JPH0416217A - Evaluation of dividing performance of ultrafiltration membrane - Google Patents

Evaluation of dividing performance of ultrafiltration membrane

Info

Publication number
JPH0416217A
JPH0416217A JP11653590A JP11653590A JPH0416217A JP H0416217 A JPH0416217 A JP H0416217A JP 11653590 A JP11653590 A JP 11653590A JP 11653590 A JP11653590 A JP 11653590A JP H0416217 A JPH0416217 A JP H0416217A
Authority
JP
Japan
Prior art keywords
colloidal silica
ultrafiltration membrane
evaluation
fractionation performance
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11653590A
Other languages
Japanese (ja)
Other versions
JP2851371B2 (en
Inventor
Kazuro Nakao
中尾 和朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14689534&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0416217(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP11653590A priority Critical patent/JP2851371B2/en
Publication of JPH0416217A publication Critical patent/JPH0416217A/en
Application granted granted Critical
Publication of JP2851371B2 publication Critical patent/JP2851371B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To permit the fractionation performance of an ultrafiltration membrane to be evaluated by using the colloidal silica particle easily available at a low price and having a stable character. CONSTITUTION:A colloidal silica particle suspension is diluted with pure water, adjusted pH with hydrochloric acid and sodium hydroxide and used for evaluation of the fractionation performance of an ultrafiltration membrane. This method permits the fractionation performance of the ultrafiltration membrane to be evaluated, with little effect being produced thereon by the shearing force arising from the pressure and flow condition and by the pH values around neutrality from 6 to 10.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、限外濾過膜の分画性能の設計、品質管理、仕
様説明等に用いるための分画性能評価方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for evaluating fractionation performance for use in designing, quality control, specification explanation, etc. of fractionation performance of an ultrafiltration membrane.

〔従来技術〕[Prior art]

一般に、限外濾過膜の分画性能は、予めサイズのわかっ
ている指標物質を用い、これをクリーンな純水に溶かし
た溶液を膜濾過し、指標物質の阻止率を測定することに
よって評価されている。
Generally, the fractionation performance of an ultrafiltration membrane is evaluated by using an indicator substance whose size is known in advance, dissolving it in clean pure water, filtering it through the membrane, and measuring the rejection rate of the indicator substance. ing.

ここで阻止率とは、 原液の溶質濃度−透過液の″溶質濃度 阻止率− (χ)     原液の溶質濃度 の意味である。Here, the inhibition rate is Solute concentration of stock solution - Solute concentration of permeate Rejection rate - (χ) Solute concentration of stock solution This is the meaning of

また分画分子量とは、ある分子量のわかっている指標物
質(例えば、分子量20.000のポリエチレングリコ
ール)を、90%阻止する膜を「ポリエチレングリコー
ル基準の分画分子量20.000 Jと呼ふ、分画性能
の表現方法のことである。
Molecular weight cutoff refers to a membrane that blocks 90% of an indicator substance with a known molecular weight (for example, polyethylene glycol with a molecular weight of 20.000), which is called a molecular weight cutoff of 20.000 J based on polyethylene glycol. This is a method of expressing fractionation performance.

従来より分画性能評価に用いられる指標物質としては、
デキストランやポリエチレングリコール等の高分子、あ
るいは酵素等の球状タンパク質等が挙げられる。
Indicator substances traditionally used for evaluation of fractionation performance include:
Examples include polymers such as dextran and polyethylene glycol, and globular proteins such as enzymes.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、デキストランやポリエチレングリコール等の高
分子は鎖状形状であるため、圧力条件や流れ(膜面流速
)による剪断力条件が変化した場合、形状や向きが自由
に変化し、膜の透過しやすさが変化する。 従って膜の
分画性能評価における阻止率が上記条件の影響を大きく
受けるため、膜自体の真の分画性能を評価す・ることか
難しかった。
However, since polymers such as dextran and polyethylene glycol have a chain shape, when the shear force conditions due to pressure conditions or flow (membrane surface flow velocity) change, the shape and orientation change freely, making it easier for them to permeate through the membrane. It changes. Therefore, the rejection rate in evaluating the fractionation performance of the membrane is greatly affected by the above conditions, making it difficult to evaluate the true fractionation performance of the membrane itself.

