JPH04162627A - Treatment apparatus by chemical liquid - Google Patents

Treatment apparatus by chemical liquid

Info

Publication number
JPH04162627A
JPH04162627A JP28870590A JP28870590A JPH04162627A JP H04162627 A JPH04162627 A JP H04162627A JP 28870590 A JP28870590 A JP 28870590A JP 28870590 A JP28870590 A JP 28870590A JP H04162627 A JPH04162627 A JP H04162627A
Authority
JP
Japan
Prior art keywords
metal
impurity removal
filter
removal filter
chemical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28870590A
Other languages
Japanese (ja)
Inventor
Michiichi Matsumoto
道一 松元
Teruto Onishi
照人 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP28870590A priority Critical patent/JPH04162627A/en
Publication of JPH04162627A publication Critical patent/JPH04162627A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the cost of a chemical liquid without hardly replacing the chemical liquid by installing the following: a mechanism which is used to circulate the chemical liquid; and a mechanism which is used to remove metal impurities stuck to small fragments of silicon at the inside of a metal- impurity removal filter and to regenerate the filter. CONSTITUTION:Small fragments of silicon are mixed inside a metal-impurity removal filter 5 used to remove metal impurities in a chemical liquid. Dilute HF flows inside the metal-impurity removal filter 5 through a subparticle filter 6 and a valve 3 from a dilute HF and pure-water supply apparatus 7. The dilute HF which has flowed in the metal-impurity removal filter 5 is discharged from a waste-liquid port 8 through a valve 4. Al, Fe and the like which have been stuck to the small fragments of silicon inside the metal-impurity removal filter 5 are removed by the dilute HF. The dilute HF solution which remains inside the metal-impurity removal filter 5 is replaced with pure water. The pure water is introduced from the dilute HF and pure-water supply apparatus 7; the pure water flows through the valve 3, the metal-impurity removal filter 5 and the valve 4.

