JPH04161497A - Electroviscous liquid - Google Patents

Electroviscous liquid

Info

Publication number
JPH04161497A
JPH04161497A JP28811390A JP28811390A JPH04161497A JP H04161497 A JPH04161497 A JP H04161497A JP 28811390 A JP28811390 A JP 28811390A JP 28811390 A JP28811390 A JP 28811390A JP H04161497 A JPH04161497 A JP H04161497A
Authority
JP
Japan
Prior art keywords
liquid
silica particles
wet silica
electrorheological
electrically insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28811390A
Other languages
Japanese (ja)
Inventor
Takashi Nakamura
隆司 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DuPont Toray Specialty Materials KK
Original Assignee
Dow Corning Toray Silicone Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Corning Toray Silicone Co Ltd filed Critical Dow Corning Toray Silicone Co Ltd
Priority to JP28811390A priority Critical patent/JPH04161497A/en
Priority to EP91118246A priority patent/EP0482663A1/en
Priority to CA 2054267 priority patent/CA2054267A1/en
Publication of JPH04161497A publication Critical patent/JPH04161497A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • C10M171/001Electrorheological fluids; smart fluids

Abstract

PURPOSE:To obtain an electroviscous liquid having an extremely increased yield value by low voltage, having excellent shear stability, etc., by dispersing specific wet silica particles of wet type having a specific particle size into an electrically insulating liquid. CONSTITUTION:(A) 0.1-50wt.% (preferably 10-40wt.%) wet silica particles of wet type having 10-500mum (preferably 50-200mum) average particle diameter and PH <=6.5 (preferably PH <=5.5) of 4wt.% suspension is dispersed into (B) an electrically insulating liquid comprising preferably a fluoroalkyl group-containing diorganopolysiloxane to give the objective electroviscous liquid.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は湿式シリカ粒子が電気絶縁性液体中に分散せれ
てなる電気粘性液体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electrorheological liquid comprising wet silica particles dispersed in an electrically insulating liquid.

[従来の技術および発明が解決しようとする課題] 外部からの電圧の印加により粘度が変化する液体は、動
力伝達、衝撃吸収、バルブ効果などの作用を示すので近
年注目されている。
[Prior Art and Problems to be Solved by the Invention] Liquids whose viscosity changes when an external voltage is applied have attracted attention in recent years because they exhibit functions such as power transmission, shock absorption, and valve effects.

こうした電界により増粘作用を示す液体を総称して電気
粘性液体というが、中でもクラッチ、エンジンマウント
、ショックアブソーバ−などの実用度の高い用途に耐え
るためには、低い電圧により著しく降伏値の増大する液
体が必要とされる。
Liquids that exhibit a thickening effect due to electric fields are collectively called electrorheological liquids, but in order to withstand highly practical applications such as clutches, engine mounts, and shock absorbers, the breakdown value must be significantly increased by lower voltages. liquid is required.

こうした液体は現在まで種々のものが提唱されている。Various types of such liquids have been proposed up to now.

例えば、シリカ、アルミナ、タルク等の無機質多孔性粒
子を電気絶縁性液体に分散させたものが代表的である。
For example, a typical example is one in which inorganic porous particles such as silica, alumina, and talc are dispersed in an electrically insulating liquid.