一方、酵素等のタンパク賞は、■非常に高価であるため
多量かつ頻繁に使用できない、■タンパク質同士の化学
的相互作用による結合の影響を避けるために、特定のp
Hでかつ電解質を含む溶媒を用いなければならない、■
タンパク質と膜材質問の化学的相互作用によって阻止率
が影響を受ける、■タンパク質の種類によって■、■の
性質か大きく異なる、■タンパク質が変形しやすいので
阻止率が圧力条件や流れによる剪断力条件の影響を受け
る、■ポンプ等で強く攪拌した場合、分解や変形を起こ
す、等の種々の問題を有するため、前記高分子物質以上
に取り扱いが難しい。
On the other hand, proteins such as enzymes are: - extremely expensive and cannot be used in large quantities and frequently;
A solvent that is H and contains an electrolyte must be used, ■
The rejection rate is affected by the chemical interaction between the protein and the membrane material. ■The properties of ■ and ■ vary greatly depending on the type of protein. ■ Since the protein is easily deformed, the rejection rate depends on pressure conditions and shear force conditions due to flow. It is more difficult to handle than the above-mentioned polymeric substances because it has various problems such as 1) decomposition or deformation when strongly agitated with a pump or the like.

従って、かかる圧力条件、流れによる剪断力条件、その
他の化学的物理的な条件の影響を受けずに安定して分画
性能評価を行うことができる指標物質は今まで見いださ
れていなかった。
Therefore, no indicator substance has been found so far that allows stable evaluation of fractionation performance without being affected by such pressure conditions, shear force conditions due to flow, and other chemical and physical conditions.

〔課題を解決するための手段〕[Means to solve the problem]

本発明では、コロイダルシリカ粒子を用いることにより
上記問題点を解決できることを見いだした。
In the present invention, it has been discovered that the above problems can be solved by using colloidal silica particles.

即ち本発明は、コロイダルシリカ粒子を用いることを特
徴とする限外濾過膜の分画性能評価方法を提供する。
That is, the present invention provides a method for evaluating the fractionation performance of an ultrafiltration membrane, which is characterized by using colloidal silica particles.

本発明におけるコロイダルシリカ粒子とは、無機珪酸の
超微粒子のことで、水を分散媒として無水珪酸の超微粒
子を水中に分散せしめてなるコロイド溶液である。 か
かるコロイダルシリカ粒子の平均粒子径は、1mμm〜
100mμmが好ましい。
Colloidal silica particles in the present invention are ultrafine particles of inorganic silicic acid, and are a colloidal solution prepared by dispersing ultrafine particles of silicic anhydride in water using water as a dispersion medium. The average particle diameter of such colloidal silica particles is 1 mμm to
100 mμm is preferred.

かかるコロイダルシリカ粒子は、安価で入手しやす(、
安定した性質を有するので取り扱いも容易である。 ま
た、粒径分布範囲が狭いのでシャープな分画性能評価が
可能である。 市販のものとしては、例えば、日産化学
■製の商品名「スノーテックス」等を好適に用いること
ができるが、これに限定されるものではない。。
Such colloidal silica particles are inexpensive and easily available (
It has stable properties and is easy to handle. Furthermore, since the particle size distribution range is narrow, sharp evaluation of fractionation performance is possible. As a commercially available product, for example, the product name "Snowtex" manufactured by Nissan Kagaku ■ can be suitably used, but it is not limited thereto. .

一般に、球状タンパク質の粒子径rと分子量M−との関
係は、一般に、 r(入)=2×〜ワ償(Ferryの式)で表される。
In general, the relationship between the particle diameter r and the molecular weight M- of a globular protein is generally expressed as: r (in) = 2 x (Ferry's equation).