Description

【発明の詳細な説明】 産業上の利用分野 本発明C戴  半導体製造分野の半導体ウェハー表面の
薬液処理を行う装置に関すム 従来の技術 従来の薬液処理装置の一例を第4図に示す。 10は薬
液を循環させるための循環ポンプ、 11は循環中の薬
液のパーティクルを除去するために設けられたパーティ
クルフィルターであム 13は薬液処理を行う薬液槽本
体 石英製の4面オーバーフロー槽を使用していム 1
4は薬液を昇温するためのヒータであム 半導体ウェハーの薬液処理は通常25枚でバッチ処理が
おこなわれてい4 以上のように構成された従来の薬液
処理装置を用いて半導体ウェハーを洗浄する場合、例え
ばアンモニア水(NH40H)と過酸化水素水(H2O
2)と純水(H2O)の混合液が用いられも この混合
液(よ パーティクルを除去する目的でシリコンプロセ
スにおいて多用されており、連木 混合比NH4OH:
  H2O2: H20=1:  1:  5あるいは
1:  2:  7が用いられもっとも効果的な液温と
して70℃〜80℃で使用されていも 発明が解決しようとする課題 上記混合液でシリコンウェハーを洗浄した場合、薬液中
の金属不純物がシリコンウェハー表面に吸着する場合が
あム 特番ミ  アルカリ系の薬液であるアンモニア水
(NH40H)と過酸化水素水(H2O2)と純水(H
2O)の混合液の場合、シリコンウェハー表面にA1や
Feが吸着しやす(−例えば FeやCuなどの重金属
がシリコンウェハ−表面に吸着した場合、ジャンクショ
ンのリーク電流増加や再結合ライフタイムの低下につな
かもしたがって、薬液中の金属不純物を低減しシリコン
ウェハー表面の金属不純物の吸着をなくすことが課題と
なも しかしなが収 高純度の薬液を製造するにGit
  コストがかかも 又 高純度の薬液を使用した場合
でL 最初から処理ウエノ\−に金属不純物が吸着して
いる場合、吸着不純物が薬液中に解は出す恐れがあり、
ロット処理の回数が増加するに従い薬液の純度は低下す
も 又 毎ロット高純度の薬液を交換した場合は 使用
薬液量が増大しコストがかかるという課題があ4課題を
解決するための手段 本発明Ct  シリコンの小砕片を混入した金属不純物
除去フィルターと、薬液を循環させる機構と、前記金属
不純物除去フィルター内部のシリコン小砕片に吸着した
金属不純物を除去しフィルターを再生する機構とを設け
ることを特徴とする薬液処理装置である。さらに 薬液
処理装置に薬液の濃度制御装置(薬液追加装置)を備え
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application of the Present Invention C. Prior Art Related to an Apparatus for Performing Chemical Liquid Processing on the Surface of a Semiconductor Wafer in the Semiconductor Manufacturing Field An example of a conventional chemical liquid processing apparatus is shown in FIG. 10 is a circulation pump for circulating the chemical solution; 11 is a particle filter provided to remove particles from the circulating chemical solution; 13 is a chemical tank body for processing the chemical solution; a four-sided overflow tank made of quartz is used. 1
4 is a heater for raising the temperature of the chemical solution. Chemical processing of semiconductor wafers is usually performed in batches of 25 wafers. 4 Semiconductor wafers are cleaned using a conventional chemical processing apparatus configured as described above. For example, ammonia water (NH40H) and hydrogen peroxide water (H2O
A mixture of 2) and pure water (H2O) is used.This mixture (H2O) is often used in silicon processes for the purpose of removing particles, and the mixture ratio of NH4OH:
Even if H2O2: H20=1:1:5 or 1:2:7 is used and the most effective liquid temperature is 70°C to 80°C, the problem to be solved by the invention is to clean silicon wafers with the above mixed liquid. If the chemical solution is mixed with ammonia water (NH40H), hydrogen peroxide solution (H2O2), and pure water (H2O2), the metal impurities in the chemical solution may be adsorbed onto the silicon wafer surface.
In the case of a mixed solution of Therefore, the challenge is to reduce the metal impurities in the chemical solution and eliminate the adsorption of metal impurities on the silicon wafer surface.
It may be costly.Also, if a high-purity chemical solution is used, if metal impurities are adsorbed to the treated wafer from the beginning, there is a risk that the adsorbed impurities may dissolve into the chemical solution.
As the number of lot processing increases, the purity of the chemical solution decreases, and if high-purity chemical solution is replaced every lot, the amount of the chemical solution used increases and costs increase.Means for Solving the Problems The present invention Ct A metal impurity removal filter mixed with small pieces of silicon, a mechanism for circulating a chemical solution, and a mechanism for removing metal impurities adsorbed to the silicon pieces inside the metal impurity removal filter and regenerating the filter. This is a chemical processing device. Furthermore, the chemical processing device is equipped with a chemical concentration control device (chemical liquid addition device).

