JPH0416227A - Stirring robot in tank - Google Patents

Stirring robot in tank

Info

Publication number
JPH0416227A
JPH0416227A JP2116811A JP11681190A JPH0416227A JP H0416227 A JPH0416227 A JP H0416227A JP 2116811 A JP2116811 A JP 2116811A JP 11681190 A JP11681190 A JP 11681190A JP H0416227 A JPH0416227 A JP H0416227A
Authority
JP
Japan
Prior art keywords
tank
robot
hinge
shaft
stirring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2116811A
Other languages
Japanese (ja)
Inventor
Masahisa Fujimoto
雅久 藤本
Shigeru Unisuga
宇仁菅 繁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2116811A priority Critical patent/JPH0416227A/en
Publication of JPH0416227A publication Critical patent/JPH0416227A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)

Abstract

PURPOSE:To accurately detect the position of a robot by providing a center shaft and an upper shaft for a tank, via a hinge having a second rotary encoder fitted to its joining stem, and a lower shaft for retaining the robot via the upper shaft and the hinge. CONSTITUTION:A rotary encoder 13 is provided at the upper end of a center shaft, and a hinge 14 is provided at the lower end thereof. An upper shaft 15 is fitted at its upper end to the lower part of the hinge 14 in a manner to permit a vertical and free bending and stretching thereof, and a lower shaft 17 is fitted at its upper end to the lower part of the upper shaft 15 via a hinge 16 in a manner to permit a vertical and free bending and stretching thereof. The lower shaft 17 is forked at its lower end into two parts, between which a stirring robot 7 movable on the bottom part of a tank is held. A rotary encoder 18 is fitted to the hinge 14 at its joining stem, and a rotary encoder 19 is fitted to the hinge 16 at its joining stem in order to operatively associate these hinges with each other, whereby the two-dimensional position of the stirring robot 7 on the bottom part of the tank 1 can be detected.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば原油貯蔵タンクやCOM、CWM貯蔵
タンクなどに適用されるタンク内撹拌ロボントに関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an in-tank stirring robot applied to, for example, crude oil storage tanks, COM, CWM storage tanks, and the like.

〔従来の技術〕[Conventional technology]

原油貯蔵タンクの底部には難燃性のスラッジが沈降して
堆積する。また、COM、CWM貯藏タンクの底部には
石炭粒子の固形分が沈降して堆積する。これを防ぐため
、貯蔵タンク内にロボットを入れて遠隔操作によってタ
ンク底部の沈澱堆積物をポンプに吸込み、タンク上方に
放出させて貯蔵タンク内を攪拌するなどの試みが行われ
ている。
Flame-retardant sludge settles and accumulates at the bottom of crude oil storage tanks. In addition, solid content of coal particles settles and accumulates at the bottom of the COM and CWM storage tanks. In order to prevent this, attempts are being made to place a robot inside the storage tank and use remote control to suck up the sediment at the bottom of the tank into a pump and release it above the tank to agitate the inside of the storage tank.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記のような従来のロボットにおいて、貯蔵タンク内に
おけるロボットの位置を目視或いは液中TVによってf
!認することは貯蔵タンク内が汚濁していて視界が全く
きかないために難しい。このため、超音波或いは可慾音
波を使用して検出することも考えられるが、貯蔵タンク
内のスラッジの濃度、石炭粒子の粒度と濃度などによっ
て、またこれらの温度によっても音速が変わるとともに
、タンク壁面からの反射波を濾過しなければならず、極
めて複雑で高価な補正装置を必要とし、また検出精度も
低い。
In the conventional robot as described above, the position of the robot in the storage tank can be determined visually or by using an underwater TV.
! It is difficult to identify the situation because the inside of the storage tank is so polluted that it is completely impossible to see. For this reason, it is possible to detect using ultrasonic waves or flexible sound waves, but the speed of sound changes depending on the concentration of sludge in the storage tank, the particle size and concentration of coal particles, and the temperature of these things. The reflected waves from the wall must be filtered, requiring an extremely complicated and expensive correction device, and the detection accuracy is low.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係るタンク内撹拌ロボットは上記課題の解決を
目的にしており、第一のロータリエンコ−ダが装着され
たタンクの中心軸と、結合軸に第二のロータリエンコー
ダが装着されたヒンジを介して上記中心軸と上下方向に
屈伸自在に結合された上部軸と、該上部軸とヒンジを介
して上下方向に屈伸自在−二結合されるとともに上記タ
ンクの底部を走行するロボット本体を挟持する下部軸と
を備えた構成を特徴としている。
The in-tank stirring robot according to the present invention aims to solve the above-mentioned problems, and has a central axis of the tank on which a first rotary encoder is attached, and a hinge on which a second rotary encoder is attached to a connecting shaft. An upper shaft that is vertically flexible and vertically connected to the central shaft via a hinge, and a robot main body that is vertically flexible and vertically connected to the upper shaft through a hinge and that runs on the bottom of the tank. It is characterized by a configuration including a lower shaft.