「スノーテックス」のコロイダルシリカ粒子の粒子サイ
ズには、粒径4〜61Iull、7〜9altII11
.10〜20 mμ1等があるため、上記式を用いれば
これらの分子量は、順に8,000〜27,000.4
3,000〜91,000.125,000〜1,00
0,000に相当する。
The particle sizes of the colloidal silica particles of "Snowtex" include particle sizes of 4 to 61 Iull, 7 to 9 altII11
.. Since there are 10 to 20 mμ1, etc., using the above formula, the molecular weight of these is 8,000 to 27,000.4 in order.
3,000~91,000.125,000~1,00
Equivalent to 0,000.

また、コロイダルシリカ粒子の粒子径は、BET法(表
面吸着法の一種)によって測定することができる。
Further, the particle diameter of colloidal silica particles can be measured by the BET method (a type of surface adsorption method).

コロイダルシリカ粒子の表面には、−5iOH基及び−
0H−イオンが存在し、アルカリイオンによって電気二
重層が形成され、粒子間の反発により安定化されている
。  この電荷バランスがくずれると、粒子同士が結合
し凝集がおこるため好ましくない。
The surface of the colloidal silica particles contains -5iOH groups and -
0H- ions are present, an electric double layer is formed by alkali ions, and is stabilized by repulsion between particles. If this charge balance is disrupted, particles will bond with each other and aggregation will occur, which is not preferable.

コロイダルシリカ粒子のpHに対する影響は、pH10
,5以上で溶解し、pHが酸性域になると凝集しやすく
なる。 またコロイダルシリカ粒子濃度が高いほど凝集
しやすくなる。
The influence of colloidal silica particles on pH is as follows: pH 10
, 5 or higher, and tends to aggregate when the pH is in the acidic range. Furthermore, the higher the concentration of colloidal silica particles, the more likely they are to aggregate.

本発明においては、かかるコロイダルシリカ粒子溶液(
市販の溶液濃度は20〜30重量%)を、純水で10〜
10,000ppm 、好ましくはioo〜2.000
ppmとなるように希釈し、塩酸及び水酸化ナトリウム
でpH6〜IO1好ましくはpH7〜9に調整して、限
外濾過膜の分画性能評価に用いる。
In the present invention, such a colloidal silica particle solution (
The concentration of commercially available solutions is 20-30% by weight), and the concentration is 10-30% by weight with pure water.
10,000ppm, preferably ioo~2.000
ppm, adjusted to pH 6 to IO1, preferably pH 7 to 9, with hydrochloric acid and sodium hydroxide, and used for evaluating the fractionation performance of ultrafiltration membranes.

なお、原液及び透過液中に含まれるコロイダルシリカ濃
度の定量は、I CP (Inductively C
oupled Plasma Atomic Emis
sion Spectrometer)法あるいは蒸発
乾固法によって行うことができる。
Note that the concentration of colloidal silica contained in the stock solution and permeate can be determined using I CP (Inductively C
Oupled Plasma Atomic Emis
This can be carried out by the ion spectrometer method or the evaporation to dryness method.

〔実施例〕〔Example〕

次に実施例により、本発明をより具体的に説明する。 Next, the present invention will be explained in more detail with reference to Examples.

限外濾過膜として、日東電工■製、中空糸状限外濾過膜
を使用した。 かかる分画分子量はポリエチレングリコ
ール基準で20,000 (タンパク質基準で6,00
0 )相当である。 この限外濾過膜をポリプロピレン
製チューブ内に注型し、長さ20CI11の膜モジュー
ルを作製した。
As the ultrafiltration membrane, a hollow fiber ultrafiltration membrane manufactured by Nitto Denko ■ was used. The molecular weight fraction is 20,000 based on polyethylene glycol (6,000 based on protein).
0) Considerable. This ultrafiltration membrane was cast into a polypropylene tube to produce a membrane module with a length of 20 CI11.