作用 本発明1表 上述の構成により薬液中の金属不純物を除
去することができ、処理を行うシリコンウェハー表面へ
の金属不純物の吸着を削減することができる。アンモニ
ア水と過酸化水素水と純水の混合液による洗浄を例にと
ると、金属除去フィルター内に薬液を流すことによって
フィルター内のシリコンの小砕片にFeやAIを吸着さ
せも したがって、薬液中の金属不純物を減少させるこ
とができも その後ロット処理を行うことによってシリ
コンウェハー表面に金属不純物の吸着のない清浄な洗浄
を行うことが可能とな4 −X  フィルターを再生す
るに(上 例え(戴 希HF溶液を流す方法をとること
によってフィルター内のシリコンの小砕片に吸着したF
eやAlを除去する方法をとも したがって、−夏作製
した薬液を金属不純物を増加させることなく長時間使用
を可能にできも さら番−過酸化水素水の分解やアンモニアガスの発生に
より薬液中のアンモニアおよび過酸化水素水の濃度低下
を考11!し  薬液の濃度制御装置(薬液追加装置)
を備えることにより、薬液の金属不純物を削減し しか
も濃度を一定にした清浄な洗浄を長時間持続できも 実施例 第1図は 本発明の一実施例における薬液処理装置の構
成概略図であa 第2図は薬液処理装置の処理手順を示
すタイムチャートであも 本実施例でζよ アンモニア
水と過酸化水素水と純水の混合液による洗浄を例にして
以下説明すも同図において、 1,2は薬液の循環径路
を変更させるための三方バルブであム 3.4はバルブ
であり、 3は希釈HFあるいは純水の導入を制御する
バルブであも 5は薬液中の金属不純物を除去するため
の金属不純物除去フィルター本体であり、フィルター5
内には シリコンの小砕片が混入されていも 6は希釈
HFあるいは純水のパーティクルを除去するために設け
られたサブパーティクルフィルターであも 7は金属不
純物除去フィルタ−5再生時に使用する希釈HFあるい
は純水の導入を制御する希釈HF・純水供給装置であム
8はフィルター再生時に使用した希釈HF、純水の廃液
口であム 9はフィルター再生時へ 薬液本体の循環を
継続させるために設けられたバイパスチューブであム 
10は薬液を循環させるための循環ポンプであり、 1
1は薬液中のパーティクルを除去するためのメインパー
ティクルフィルターであム 12はアンモニアおよび過
酸化水素水の濃度を制御するための薬液濃度制御装置で
あり、各々の薬液を追加補給す&  13は薬液処理を
行う薬液槽本体であり、 14は薬液を昇温するための
ヒータであム 以上のように構成された本実施例の薬液処理装置につい
て、以下その動作を第1図および第2図を用いて説明す
も (1)金属不純物除去フィルター再生工程金属不純物除
去フィルター5内のシリコン小砕片に金属が吸着してお
り再生を行っている状態(時間 )から説明する。薬液
槽13内には シリコンウェハーを洗浄するための薬液
すなわ板 アンモニア水と過酸化水素水と純水の混合液
が入っており、循環ポンプ10を用いて循環されていも
時間 において循環している薬液は 三方バルブ1.2
がバイパスチューブ9側に向いているた敢バイパスチュ
ーブ9を通ってメインパーティクルフィルター11へ流
れ薬液槽13へ戻も 他人金属不純物除去フィルター5
内にζ戴 希釈HF・純水供給装置7か収 希釈HFが
サブパーティクルフィルター6およびバルブ3を通って
流れていも 金属不純物除去フィルター5を流れた希釈
HFはバルブ4を通って廃液口8から廃液されも時間 
の工程ζ友 上記希HFにより金属不純物除去フィルタ
ー5内のシリコン小砕片に吸着していたA l、F e
等を除去する工程であ4次に 時間 の金属不純物除去
フィルター5内に残存している希HF溶液を純水に置換
する工程に移も 希釈HF・純水供給装置7か収 純水
が導入されバルブ3、金属不純物除去フィルター5、バ
ルブ4を通して純水が流れも (2)薬液の金属除去工程 次に 薬液の金属除去工程である時間 に人も時間 で
ζよ 三方バルブ1.2が金属不純物除去フィルター5
側へ向く。又 バルブ3,4は閉の状態となり金属不純
物除去を目的とする薬液すなわ敷アンモニア水と過酸化
水素水と純水の混合液が金属不純物除去フィルター5内
へ流れ4 本工程において、シリコンウェハー(図示せ
ず)に吸着しやすいとされているAIやFeを金属不純
物除去フィルター5内のシリコン小砕片に吸着させもし
たがって、薬液中の金属不純物を低減できも(3)金属
不純物除去フィルター再生工程次番−時間 のフィルタ
ー再生工程に移も 時間 では 三方バルブ1.2はバ
イパスチューブ9側に向き、薬液はバイパスチューブを
通り循環され4 −4  金属不純物除去フィルター5
内には希釈HF、純水供給装置7か収 純水が導入され
バルブ3.4を通して純水が流れも すなわ板 金属不
純物除去フィルター5内に残存している薬液を純水に置
換する。純水に置換した徽 最初に説明した時間 の工
程に戻も 上記工程を繰り返すことによって、常に薬液
内の金属不純物を低レベルに保つことができも 鑞 不
足分の薬液(よ 薬液濃度制御装置12から追加補給さ
れも 次に アンモニア水と過酸化水素水と純水の混合液によ
る洗浄においてシリコン小砕片にA1が吸着しやすく、
希釈HFによって吸着したA1が除去されやすいという
実験結果を第3図に示す。