これらは何れも粒子表面に吸着している水による電気二
重層の形成により、外部の電界に対して粒子が配向し、
粘度が増大する(より詳しくは降伏値をもつビンガム流
体に転移する)と説明されている(以下この効果をWl
nslov効果と称す)。とりわけシリカを用いた電気
粘性液体は、使用温度が制約される(約10℃〜80℃
)、周辺機器への摩耗性がある、粒子の沈降性がある等
の不利もあるが、シリカの工業的供給性9品種改良性が
豊かであり、常温付近で使用され摺動運動の少ない機器
などの特定の使用分野では有用と思われる。シリカを用
いた電気粘性液体は米国特許第3.047.507号公
報、特開昭61−44998号公報に開示されているが
、これらは、何れもIFInslow効果の程度が低く
、実用上満足できるものではなかった。
In all of these, particles are oriented in response to an external electric field due to the formation of an electric double layer due to water adsorbed on the particle surface.
It is explained that the viscosity increases (more specifically, it transforms into a Bingham fluid with a yield value) (hereinafter this effect will be referred to as Wl
(referred to as the nslov effect). In particular, electrorheological liquids using silica are limited in operating temperature (approximately 10°C to 80°C).
), there are disadvantages such as abrasiveness to peripheral equipment and sedimentation of particles, but silica's industrial supplyability 9 It is easy to improve varieties, and it is suitable for equipment that is used near room temperature and has little sliding movement. It may be useful in certain fields of use, such as Electrorheological liquids using silica are disclosed in U.S. Pat. It wasn't something.

本発明者は上記問題点を解消するために鋭意検討した結
果、上記のような電気粘性液体において、特定の湿式シ
リカを使用すれば上記問題点は大幅に解消されることを
見出し本発明に到達した。すなわち、本発明の目的は、
低い電圧により、著しく降伏値が増大する等電気粘性液
体として優れた特性を有する電気粘性液体を提供するに
ある。
As a result of intensive studies to solve the above-mentioned problems, the present inventor found that the above-mentioned problems could be largely solved by using a specific wet silica in the electrorheological liquid as described above, and arrived at the present invention. did. That is, the purpose of the present invention is to
It is an object of the present invention to provide an electrorheological liquid having excellent properties as an electrorheological liquid, such as a yield value which increases significantly with a low voltage.

[課題の解決手段とその作用コ かかる本発明は、 湿式シリカ粒子が電気絶縁性液体中に分散されてなる電
気粘性液体において、該湿式シリカ粒子の平均粒径が1
0〜500μmであり、該湿式シリカ粒子の4重量%懸
濁水のpH(水素イオン濃度)が6.5以下であること
を特徴とする電気粘性液体に関する。
[Means for Solving the Problems and Their Effects] The present invention provides an electrorheological liquid in which wet silica particles are dispersed in an electrically insulating liquid, wherein the average particle size of the wet silica particles is 1.
The present invention relates to an electrorheological liquid having a particle diameter of 0 to 500 μm and a pH (hydrogen ion concentration) of 4% by weight suspension of wet silica particles of 6.5 or less.

これについて説明するに、本発明に使用される湿式シリ
カ粒子は高いHnslow効果を与えるために必要な成
分である。かかる湿式シリカ粒子は水ガラスを原料にし
て湿式下で酸を加えることによりシリカを形成させる方
法により製造されたシリカ粒子である。これらの湿式シ
リカ粒子は、粒子の表面にWlnslov効果発現に好
適な吸着水の層があること、および好適な粒子径を何す
ること等の理由により、電気粘性液体の分散相として好
適である。この平均粒径は10〜500μmの範囲内で
あり、好ましくは50〜200μmの範囲内である。こ
れは、粒子径が10μm未溝であると粒子間の配向力は
大きい反面、粒子間力が小さくなり、十分な粘性が得ら
れなく、逆に500μmより大きくなると、配向力が鈍
り粘性効果が減少するとともに、粒子の大きさそのもの
の弊害が無視できなくなるためである。粒子の形状に関
してはなるべく真球状のものが好ましい。真球からの変
形度が大きいと、粒子間の有効接触面積が小さくなり、
凝集力が弱まるためである。粒径分布については、より
狭いほど好ましい。粒径分布が狭いほど粒子の配向力が
均一なため、効率のよい増粘効果が得られるためである
。なるべく真球状で粒径分布の狭いシリカ粒子の製造法
としては種々考えられるが、主に乾燥工程を工夫するこ
とで得られる。例えばスプレードライ法などが好適であ
る。
To explain this, the wet silica particles used in the present invention are a necessary component to provide a high Hnslow effect. Such wet silica particles are silica particles manufactured by a method of forming silica by adding acid under wet conditions using water glass as a raw material. These wet silica particles are suitable as a dispersed phase of an electrorheological liquid because of the presence of an adsorbed water layer on the surface of the particles suitable for expressing the Wlnslov effect, and the suitable particle size. This average particle size is within the range of 10 to 500 μm, preferably within the range of 50 to 200 μm. This is because if the particle size is 10 μm without grooves, the orientation force between the particles is large, but on the other hand, the interparticle force becomes small and sufficient viscosity cannot be obtained.On the other hand, when the particle size is larger than 500 μm, the orientation force becomes dull and the viscosity effect is reduced. This is because as the particle size decreases, the adverse effects of the particle size itself cannot be ignored. Regarding the shape of the particles, it is preferable that the particles be truly spherical. When the degree of deformation from a true sphere is large, the effective contact area between particles becomes small,
This is because the cohesive force is weakened. Regarding the particle size distribution, the narrower the particle size distribution, the more preferable it is. This is because the narrower the particle size distribution, the more uniform the orientation force of the particles, and the more efficient the thickening effect can be obtained. Various methods can be considered for producing silica particles that are as perfectly spherical as possible and have a narrow particle size distribution, but they can be obtained mainly by devising a drying process. For example, a spray dry method is suitable.