〔作用〕[Effect]

即ち、本発明に係るタンク内撹拌ロボットにおいては、
ロータリエンコーダが装着されたタンクの中心軸に上部
軸が結合軸にロークリエンコーダが装着されたヒンジを
介して、また上部軸にタンクの底部を走行するロボット
本体を挟持する下部軸がヒンジを介してそれぞれ上下方
向に屈伸自在に結合されており、タンクの中心軸に対す
るロボット本体の周方向の角度および中心軸からのロボ
ット本体の距離が、ロータリエンコーダによりそれぞれ
検出される旋回角度、屈伸角度と上部軸および下部軸の
長さとにより求まり、タンク内におけるロボット本体の
位置を簡単な構造で精度良く検出することができる。
That is, in the tank stirring robot according to the present invention,
The upper shaft connects to the center axis of the tank, where the rotary encoder is installed, through a hinge to which the rotary encoder is installed, and the lower shaft, which holds the robot body running on the bottom of the tank, connects to the upper shaft through the hinge. The circumferential angle of the robot body with respect to the central axis of the tank and the distance of the robot body from the central axis are respectively detected by rotary encoders. It is determined by the lengths of the shaft and the lower shaft, and the position of the robot body in the tank can be detected with high accuracy with a simple structure.

〔実施例〕〔Example〕

第1図乃至第3図は本発明の一実施例に係るタンク内撹
拌ロボットの構造説明図、第4図および第5図はその作
用説明図である。図において、本実施例に係るタンク内
撹拌ロボ・ノドは原油貯蔵タンク内の撹拌に使用されて
おり、第1図および第2図において符号1はタンク、2
はその屋根、4は防油堤、6は沈澱堆積物、7は攪拌ロ
ボット、9はその操作盤である。そして、図に示すよう
にタンク10屋根2の中心に蓋10とフランジ11を介
してブツシュ12が取り付けられており、図示しない中
心軸がブツシュ12によって旋回自在に支持されている
。この中心軸の上端にはロータリエンコーダ13が、ま
た下端にはヒンジ14がそれぞれ装着されている。ヒン
ジ14の下部には上部軸15の上端が垂直方向に屈伸自
在に結合され、上部軸15の下端にはヒンジ16を介し
て下部軸17の上端が垂直方向に屈伸自在に結合されて
いる。なお、タンクlの屋根2が固定型式でなく浮屋根
型式の場合には、中心軸:よ支柱を介巳てタンク1の底
部或いは側壁により支持される。下部軸17の下端は二
叉に分かれてタンクlの底部を走行する撹拌ロボ、ドア
を両側面から挟持している。ヒンジ14の結合軸にはロ
ータリエンコーダ18が、またヒンジ16の結合軸には
ロータリエンコーダ19がそれぞれ装着されており、ヒ
ンジ14,16と一体に形成されている。これらのロー
タリエンコーダ13,18.19は円周に設けられてい
るラジアル格子によるモアレじまの移動を光電的に捕え
てラジアル格子の回転角を知ることができるもので、精
度3秒、分解能0.5秒の機能およびタンク内における
耐環境性を具えており、中心軸の旋回角θはロータリエ
ンコーダ13により、上下部軸15.17の屈伸角α、
βはロータリエンコーダ18.19によりそれぞれ検出
される。
1 to 3 are structural explanatory diagrams of an in-tank stirring robot according to an embodiment of the present invention, and FIGS. 4 and 5 are explanatory diagrams of its operation. In the figure, the in-tank agitation robot/nod according to this embodiment is used for agitation in a crude oil storage tank, and in Figs.
4 is the roof, 4 is the oil embankment, 6 is the sediment, 7 is the stirring robot, and 9 is the operation panel. As shown in the figure, a bushing 12 is attached to the center of the roof 2 of the tank 10 via a lid 10 and a flange 11, and a central shaft (not shown) is rotatably supported by the bushing 12. A rotary encoder 13 is attached to the upper end of this central shaft, and a hinge 14 is attached to the lower end. The upper end of an upper shaft 15 is coupled to the lower end of the hinge 14 so as to be vertically flexible, and the upper end of a lower shaft 17 is coupled to the lower end of the upper shaft 15 via a hinge 16 so as to be vertically flexible. In addition, when the roof 2 of the tank 1 is not a fixed type but a floating roof type, it is supported by the bottom or side wall of the tank 1 via a central axis and a support. The lower end of the lower shaft 17 is divided into two parts and holds the stirring robot running at the bottom of the tank l and the door from both sides. A rotary encoder 18 is attached to the coupling shaft of the hinge 14, and a rotary encoder 19 is attached to the coupling shaft of the hinge 16, and these are formed integrally with the hinges 14 and 16. These rotary encoders 13, 18, and 19 are capable of detecting the rotation angle of the radial grating by photoelectrically capturing the movement of the moire edge due to the radial grating provided around the circumference, and have an accuracy of 3 seconds and a resolution of 0. .5 second function and environmental resistance inside the tank, the rotation angle θ of the central axis is determined by the rotary encoder 13, and the bending/extension angle α of the upper and lower shafts 15, 17,
β is detected by rotary encoders 18 and 19, respectively.