Effects of the Present Invention Table 1 With the above-described configuration, metal impurities in the chemical solution can be removed, and adsorption of metal impurities to the surface of the silicon wafer to be processed can be reduced. Taking cleaning with a mixed solution of ammonia water, hydrogen peroxide solution, and pure water as an example, by flowing the chemical solution into the metal removal filter, Fe and AI can be adsorbed to the silicon particles inside the filter. By performing lot processing afterwards, it is possible to clean the silicon wafer surface without the adsorption of metal impurities. By flowing a dilute HF solution, the F adsorbed on the silicon particles inside the filter can be removed.
Therefore, it is possible to use a chemical solution prepared in the summer for a long time without increasing metal impurities.The method for removing E and Al can also be made possible by decomposing hydrogen peroxide and generating ammonia gas. Consider reducing the concentration of ammonia and hydrogen peroxide 11! Chemical solution concentration control device (chemical solution addition device)
Embodiment FIG. 1 is a schematic diagram of the configuration of a chemical solution processing apparatus in an embodiment of the present invention. FIG. 2 is a time chart showing the processing procedure of the chemical treatment equipment. 1 and 2 are three-way valves for changing the circulation path of the chemical solution; 3.4 is a valve; 3 is a valve that controls the introduction of diluted HF or pure water; and 5 is a valve that controls the introduction of diluted HF or pure water. It is a filter body for removing metal impurities, and the filter 5
6 is a sub-particle filter provided to remove particles from diluted HF or pure water. 7 is a filter for removing metal impurities - 5 is a diluted HF or sub-particle filter used for regeneration. 8 is a diluted HF/pure water supply device that controls the introduction of pure water. 8 is a waste port for diluted HF and pure water used during filter regeneration. 9 is used for filter regeneration. To continue the circulation of the chemical solution body. Bypass tube provided
10 is a circulation pump for circulating the chemical solution; 1
1 is a main particle filter for removing particles in the chemical solution; 12 is a chemical concentration control device for controlling the concentration of ammonia and hydrogen peroxide solution; and 13 is a chemical solution concentration control device for additionally replenishing each chemical solution; The main body of the chemical liquid tank is used for processing, and 14 is a heater for raising the temperature of the chemical liquid.The operation of the chemical liquid processing apparatus of this embodiment constructed as described above is shown in Figs. 1 and 2 below. (1) Metal impurity removal filter regeneration step The following will explain the state (time) in which metal is adsorbed to the silicon particles in the metal impurity removal filter 5 and regeneration is performed. The chemical solution tank 13 contains a mixed solution of ammonia water, hydrogen peroxide solution, and pure water for cleaning silicon wafers. The chemical solution is a three-way valve 1.2