一方、上記の性状の他に湿式シリカ粒子中のイオン量も
Winslov効果の大小を決める重要な因子である。
On the other hand, in addition to the above-mentioned properties, the amount of ions in the wet silica particles is also an important factor that determines the magnitude of the Winslov effect.

これについては定説がないが、発明者らは次のように推
測している。シリカ中に含まれるイオンの主なものはナ
トリウムイオンであるが、これは主に原料の水ガラス中
に含まれる不純物である固体酸を中和するために用いた
ナトリウムイオンの過剰分である。よってこのナトリウ
ムイオン量の大小によってシリカの液性が決定される。
Although there is no established theory regarding this, the inventors speculate as follows. The main ion contained in silica is sodium ion, and this is mainly an excess of sodium ion used to neutralize solid acid, which is an impurity contained in the raw water glass. Therefore, the liquid properties of silica are determined by the amount of sodium ions.

発明者らの実験によれば、シリカ中の遊離しているイオ
ンの存在は粒子の配向の時間的遅延をもたらすと考えら
れる。端的な現象例としては、遊離イオンを含む湿式シ
リカを分散させた電気粘性液体に電界をかけ、一定ある
いは可変せん断速度でのせん断応力には不安定さが生じ
る。ランダムな状態の粒子が配向するのに要する時間が
、遊離イオンを含む粒子の場合、イオンの移動に時間が
かかるために、長くなり、その結果、動的な状況では不
安定さを生じるものと考えられる。このため、有効なW
inslow効果を与える湿式シリカ粒子としてはナト
リウムイオン等の遊離イオン量の少ないものが好適であ
る。純粋の湿式シリカ粒子の液性は通常酸性側にある。
According to the inventors' experiments, it is believed that the presence of free ions in silica causes a time delay in particle orientation. A simple example of this phenomenon is when an electric field is applied to an electrorheological liquid in which wet silica containing free ions is dispersed, and instability occurs in the shear stress at a constant or variable shear rate. The time required for random particles to orient is longer for particles containing free ions because the ions take longer to move, resulting in instability in dynamic situations. Conceivable. Therefore, the effective W
Wet silica particles that provide the inslow effect are preferably those containing a small amount of free ions, such as sodium ions. The liquid properties of pure wet silica particles are usually on the acidic side.