第4図に示すように、攪拌ロボ、ドアからタンク1の中
心までの距離をr、上部軸15の長さを11、下部軸1
7の長さを12、タンク1の高さをH2上部軸15と中
心軸との屈伸角をαとした場合、攪拌ロボット7の位置
は屈伸角αの一次元関数として次式で表わされる。
As shown in Figure 4, the distance from the stirring robot door to the center of the tank 1 is r, the length of the upper shaft 15 is 11, and the lower shaft 1
When the length of the stirring robot 7 is 12, the height of the tank 1 is H2, and the bending/extending angle between the upper shaft 15 and the central axis is α, the position of the stirring robot 7 is expressed as a one-dimensional function of the bending/extending angle α by the following equation.

f、cos  α −−−−−−−−−(1)また、上
部軸15と下部軸17との屈伸角βは次式で表わされる
f, cos α ------- (1) Further, the bending/extension angle β between the upper shaft 15 and the lower shaft 17 is expressed by the following equation.

従って、タンク1の高さ、上部軸15、下部軸17の長
さおよび上部軸15の屈伸角αをロークリエンコーダ1
8で検出することにより、タンク1の182における中
心軸をタンク1の中心とする撹拌ロボ、ドアのタンクl
底部における中心からの距離が求まる。また、攪拌ロボ
ット7のタンク1底部における周方向の位置は中心軸の
旋回角θをロークリエンコーダ13で検出することによ
り求まる。このようにして、攪拌ロボット7のタンク1
の底部における二次元位置が検出される。
Therefore, the height of the tank 1, the lengths of the upper shaft 15, the lower shaft 17, and the bending/extension angle α of the upper shaft 15 are determined by the low-resolution encoder 1.
By detecting at 8, the stirring robot with the central axis at 182 of tank 1 as the center of tank 1, the tank l at the door
Find the distance from the center at the bottom. Further, the position of the stirring robot 7 in the circumferential direction at the bottom of the tank 1 can be determined by detecting the rotation angle θ of the central axis using the rotary encoder 13. In this way, the tank 1 of the stirring robot 7
The two-dimensional position at the bottom of is detected.