The particle flows through the bypass tube 9, which is facing toward the bypass tube 9 side, to the main particle filter 11 and returns to the chemical liquid tank 13.The foreign metal impurity removal filter 5
Even if the diluted HF flows through the sub-particle filter 6 and the valve 3, the diluted HF that has flowed through the metal impurity removal filter 5 passes through the valve 4 and is discharged from the waste liquid port 8. Time to waste liquid
In the process ζ, Al, Fe adsorbed to the silicon particles in the metal impurity removal filter 5 by the dilute HF.
The fourth step is to replace the dilute HF solution remaining in the metal impurity removal filter 5 with pure water.Pure water is introduced into the dilute HF/pure water supply device 7. Pure water flows through the valve 3, the metal impurity removal filter 5, and the valve 4 (2) Metal removal process from the chemical solution. Impurity removal filter 5
Turn to the side. In addition, the valves 3 and 4 are closed, and a chemical solution for the purpose of removing metal impurities, a mixture of aqueous ammonia, hydrogen peroxide, and pure water, flows into the metal impurity removal filter 5 4. In this step, the silicon wafer is (3) Metal impurity removal filter regeneration can be achieved by adsorbing AI and Fe, which are said to be easily adsorbed to (not shown), to the silicon particles in the metal impurity removal filter 5, thereby reducing metal impurities in the chemical solution. Moving on to the filter regeneration process at step number - time, the three-way valve 1.2 faces the bypass tube 9 side, and the chemical solution is circulated through the bypass tube 4-4 Metal impurity removal filter 5
Diluted HF and pure water are introduced into the filter from the pure water supply device 7, and the pure water flows through the valve 3.4.The chemical solution remaining in the metal impurity removal filter 5 is replaced with pure water. By repeating the above steps, it is possible to always keep the metal impurities in the chemical solution at a low level. Even after additional replenishment, A1 is easily adsorbed to the silicon particles during cleaning with a mixture of ammonia water, hydrogen peroxide solution, and pure water.
FIG. 3 shows experimental results showing that adsorbed A1 is easily removed by diluted HF.