評価用原液のコロイダルシリカ溶液には、日産化学株製
のスノーテックスXS(粒子径4〜6幀μm)を用い、
適宜クリーン水で希釈し、塩酸及び水酸化ナトリウムに
てpH調整を行い評価を行った。
For the colloidal silica solution of the stock solution for evaluation, Snowtex XS (particle size 4 to 6 μm) manufactured by Nissan Chemical Co., Ltd. was used.
It was diluted with clean water as appropriate, and the pH was adjusted with hydrochloric acid and sodium hydroxide for evaluation.

阻止率は、セイコー電子工業■製プラズマ発光分析装置
5PS−7000を用い、IPC法にて原液及び透過液
のケイ素濃度を測定し、次式により算出して求めた。
The rejection rate was determined by measuring the silicon concentration of the stock solution and the permeated solution by the IPC method using a plasma emission spectrometer 5PS-7000 manufactured by Seiko Electronics Co., Ltd. and calculating it using the following formula.

原液のケイ素濃度−透過液のケイ素濃度また、比較例で
用いたポリエチレングリコール(分子120,000)
については、クリーンな純水に溶解して評価原液とし、
阻止率は屈折計にて濃度を測定し求めた。
Silicon concentration of stock solution - silicon concentration of permeated solution Also, polyethylene glycol used in comparative example (120,000 molecules)
For evaluation, dissolve it in clean pure water and use it as an evaluation stock solution.
The rejection rate was determined by measuring the concentration using a refractometer.

実施例1 コロイダルシリカ(平均粒径50人(換算分子量15.
000) )溶液を、濃度1.OOOppm、 pH8
に調整し、これを膜面線速0.6m/sec、平均圧力
0.5.1.0.1.5 kgf/cjの各条件で、膜
モジュールの内側より濾過させた時のコロイダルシリカ
粒子の阻止率を第1図に示す。
Example 1 Colloidal silica (average particle size 50 (converted molecular weight 15.
000) ) solution at a concentration of 1. OOOppm, pH8
colloidal silica particles when filtered from the inside of the membrane module under the following conditions: membrane surface linear velocity of 0.6 m/sec, average pressure of 0.5, 1, 0, 1,5 kgf/cj Figure 1 shows the inhibition rate.

比較例1 ポリエチレングリコール(分子量20,000)溶液を
濃度5.0OOppa+に調整し、これを実施例1と同
様の条件下で濾過させた時のポリエチレングリコールの
阻止率を第1図に併せて示す。
Comparative Example 1 A polyethylene glycol (molecular weight 20,000) solution was adjusted to a concentration of 5.0OOppa+ and filtered under the same conditions as in Example 1. The rejection rate of polyethylene glycol is also shown in Figure 1. .

実施例2 コロイダルシリカ(平均粒径50人(換算分子量15.
000) )溶液を、濃度1,000ppm、 pH8
に調整し、これを平均圧力1.0 kgf/cd、膜面
線速0.2.0.6.1 n+/secの各条件で、膜
モジュールの内側より濾過させた時のコロイダルシリカ
粒子の阻止率を第2図に示す。
Example 2 Colloidal silica (average particle size 50 (converted molecular weight 15.
000) ) solution at a concentration of 1,000 ppm and a pH of 8.
of colloidal silica particles when filtered from inside the membrane module under the following conditions: average pressure 1.0 kgf/cd, membrane surface linear velocity 0.2. The rejection rate is shown in Figure 2.

比較例2 ポリエチレングリコール(分子量20,000)溶液を
濃度5.000ppn+に調整し、これを実施例2と同
様の条件下で濾過させた時のポリエチレングリコールの
阻止率を第2図に併せて示す。
Comparative Example 2 A polyethylene glycol (molecular weight 20,000) solution was adjusted to a concentration of 5.000 ppn+ and filtered under the same conditions as in Example 2. The rejection rate of polyethylene glycol is also shown in Figure 2. .

