmitting unit 25, received by the wave receiving unit 26, and the time from the wave transmitting transducer to passing through the sample and being received by the wave receiving transducer is measured and converted into a propagation velocity. For each sample, the propagation velocity in both the MD and CD directions is measured, and the propagation velocity ratio is determined. In addition, in the figure, 27 is an arithmetic element, and 28 is a display element. The transfer paper of the present invention is a paper after pressurization (moisture 40 to 6
Paper can be made by drying with a dryer to a moisture content of 4 to 6% while applying an appropriate restraint force in the cross direction corresponding to the fiber orientation ratio (0%). Because the cross-direction shrinkage of the paper is suppressed during dryer drying, the expansion and contraction when the moisture content of the paper changes after drying is reduced compared to free-drying paper that does not apply a binding force in the cross direction of the paper during dryer drying. , becomes small to large ri+. The restraining force applied to the paper in the cross direction during drying is
It is important to set it within an appropriate range. FIG. 3 conceptually shows the relationship between the restraining force applied to the paper in the cross direction during drying with a dryer, the cross direction dehumidification shrinkage rate, and the cross direction dehumidification shrinkage strain of the paper. If the restraining force applied in the cross direction of the paper is small, the dehumidification shrinkage distortion will be small, but since the dehumidifying shrinkage rate is large, the curl after heat fixing will be large. If the restraining force applied in the cross direction of the paper is large, the dehumidification shrinkage rate will be small, but the dehumidification shrinkage strain will be large, so that the curl after heat fixing will be large. In any case, it is important to adjust the restraining force applied in the cross direction of the paper to an appropriate value so that both the dehumidification shrinkage rate and the dehumidification shrinkage strain are small. Further, as is clear from FIG. 3, the appropriate restraining force to be applied in the cross direction of the paper differs depending on the fiber orientation ratio of the sample. In other words, by applying a restraining force in the appropriate range according to the fiber orientation ratio of the transfer paper in the cross direction of the paper during drying with a dryer, the dehumidification shrinkage rate and dehumidification shrinkage distortion are reduced, and curling after heat fixing is reduced. Transfer paper can be manufactured. In the present invention, the restraining force y is expressed by the following formula 5% (y: restraining force applied in the cross direction of the paper (g/mm2) x
:Longitudinal wave propagation velocity ratio of ultrasonic pulse on paper. However, x=1.2
By heating and drying the transfer paper to a value in the range of 1.8 to 1.8, a transfer paper with less curl after heat fixing can be obtained as described above. A method of applying restraining force in the cross direction of paper during drying is a vacuum restraint method (Japanese Unexamined Patent Publication No. 61-26669).
No. 3, No. 58-70794, No. 56-501732), restraint by air blow (Japanese Unexamined Patent Publication No. 61-501)
461, 62-62998), one-sided restraint of paper using felt, rolls, etc. (Japanese Patent Publication No. 60-29800)
No. 60-35477, No. 52-11.786,
52~ ], No. 784, and JP-A-61-25
8094), binding of both sides of paper with felt, canvas, etc. (JP-A-49-50206 and JP-A-51-35)
7038 Publication), but the important thing is that the vacuum amount, air blow amount, Drying is carried out to a moisture content of 4% to 6% by varying felt suppression, roll pressure, canvas suppression, etc.