薬液の混合比(友 NH4OH:  H2O2: H2
0=に1:5であり、温度は65℃であム 第3図はシ
リコン小砕片に吸着したAIのSIMS分析結果であム 薬液をフィルターに10分間流すと、Aに示したように
シリコン表面にAlが約IXlX1012ato/cm
2と多量に吸着すム −人 その後フィルター再生工程
で用いる希釈HF (H2O:  HF=50:  1
)を流すことによってBに示したようにシリコン表面の
AIは検出限度以下となつ九したがって、フィルターと
してのAIの吸着および除去性能は非常に高いことがわ
かム 以上のように シリコンの小砕片を混入した金属不純物
除去フィルター5と、薬液を循環する機構と、金属不純
物除去フィルター内部のシリコン小砕片に吸着した金属
不純物を除去しフィルターを再生する機構とを設けるこ
とによって処理薬液中の金属不純物を常に低減した状態
に保つことができも したがって、より清浄な洗浄が可
能となり、又薬液の交換頻度も削減できも 鑞 本実施例において薬液をアンモニア水と過酸化水素
水と純水の混合液とした力曳 塩酸と過酸化水素水と純
水の混合液や他の薬品の混合液にしてもよ鶏 又 フィ
ルター再生処理には希釈HFを用いた力丈 他の薬液を
用いてもよ(1発明の詳細 な説明したようE、  本発明によれば 処理薬液中の
金属不純物を低減でき、又 −夏作製した薬液を金属不
純物を増加させることなく長時間使用を可能にできも 
すなわ板 薬液交換をほとんど行わなくてもよく、薬液
コストを低減できるばかり力\ 薬液交換に有する時間
も必要なくなり、その実用的効果は犬きl、%
Mixing ratio of chemical liquid (Friend NH4OH: H2O2: H2
Figure 3 shows the results of SIMS analysis of AI adsorbed on small pieces of silicon. Al on the surface is approximately IXlX1012ato/cm
Diluted HF (H2O: HF = 50: 1) is used in the filter regeneration process.
), as shown in B, the AI on the silicon surface is below the detection limit9. Therefore, the adsorption and removal performance of AI as a filter is very high. Metal impurities in the processing chemical can be removed by providing a mixed metal impurity removal filter 5, a mechanism for circulating the chemical, and a mechanism for removing the metal impurities adsorbed to the silicon particles inside the metal impurity removal filter and regenerating the filter. In this example, the chemical solution is a mixture of ammonia water, hydrogen peroxide solution, and pure water. You can also use a mixture of hydrochloric acid, hydrogen peroxide, and pure water, or other chemicals.Also, you can use diluted HF or other chemicals for filter regeneration treatment (1 As described in detail of the invention, according to the present invention, it is possible to reduce metal impurities in a processing chemical solution, and it is also possible to use a chemical solution prepared in summer for a long time without increasing metal impurities.
In other words, there is almost no need to exchange chemical solutions, which reduces the cost of chemical solutions.The time required for chemical solution exchanges is also eliminated, and the practical effect is extremely low.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における一実施例の金属除去フィルター
をもちいた薬液処理装置の構成概略医第2図は薬液処理
装置の処理手順を示すタイムチャート@ 第3図はAI
のSIMS分析結果を示す特性医 第4図は従来の薬液
処理装置の構成概略図であa 1.2・・・三方パルス 3,4・・・パルス 5・・
・金属不純物除去フィルター、6・・・サブパーティク
ルフィルター、7・・・希釈HF、純水供給装置 8・
・・廃液U1.9・・・バイパスチュース 10・・・
循環ポンプ、11・・・メインパーティクルフィルター
、 12・・・薬液濃度制御装置 13・・・薬液lt
 14・・・ヒーター。 代理人の氏名 弁理士 小鍜治 明 ほか2名/、2−
−−三方バルフ 3.4−  バルブ 5 − 1j−8不秋劃引喋Lクイルター6 −  ’
7ブパーテイクルフイルター8− 枡5IL口 9− バイパスナユ−1 10−−゛  循4frζンフ。 14−   ヒーター 鶴 1r4 112  図 ==中崎聞 工R−隊氏工罹 第3し1 /4−−ビータ−
Fig. 1 is a schematic diagram of the structure of a chemical liquid processing device using a metal removal filter according to an embodiment of the present invention. Fig. 2 is a time chart showing the processing procedure of the chemical liquid processing device. Figure 3 is an AI
Fig. 4 is a schematic diagram of the configuration of a conventional chemical processing device.a 1.2...Three-way pulse 3,4...Pulse 5...
・Metal impurity removal filter, 6... Subparticle filter, 7... Dilution HF, pure water supply device 8.
...Waste liquid U1.9...Bypass tube 10...
Circulation pump, 11... Main particle filter, 12... Chemical solution concentration control device 13... Chemical solution lt
14...Heater. Name of agent: Patent attorney Akira Okaji and 2 others/, 2-
--Three-way valve 3.4- Valve 5 - 1j-8 Unautumn L Quilter 6 - '
7 part takele filter 8- square 5IL port 9- bypass nayu-1 10--゛ circulation 4frζff. 14- Heater Tsuru 1r4 112 Figure==Nakazaki Monko R-Team Ujiko 3rd 1/4--Beater-