実施例3 pH6,8,10の3種類のコロイダルシリカ(平均粒
径50人(換算分子量15,000) ) 1.000
ppm溶液を用い、平均圧力1.0 kgf/c1i1
.膜面線速0.6  m/secの条件で、膜モジュー
ルの内側より濾過させた時のコロイダルシリカ粒子の阻
止率を第3図に示す。
Example 3 Three types of colloidal silica with pH 6, 8, and 10 (average particle size 50 (converted molecular weight 15,000)) 1.000
Using ppm solution, average pressure 1.0 kgf/c1i1
.. Figure 3 shows the rejection rate of colloidal silica particles when filtered from the inside of the membrane module under the condition of membrane surface linear velocity of 0.6 m/sec.

II 1 図 上記実施例より明らかな如く、限外濾過膜のコロイダル
シリカの阻止率は、圧力条件及び流れによる剪断力条件
の影響をほとんど受けなかった。
II 1 Figure As is clear from the above example, the rejection rate of colloidal silica in the ultrafiltration membrane was hardly affected by pressure conditions and shear force conditions due to flow.

また、コロイダルシリカ溶液のpHに対しても、pH6
〜10の中性域ではほとんど影響を受けなかった。
Also, the pH of the colloidal silica solution is 6.
There was almost no effect in the neutral range of ~10.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、圧力条件や流れによる剪断力条件の影
響をほとんど受けず、かつpH条件についても、pH6
〜10の中性域でほとんど影響を受けることなく、限外
濾過膜の分画性能評価を行うことができる。
According to the present invention, it is almost unaffected by pressure conditions and shear force conditions due to flow, and also with respect to pH conditions, pH 6.
The fractionation performance of the ultrafiltration membrane can be evaluated with almost no influence in the neutral range of ~10.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜3図は、実施例及び比較例で得られた阻止率の測
定結果を表すグラフである。 (以上)
1 to 3 are graphs showing measurement results of rejection rates obtained in Examples and Comparative Examples. (that's all)

Claims (1)

【特許請求の範囲】[Claims] (1)コロイダルシリカ粒子を用いることを特徴とする
限外濾過膜の分画性能評価方法。
(1) A method for evaluating the fractionation performance of an ultrafiltration membrane characterized by using colloidal silica particles.
JP11653590A 1990-05-02 1990-05-02 Ultrafiltration membrane fractionation performance evaluation method Expired - Lifetime JP2851371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11653590A JP2851371B2 (en) 1990-05-02 1990-05-02 Ultrafiltration membrane fractionation performance evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11653590A JP2851371B2 (en) 1990-05-02 1990-05-02 Ultrafiltration membrane fractionation performance evaluation method

Publications (2)

Publication Number Publication Date
JPH0416217A true JPH0416217A (en) 1992-01-21
JP2851371B2 JP2851371B2 (en) 1999-01-27

Family

ID=14689534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11653590A Expired - Lifetime JP2851371B2 (en) 1990-05-02 1990-05-02 Ultrafiltration membrane fractionation performance evaluation method

Country Status (1)

Country Link
JP (1) JP2851371B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006255673A (en) * 2005-03-18 2006-09-28 Kurita Water Ind Ltd Membrane evaluation method in membrane separation apparatus
JP2009011927A (en) * 2007-07-04 2009-01-22 Tokyo Institute Of Technology Ultrafiltering membrane, manufacturing method of the same and method for sorting size of nano-particle
JP2010017647A (en) * 2008-07-10 2010-01-28 Metawater Co Ltd Method for inspecting membrane
JP2010253334A (en) * 2009-04-21 2010-11-11 Sepa Sigma Inc Aqueous solution with distributed ferric hydroxide colloidal particles for nondestructive membrane performance and integrity test, and method of manufacturing the aqueous solution