【実施例】【Example】

以下、本発明を実施例によって説明する。 実施例] 広葉樹晒クラフトバルブをフリーネス480 ccに調
成し、軟質炭酸カルシウム10重量%、カチオン化澱粉
1重量%、アルキルケテンダイマー05重量%を加え、
実験用配向性抄紙機(熊谷理機(株)製)により、ワイ
ヤー速度60(1m/minで、原料噴出速度を変化さ
せて、52.3g/n(、64,0g/ボ、81.4g
/Mの転写用紙を抄造した。 上記転写用紙を、紙水分40〜60%までシートプレス
でプレスした後、クロス方向の拘束力を変化させて、紙
水分4%まで熱風乾燥を行った。熱風乾燥時のマシン方
向拘束力は、l00g/m+n2の一定値になるように
調整した。 上記の方法によって得られた転写用紙を、B5サイズに
20枚縦目裁断し、試験試料とした。 上記試験試料から5枚採取し、超音波パルスの縦波伝播
速度比を、測定機(SST−210(Sonic 5h
eetTesfu−21,0)野村商事■製)で測定し
た。その平均値を第千表に示す。 更に、上記試験試料から5枚採取し、クロス方向の脱湿
収縮率および脱湿収縮歪みを測定した。 その平均値を第1−表に示す。 残りの10枚の試験試料を5枚が含有水分率5%、5枚
が含有水分率7%になるように適当なチャンバー等で前
処理を行い、静電複写機(9’500B、富士ゼロック
ス(掬製)に、横方向通紙(用紙の短手方向が熱定着ロ
ール軸に対して垂直になる通紙)で、ワイヤーサイド面
に加熱定着した後のカール(熱定着後カール曲率)を測
定した。 なお、熱定着後カール曲率は、第4図に示すようにして
測定した。すなわち、試験試料31のカール軸と垂直な
一片の中央部を、巾約1 cmの懸垂用具32で釣り、
カール高さ(h)を測定する。測定されたカール高さは
、次の式によりカール曲率に変換する。 ■〕−γ(I−COI (7,75/2γ))カール曲
率(K)  −1/γ γ9曲率半径 熱定着後カールの測定結果を第1表に示す。熱定着後カ
ールは、試験試料5枚のカール高さ(II)をカール曲
率に変換し、その平均値で示す。 実施例2 広葉樹晒クラフトバルブをフリーネス4Hccに調成し
、軟質炭酸カルシウム10重け%、カチオン化澱粉1重
量%、アルキルケテンダイマー0.5重量%を加え、実
験用配向性抄紙機(熊谷理機(株)製)により、ワイヤ
ー速度1200m/minで、原料噴出速度を変化させ
て、52.3g/rd、 64.0g/イ、81.4g
/nイの転写用紙を抄造した。 」1記転写用紙を、紙水分40〜60%までシートブレ
スでプレスした後、クロス方向の拘束力を変化させて、
紙水分4%まで熱風乾燥を行った。熱風乾燥時のマシン
方向拘束力は、lot]g/mm2一定値になるように
調整した。 上記の方法によって得られた転写用紙を、B5サイズに
20枚縦目裁断し、試験試料とした。 上記試験試料について、実施例1と同様な方法で超音波
パルスの縦波伝播速度比、クロス方向脱湿収縮率、クロ
ス方向脱湿収縮歪み、熱定着後カール曲率を測定した。 その平均値を第2表に示す。 実施例1.2の試料の熱風乾燥時のクロス方向拘束力と
クロス方向脱湿収縮率、クロス方向脱湿収縮歪みの関係
を第5図に示す。また、第6図に“クロス方向脱湿収縮
率(%/9(水分)×熱定着による水分変化(4%)+
クロス方向脱湿収縮歪み”と熱定着後ロール曲率の関係
を示す。 第1表、第2表および第4図、第5図から明らかなよう
に、試験試料の繊維配向に応じた適正拘束力を紙のクロ
ス方向に加えて、プレス加圧後の紙(水分40〜60%
)を水分4%〜6%まで乾燥することにより、゛クロス
方向脱湿収縮率(%/%水分)×熱定着による水分変化
(45i)+クロス方向脱湿収縮歪み”が小さくなり、
熱定着後カール曲率が著しく小さくなっている。 本発明は、繊維配向をランダム(超音波パルスの縦波伝
播速度比1.00〜1.25)にしてクロス方向脱湿収
縮率を減少させる場合の有効範囲を越えるような、縦波
伝播速度比1.26〜1.80の範囲の紙にも効果があ
ることが分かる。また、抄紙速度が1、200m/mi
nと高速になっても、低速抄紙の場合と同様に、熱定着
後カールが小さいことが分かる。 以下余白
Hereinafter, the present invention will be explained by examples. Example] A bleached hardwood kraft valve was prepared to have a freeness of 480 cc, and 10% by weight of soft calcium carbonate, 1% by weight of cationized starch, and 05% by weight of alkyl ketene dimer were added.
Using an experimental oriented paper machine (manufactured by Kumagai Riki Co., Ltd.), the raw material ejection speed was varied at a wire speed of 60 (1 m/min) to produce 52.3 g/n (, 64.0 g/bo, 81.4 g).
/M transfer paper was made. The transfer paper was pressed with a sheet press to a paper moisture content of 40 to 60%, and then hot-air drying was performed to a paper moisture content of 4% by varying the restraining force in the cross direction. The restraining force in the machine direction during hot air drying was adjusted to a constant value of 100 g/m+n2. Twenty sheets of the transfer paper obtained by the above method were vertically cut into B5 size sheets and used as test samples. Five test samples were taken from the above test samples, and the longitudinal wave propagation velocity ratio of the ultrasonic pulse was measured using a measuring machine (SST-210 (Sonic 5h
eetTesfu-21,0) manufactured by Nomura Shoji ■). The average values are shown in Table 1000. Furthermore, five pieces were taken from the above test samples, and the dehumidification shrinkage rate and dehumidification shrinkage strain in the cross direction were measured. The average values are shown in Table 1. The remaining 10 test samples were pretreated in an appropriate chamber so that 5 sheets had a moisture content of 5% and 5 sheets had a moisture content of 7%. (manufactured by Kiki), the paper is passed in the horizontal direction (the short side of the paper is passed perpendicular to the heat fixing roll axis), and the curl after heat fixation on the wire side surface (curl curvature after heat fixation) is measured. The curl curvature after heat fixing was measured as shown in Fig. 4. That is, the center part of a piece of test sample 31 perpendicular to the curl axis was suspended with a suspension tool 32 having a width of about 1 cm. ,