Claims (1)

【特許請求の範囲】[Claims]  シリコンの小砕片を混入した金属不純物除去フィルタ
ーと、薬液を循環させる機構と、前記金属不純物除去フ
ィルター内部のシリコン小砕片に吸着した金属不純物を
除去しフィルターを再生する機構とを設けることを特徴
とする薬液処理装置。
It is characterized by being provided with a metal impurity removal filter mixed with small pieces of silicon, a mechanism for circulating a chemical solution, and a mechanism for removing metal impurities adsorbed to the silicon pieces inside the metal impurity removal filter and regenerating the filter. chemical processing equipment.
JP28870590A 1990-10-26 1990-10-26 Treatment apparatus by chemical liquid Pending JPH04162627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28870590A JPH04162627A (en) 1990-10-26 1990-10-26 Treatment apparatus by chemical liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28870590A JPH04162627A (en) 1990-10-26 1990-10-26 Treatment apparatus by chemical liquid

Publications (1)

Publication Number Publication Date
JPH04162627A true JPH04162627A (en) 1992-06-08

Family

ID=17733620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28870590A Pending JPH04162627A (en) 1990-10-26 1990-10-26 Treatment apparatus by chemical liquid

Country Status (1)

Country Link
JP (1) JPH04162627A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002153715A (en) * 2000-11-20 2002-05-28 Shimizu Corp Filter and clean room using the same
JP2011507270A (en) * 2007-12-14 2011-03-03 ラム リサーチ コーポレーション Equipment for particle removal by single-phase and two-phase media
CN102218700A (en) * 2011-04-25 2011-10-19 上海宏力半导体制造有限公司 Chemical mechanical polishing equipment
JP2015103662A (en) * 2013-11-25 2015-06-04 東京エレクトロン株式会社 Filter cleaning method, liquid processing apparatus and storage medium
JP2015220374A (en) * 2014-05-19 2015-12-07 東京エレクトロン株式会社 Process liquid exchange method and liquid processing device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002153715A (en) * 2000-11-20 2002-05-28 Shimizu Corp Filter and clean room using the same
JP2011507270A (en) * 2007-12-14 2011-03-03 ラム リサーチ コーポレーション Equipment for particle removal by single-phase and two-phase media
CN102218700A (en) * 2011-04-25 2011-10-19 上海宏力半导体制造有限公司 Chemical mechanical polishing equipment
JP2015103662A (en) * 2013-11-25 2015-06-04 東京エレクトロン株式会社 Filter cleaning method, liquid processing apparatus and storage medium
JP2015220374A (en) * 2014-05-19 2015-12-07 東京エレクトロン株式会社 Process liquid exchange method and liquid processing device

Similar Documents

Publication Publication Date Title
KR960000374B1 (en) Semiconductor wafer cleaning method and apparatus thereof
JP2760418B2 (en) Semiconductor wafer cleaning solution and method for cleaning semiconductor wafer using the same
JP3154814B2 (en) Semiconductor wafer cleaning method and cleaning apparatus
JP3575859B2 (en) Semiconductor substrate surface treatment method and surface treatment device
JP3338134B2 (en) Semiconductor wafer processing method
KR100303933B1 (en) Control of gas content in process liquids for improved megasonic cleaning of semiconductor wafers and microelectronics substrates
WO2009128327A1 (en) Cleaning water for electronic material, method of cleaning electronic material, and system for supplying water containing dissolved gases
US5979474A (en) Cleaning equipment for semiconductor substrates
JPH04162627A (en) Treatment apparatus by chemical liquid
KR102654039B1 (en) Substrate processing apparatus, substrate processing method, and computer-readable recording medium
JP3473662B2 (en) Wet cleaning equipment
KR20110082730A (en) Apparatus and method for cleaning wafer
JP2603020B2 (en) Method and apparatus for cleaning semiconductor wafer
WO2013171973A1 (en) Method for cleaning semiconductor wafer
JP3595681B2 (en) Manufacturing method of epitaxial wafer
JPH02164035A (en) Cleaning of semiconductor substrate
JPH0629271A (en) Method of washing semiconductor wafer and its device
JPH0919661A (en) Method and apparatus for washing electronic parts and the like
JP2893493B2 (en) Silicon wafer cleaning method
JPS62140423A (en) Manufacturing equipment for semiconductor integrated circuit device
TW201825199A (en) Substrate processing method, liquid feeding method and substrate processing apparatus
JPH07221066A (en) Wet treatment device
JPH04290432A (en) Semiconductor manufacturing device
JPH03159123A (en) Method for cleaning semiconductor wafer
JP2002367949A (en) Method for cleaning silicon wafer