IjP10ボット7を操作するための動力用ホースや制
御用ケーブルは上部軸15、下部軸17に沿って付設さ
れ、操作盤9内には電気油圧式の制御装置が内蔵されて
おり、第3図に示すように数値制御装置に数値情報とし
てタンク1の寸法、旋回角θおよび屈伸角αに係る攪拌
ロボット7の走行パターン、スラッジの沈澱堆積状況に
対応した攪拌ロボットの走行速度などが制御用ケーブル
を介して入力される。すると、数値制御装置からは指令
パルス制御信号が出力され、この信号は増幅器を経て電
油変換器で油圧に変換され、動力用ホースを介して撹拌
ロボットの独立懸架式の車輪を駆動する油圧モータの回
転速度と回転方向とを自動的に遠隔制御する。また、屈
伸角αの関数である屈伸角βはフィードバック信号とし
てアナログディジタル変換器にフィードバックされ、数
値情報として入力された屈伸角αとコンピュータで比較
演算され、両者に偏差があるときには回路修正発信器か
ら修正信号が発信されるようになっており、撹拌ロボッ
ト7の位置の検出精度の向上が図られている。攪拌ロポ
、ドアの走行軌跡は操縦盤9のCRT、(CaLhOd
e  Ray  Tube)画面上に表示され、また必
要に応じて記録されるようになっている。
Power hoses and control cables for operating the IjP10 bot 7 are attached along the upper shaft 15 and lower shaft 17, and an electro-hydraulic control device is built into the operation panel 9, as shown in Fig. 3. As shown in the figure, numerical information such as the dimensions of the tank 1, the running pattern of the stirring robot 7 related to the turning angle θ and the bending/extending angle α, and the running speed of the stirring robot corresponding to the sludge sedimentation situation is sent to the numerical control device using the control cable. Input via . Then, a command pulse control signal is output from the numerical control device, and this signal passes through an amplifier and is converted into hydraulic pressure by an electro-hydraulic converter, which is then connected to a hydraulic motor that drives the independent suspension wheels of the stirring robot via a power hose. The rotation speed and direction of the rotation are automatically controlled remotely. In addition, the bending/extending angle β, which is a function of the bending/extending angle α, is fed back to the analog-digital converter as a feedback signal, and is compared with the bending/extending angle α input as numerical information by a computer. If there is a deviation between the two, a circuit correction oscillator is sent. A correction signal is transmitted from the stirring robot 7, and the accuracy of detecting the position of the stirring robot 7 is improved. The travel trajectory of the stirring robot and door is shown on the CRT of the control panel 9 (CaLhOd
e Ray Tube) is displayed on the screen and recorded as necessary.

第5図は攪拌ロボットの走行軌跡の2つのパターンA、
Bを示す。パターンAは図の上方に示すように撹拌ロボ
ットの走行区分を半径方向に2分割して攪拌を行うもの
で、攪拌ロボットはタンクlの底部中心から出発して半
径方向に約60%の範囲を前進、後進を繰り返しながら
三角波形状に円周方向に移動し、1周した後に半径方向
の残り約40%の範囲を同様の動作で走行することによ
ってタンク1全底部の攪拌を行う。また、パターンBは
図の下方に示すように攪拌ロボットの走行区分を半径方
向に分割しないで前進、後進の走行行程量に変化付けて
攪拌を行うもので、攪拌ロボットはタンク1の底部中心
から出発してタンク1周辺まで前進し、その後に後進、
前進を繰り返しながら三角波形状に大、小の変化を付け
ながら周方向に移動し、タンクl全底部の攪拌を行う。
Figure 5 shows two patterns A of the stirring robot's running trajectory.
Indicates B. In pattern A, as shown in the upper part of the diagram, stirring is performed by dividing the movement section of the stirring robot into two in the radial direction. It moves in the circumferential direction in a triangular wave shape while repeatedly moving forward and backward, and after completing one revolution, the remaining 40% of the radial range is moved in the same manner, thereby stirring the entire bottom of the tank 1. In addition, in pattern B, as shown in the lower part of the figure, the stirring robot does not divide its travel section in the radial direction, but instead changes the amount of forward and backward travel strokes to perform stirring, and the stirring robot moves from the center of the bottom of tank 1. Start, move forward to around tank 1, then move backwards,
While repeatedly moving forward, it moves in the circumferential direction while making large and small changes in a triangular wave shape, stirring the entire bottom of the tank.

このようにして、タンク1の底部にスラッジが沈降して
堆積するのを防止するが、この攪拌ロボットの位置の検
出が非常に簡単な構造でしかも極めて高い精度で行われ
るので、攪拌ロボットの走行制御が能率的に行われ、そ
の設備費、動力費、人件費などを低減させることができ
る。
In this way, sludge is prevented from settling and accumulating at the bottom of the tank 1, but since the position of the stirring robot is detected with a very simple structure and with extremely high precision, the movement of the stirring robot is prevented. Control is performed efficiently, and equipment costs, power costs, personnel costs, etc. can be reduced.