Measure the curl height (h). The measured curl height is converted to curl curvature using the following formula. (2) -γ (I-COI (7,75/2γ)) Curl curvature (K) -1/γ γ9 radius of curvature Measurement results of curl after heat fixing are shown in Table 1. The curl after heat fixation is expressed by converting the curl height (II) of the five test samples into a curl curvature, and showing the average value thereof. Example 2 A bleached hardwood kraft bulb was prepared to a freeness of 4 Hcc, 10% by weight of soft calcium carbonate, 1% by weight of cationized starch, and 0.5% by weight of alkyl ketene dimer were added to it. (manufactured by Machinery Co., Ltd.) at a wire speed of 1200 m/min and changing the raw material ejection speed to produce 52.3 g/rd, 64.0 g/i, and 81.4 g.
/N transfer paper was made. ” 1. After pressing the transfer paper with a sheet press to a paper moisture content of 40 to 60%, changing the binding force in the cross direction,
Hot air drying was performed until the paper moisture content was 4%. The restraining force in the machine direction during hot air drying was adjusted to a constant value of lot] g/mm2. Twenty sheets of the transfer paper obtained by the above method were vertically cut into B5 size sheets and used as test samples. Regarding the test sample, the longitudinal wave propagation velocity ratio of the ultrasonic pulse, the cross-direction dehumidification shrinkage rate, the cross-direction dehumidification shrinkage strain, and the curl curvature after heat fixing were measured in the same manner as in Example 1. The average values are shown in Table 2. FIG. 5 shows the relationship between the cross-direction restraining force, the cross-direction dehumidification shrinkage rate, and the cross-direction dehumidification shrinkage strain during hot air drying of the sample of Example 1.2. In addition, Figure 6 shows "Cross direction dehumidification shrinkage rate (%/9 (moisture) x moisture change due to heat fixing (4%) +
The relationship between the cross-direction dehumidification shrinkage strain and the roll curvature after heat fixing is shown. As is clear from Tables 1 and 2 and Figures 4 and 5, the appropriate restraint force depending on the fiber orientation of the test sample. is added in the cross direction of the paper to reduce the paper after pressurization (moisture 40 to 60%).
) to a moisture content of 4% to 6%, ``cross direction dehumidification shrinkage rate (%/% moisture) x moisture change due to heat fixing (45i) + cross direction dehumidification shrinkage strain'' becomes small,
The curl curvature becomes significantly smaller after heat fixing. The present invention aims at reducing longitudinal wave propagation speeds that exceed the effective range when reducing cross-direction dehumidification shrinkage by randomizing fiber orientation (longitudinal wave propagation speed ratio of ultrasonic pulses of 1.00 to 1.25). It can be seen that paper with a ratio of 1.26 to 1.80 is also effective. In addition, the paper making speed is 1,200m/mi
It can be seen that even at a high speed of n, curling after heat fixing is small, as in the case of low speed paper making. Margin below