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006255673A (en) * 2005-03-18 2006-09-28 Kurita Water Ind Ltd Membrane evaluation method in membrane separation apparatus
JP2009011927A (en) * 2007-07-04 2009-01-22 Tokyo Institute Of Technology Ultrafiltering membrane, manufacturing method of the same and method for sorting size of nano-particle
JP2010017647A (en) * 2008-07-10 2010-01-28 Metawater Co Ltd Method for inspecting membrane
JP2010253334A (en) * 2009-04-21 2010-11-11 Sepa Sigma Inc Aqueous solution with distributed ferric hydroxide colloidal particles for nondestructive membrane performance and integrity test, and method of manufacturing the aqueous solution

Also Published As

Publication number Publication date
JP2851371B2 (en) 1999-01-27

Similar Documents

Publication Publication Date Title
Plisko et al. Fabrication and characterization of polyamide-fullerenol thin film nanocomposite hollow fiber membranes with enhanced antifouling performance
Chu et al. Evaluation of removal mechanisms in a graphene oxide-coated ceramic ultrafiltration membrane for retention of natural organic matter, pharmaceuticals, and inorganic salts
Zhang et al. Detection of engineered nanoparticles in aquatic environments: current status and challenges in enrichment, separation, and analysis
Yan et al. Application of the Al2O3–PVDF nanocomposite tubular ultrafiltration (UF) membrane for oily wastewater treatment and its antifouling research
Jhaveri et al. A comprehensive review on anti-fouling nanocomposite membranes for pressure driven membrane separation processes
Lahoussine-Turcaud et al. Fouling in tangential-flow ultrafiltration: the effect of colloid size and coagulation pretreatment
Bidsorkhi et al. Preparation and characterization of a novel highly hydrophilic and antifouling polysulfone/nanoporous TiO2 nanocomposite membrane
Mukherjee et al. Adsorptive removal of phenolic compounds using cellulose acetate phthalate–alumina nanoparticle mixed matrix membrane
Zhao et al. Performance improvement of polysulfone ultrafiltration membrane using well-dispersed polyaniline–poly (vinylpyrrolidone) nanocomposite as the additive
Salehi et al. Impacts of zeolite nanoparticles on substrate properties of thin film nanocomposite membranes for engineered osmosis
Ahmad et al. Fouling evaluation of PES/ZnO mixed matrix hollow fiber membrane
Zhang et al. Polysulfone (PSF) composite membrane with micro-reaction locations (MRLs) made by doping sulfated TiO2 deposited on SiO2 nanotubes (STSNs) for cleaning wastewater
Hofmann et al. Improvement of dead-end filtration of biopolymers with pressure electrofiltration
Ogemdi Properties and uses of colloids: a review
Nguyen et al. Modifying thin-film composite forward osmosis membranes using various SiO2 nanoparticles for aquaculture wastewater recovery
Nguyen et al. Adsorption of non-ionic surfactant from aqueous solution onto various ultrafiltration membranes
Lim et al. Effect of solution chemistry on flux decline during high concentration protein ultrafiltration through a hydrophilic membrane
Eryildiz et al. Flux-enhanced reduced graphene oxide (rGO)/PVDF nanofibrous membrane distillation membranes for the removal of boron from geothermal water
Tizchang et al. The effects of pristine and silanized nanodiamond on the performance of polysulfone membranes for wastewater treatment by MBR system
Kusumaatmaja et al. Intrinsic contact angle of aqueous phases at membranes and vesicles
Bagheripour et al. Fabrication of polyvinyl chloride based nanocomposite nanofiltration membrane: investigation of SDS/Al2O3 nanoparticle concentration and solvent ratio effects
JPH0416217A (en) Evaluation of dividing performance of ultrafiltration membrane
Ben Dassi et al. Novel polyvinylidene fluoride/lead-doped zinc oxide adsorptive membranes for enhancement of the removal of reactive textile dye
Okubo et al. Static and dynamic light-scattering of colloidal gases, liquids and crystals
Yusaf et al. Removal of dyes from waste water by micellar enhanced ultrafiltration