〔発明の効果〕〔Effect of the invention〕

本発明に係るタンク内撹拌ロボットは前記の通り構成さ
れており、タンク内におけるロボット本体の位置を簡単
な構造で精度良く検出することができるので、ロボット
本体の走行制御が極めて安価に、能率的に行われる。
The in-tank stirring robot according to the present invention is configured as described above, and the position of the robot body in the tank can be detected with high accuracy with a simple structure, so the movement control of the robot body can be performed extremely inexpensively and efficiently. It will be held in

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係るタンク内撹拌ロボント
の正面図、第2図はその要部斜視図、第3図はそのブロ
ック図、第4図および第5図はその作用説明図である。 l・・・タンク、  2・・・屋根、 7・−・攪拌ロボット、 13.18.19・・・ロータリエンコーダ、14.1
6・・・ヒンジ、 17・・・下部軸。 15・・・上部軸、
Fig. 1 is a front view of an in-tank stirring robot according to an embodiment of the present invention, Fig. 2 is a perspective view of its main parts, Fig. 3 is a block diagram thereof, and Figs. 4 and 5 are explanatory diagrams of its operation. It is. l... Tank, 2... Roof, 7... Stirring robot, 13.18.19... Rotary encoder, 14.1
6...Hinge, 17...Lower shaft. 15... Upper axis,

Claims (1)

【特許請求の範囲】[Claims] 第一のロータリエンコーダが装着されたタンクの中心軸
と、結合軸に第二にロータリエンコーダが装着されたヒ
ンジを介して上記中心軸と上下方向に屈伸自在に結合さ
れた上部軸と、該上部軸とヒンジを介して上下方向に屈
伸自在に結合されるとともに上記タンクの底部を走行す
るロボット本体を挟持する下部軸とを備えたことを特徴
とするタンク内撹拌ロボット。
A central axis of the tank to which a first rotary encoder is attached; an upper shaft coupled to the central axis via a hinge to which a second rotary encoder is attached so as to be freely bendable and extensible in the vertical direction; An in-tank stirring robot characterized by comprising a lower shaft which is connected to the shaft via a hinge so as to be vertically flexible and which holds a robot main body that runs along the bottom of the tank.
JP2116811A 1990-05-08 1990-05-08 Stirring robot in tank Pending JPH0416227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2116811A JPH0416227A (en) 1990-05-08 1990-05-08 Stirring robot in tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2116811A JPH0416227A (en) 1990-05-08 1990-05-08 Stirring robot in tank

Publications (1)

Publication Number Publication Date
JPH0416227A true JPH0416227A (en) 1992-01-21

Family

ID=14696236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2116811A Pending JPH0416227A (en) 1990-05-08 1990-05-08 Stirring robot in tank

Country Status (1)

Country Link
JP (1) JPH0416227A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7567266B2 (en) 2004-04-30 2009-07-28 Hewlett-Packard Development Company, L.P. Media labeling system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7567266B2 (en) 2004-04-30 2009-07-28 Hewlett-Packard Development Company, L.P. Media labeling system

Similar Documents

Publication Publication Date Title
US9863891B1 (en) Vehicle for external inspection of pipes
US7950298B2 (en) Motorized bracelet assembly for moving sensor modules around a pipe
US5049988A (en) Scanning T.V. camera
EP0171136A1 (en) Marine loading arm monitoring system
CN108326839A (en) Seven-degree of freedom robot
CN112413281A (en) Novel spiral wheel type miniature pipeline detection robot and use method
US4655085A (en) Trackless scanner
JPH0416227A (en) Stirring robot in tank
CA2147439A1 (en) Steering detection device for articulated vehicles
JP4381292B2 (en) Flaw detector
US20090306516A1 (en) Ultrasound probe and ultrasound diagnosis apparatus
KR101506093B1 (en) Flat type observation device for sewage pipe
CN203623953U (en) System for automatic regulating orientation of deep sea AUV butt joint platform
CN113928579B (en) Unmanned aerial vehicle flaw detection device for pipeline
CN106647751A (en) Underwater cleaning robot path control and positioning device for ship
JPS59166493A (en) Industrial robot
CN206105870U (en) Robot
JP3324483B2 (en) Inspection device
CN209197688U (en) Static gabarit detector and its system
KR200265867Y1 (en) Crawler
JPH0244166Y2 (en)
JP2002243649A (en) Visual inspection device
JP2519757B2 (en) Traveling robot
CN221251418U (en) Signal steering gear with automatic limiting function
JPH0790490B2 (en) Electronically controlled articulated motion mechanism using magnetostriction displacement sensor