【発明の効果】【Effect of the invention】

本発明の転写用紙は、クロス方向脱湿収縮率が0.12
%/%水分であるため、従来の転写用紙に比べて、熱定
着後カールが著しく小さいという効果を示す。特に、熱
定着後カールの防止が困難な、縦波伝播速度比1.26
〜1.80の範囲の紙に対しても有効であるという効果
を生じる。
The transfer paper of the present invention has a cross direction dehumidification shrinkage rate of 0.12.
%/% moisture, it exhibits the effect of significantly less curling after heat fixing compared to conventional transfer paper. In particular, it is difficult to prevent curling after heat fixing, and the longitudinal wave propagation velocity ratio is 1.26.
The effect is that it is effective even for paper in the range of 1.80 to 1.80.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、吸脱湿処理によるクロス方向の寸法変化を示
すグラフ、第2図は、超音波パルスの縦波伝播速度測定
方法のブロック図、第3図は、ドライヤー乾燥時の紙の
クロス方向拘束力とクロス方向脱湿収縮率、脱湿収縮歪
みの関係を示す概念図、第4図は、熱定着後カールの測
定方法を説明する説明図、第5図は、実施例の試料の熱
風乾燥時のクロス方向拘束力とクロス方向脱湿収縮率及
びクロス方向脱湿収縮歪みの関係を示すグラフ、第6図
は、実施例の“クロス方向脱湿収縮率(%/%水分)×
熱定着による水分変化(4%)+クロス方向脱湿収縮歪
み”と熱定着後カール曲率との関係を示すグラフである
。 2]、、、気泡入りゴム板、22.、、 試験試料、2
3.。 送波振動子、24.、、受波振動子、25. 、 、送
波部、26、 、 、受波部、27.、、演算素子、2
89.  表示素子、31、、、試験試料、32. 、
 、懸垂用具。 出願人 富士ゼッロックス株式会社
Figure 1 is a graph showing dimensional changes in the cross direction due to moisture absorption and desorption treatment, Figure 2 is a block diagram of the method for measuring the longitudinal wave propagation velocity of ultrasonic pulses, and Figure 3 is a graph showing the cross direction of paper during drying with a dryer. A conceptual diagram showing the relationship between directional restraining force, cross-direction dehumidification shrinkage rate, and dehumidification shrinkage strain. Figure 4 is an explanatory diagram illustrating the method for measuring curl after heat fixing. Figure 5 is a diagram showing the relationship between the cross-direction dehumidification shrinkage rate and dehumidification contraction strain. A graph showing the relationship between the cross-direction restraining force, cross-direction dehumidification shrinkage rate, and cross-direction dehumidification shrinkage strain during hot air drying, FIG. 6 is a graph showing the relationship between cross-direction dehumidification shrinkage rate (%/% moisture) x
This is a graph showing the relationship between "moisture change (4%) + cross-direction dehumidification shrinkage strain" due to heat fixing and curl curvature after heat fixing. 2], Cellular rubber plate, 22., Test sample, 2
3. . Transmission vibrator, 24. ,, wave receiving oscillator, 25. , , wave transmitting section, 26, , , wave receiving section, 27. ,,operational element,2
89. Display element, 31, Test sample, 32. ,
, pull-up equipment. Applicant: Fuji Xerox Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)プレス加圧後の紙を、紙のクロス方向に与える拘
束力が下記式で示される範囲になるように、クロス方向
に拘束力を与えて、含有水分率4〜6%まで熱乾燥して
なることを特徴とする転写用紙。 50x−60≦y≦−250x+500 (y:紙のクロス方向に与える拘束力(g/mm^2)
x:紙の超音波パルスの縦波伝潘速度比。但しx=1.
2〜1.8の範囲の値を示す)
(1) Heat-dry the paper after pressurization to a moisture content of 4 to 6% by applying a restraining force in the cross direction so that the restraining force in the cross direction of the paper falls within the range shown by the formula below. A transfer paper characterized by: 50x-60≦y≦-250x+500 (y: restraining force applied in the cross direction of the paper (g/mm^2)
x: Longitudinal wave transmission velocity ratio of ultrasonic pulse on paper. However, x=1.
(indicates a value in the range of 2 to 1.8)
JP28723390A 1990-10-26 1990-10-26 Transfer paper Expired - Lifetime JP2893925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28723390A JP2893925B2 (en) 1990-10-26 1990-10-26 Transfer paper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28723390A JP2893925B2 (en) 1990-10-26 1990-10-26 Transfer paper

Publications (2)

Publication Number Publication Date
JPH04163399A true JPH04163399A (en) 1992-06-08
JP2893925B2 JP2893925B2 (en) 1999-05-24

Family

ID=17714761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28723390A Expired - Lifetime JP2893925B2 (en) 1990-10-26 1990-10-26 Transfer paper

Country Status (1)

Country Link
JP (1) JP2893925B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007171714A (en) * 2005-12-26 2007-07-05 Fuji Xerox Co Ltd Recording paper and image recording method using this

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007171714A (en) * 2005-12-26 2007-07-05 Fuji Xerox Co Ltd Recording paper and image recording method using this

Also Published As

Publication number Publication date
JP2893925B2 (en) 1999-05-24

Similar Documents

Publication Publication Date Title
JPH08171227A (en) Electrophotographic transfer paper
US6221210B1 (en) Transfer paper for electrophotography and a method for producing thereof
JP3833272B2 (en) Electrophotographic transfer paper
JP2743435B2 (en) Transfer paper
JPH04163399A (en) Transfer paper
JP2855778B2 (en) Transfer paper
JP3653136B2 (en) Electrophotographic full color transfer paper
JPH11174718A (en) Information recording paper
JP3898974B2 (en) Electrophotographic transfer paper
JP2001316999A (en) Paper for book
JP3228304B2 (en) Transfer paper for electrophotography
JP2003202695A (en) Toner receptive continuous paper
JPH11160906A (en) Electrophotographic transfer paper
JP4432605B2 (en) Electrophotographic transfer paper
JPH06138688A (en) Electrophotographic tranfer paper
JP3311399B2 (en) Transfer paper for electrophotography
JP2874134B2 (en) Transfer paper for electrophotography
JP3992758B2 (en) Electrophotographic transfer paper
JP3115073B2 (en) Continuous recording paper
JP3234783B2 (en) Transfer paper for electrophotography
JP3763228B2 (en) Electrophotographic transfer paper
JPH10221876A (en) Information recording paper
JPH0241024B2 (en)
JP3370737B2 (en) Transfer paper for electrophotography
JPH03287895A (en) Transfer paper for electrophotography

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080305

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 12