すなわち、酸性側のシリカが好適である。液性の基準と
しては該シリカ粒子を4重量%懸濁水の状態でpHを測
った場合、6.5以下であり、5.5以下であることが
より好適である。6.5を越える場合は有効なWlns
low効果が与えられない。このような液性を有する湿
式シリカ粒子を得るためには、過剰のナトリウムイオン
を極力除去するか、原料の水ガラスに固体酸の含有量の
極めて少ない純粋なものを使用する必要がある。
That is, acidic silica is preferred. As a criterion for liquid property, when the pH is measured in a state where the silica particles are suspended in water at 4% by weight, it is 6.5 or less, and more preferably 5.5 or less. Valid Wlns if over 6.5
No low effect is given. In order to obtain wet silica particles having such liquid properties, it is necessary to remove excess sodium ions as much as possible, or to use pure water glass as a raw material with an extremely low solid acid content.

本発明で使用する湿式シリカ粒子は以上のような性状を
満足するものであればよく、特に限定されるものではな
い。これらは市販の湿式シリカ粒子から選択することも
でき、例えば、日本シリカニ業株式会社製の商品である
“ニップシールAQ−8”等が該当する。
The wet silica particles used in the present invention are not particularly limited as long as they satisfy the above properties. These can also be selected from commercially available wet silica particles, such as "Nip Seal AQ-8", a product manufactured by Nippon Silikani Gyo Co., Ltd.

さて本発明の電気粘性液体は上記のような湿式シリカ粒
子を電気絶縁性液体中に分散させてなるものであるが、
電気絶縁性液体は、常温で液状であり、電気絶縁性を示
すものであればよく、特に限定されない。かかる電気絶
縁性液体としては、鉱油、セバシン酸ジブチル、塩化パ
ラフィン、フッ素オイル、シリコーン油等が挙げられる
Now, the electrorheological liquid of the present invention is made by dispersing wet silica particles as described above in an electrically insulating liquid.
The electrically insulating liquid is not particularly limited as long as it is liquid at room temperature and exhibits electrically insulating properties. Such electrically insulating liquids include mineral oil, dibutyl sebacate, chlorinated paraffin, fluorine oil, silicone oil, and the like.

これらの中で、電気絶縁性が大きいこと、温度による粘
度変化が小さいこと等の点でシリコーン油が好ましい。
Among these, silicone oil is preferred because of its high electrical insulation properties and small change in viscosity due to temperature.

かかるシリコーン油としては以下の式で示される化学構
造を有する液状ジオルガノポリシロキサンが例示される
An example of such a silicone oil is a liquid diorganopolysiloxane having a chemical structure represented by the following formula.

RRR (式中、Rは、メチル基、エチル基、プロピル基等のア
ルキル基、フェニル基等のアリール基で示される1価炭
化水素基である。Rの内の30%以上はメチル基である
ことが好ましい。また、重合度nは特に限定されないが
、実用的粘度範囲の点でnは1000以下が好ましく、
より好ましくは100以下である。このような構造をも
つシリコーン油は東し・ダウコーニング・シリコーン株
式会社製” 5H200”を始めとして種々の市販品が
ある。
RRR (wherein, R is a monovalent hydrocarbon group represented by an alkyl group such as a methyl group, ethyl group, or propyl group, or an aryl group such as a phenyl group. 30% or more of R is a methyl group) In addition, the degree of polymerization n is not particularly limited, but in terms of a practical viscosity range, n is preferably 1000 or less,
More preferably it is 100 or less. There are various commercially available silicone oils having such a structure, including "5H200" manufactured by Toshi Dow Corning Silicone Co., Ltd.

さらにシリコーン油の内で、より高いWInslOW効
果を助長し、かつ比重差による粒子の沈降を抑える効果
のある種類のものとしては、構造中にフルオロアルキル
基を含むジオルガノポリシロキサンが好ましい。具体的
には下記の構造式で示される。
Among silicone oils, diorganopolysiloxanes containing fluoroalkyl groups in their structure are preferred as silicone oils that promote a higher WInslOW effect and are effective in suppressing particle sedimentation due to differences in specific gravity. Specifically, it is shown by the following structural formula.

RR2RR RRRR (式中、Rは前記と同じであり、R2は炭素数10以下
のフルオロアルキル基、mおよびpは1000以下の整
数である)。
RR2RR RRRR (wherein R is the same as above, R2 is a fluoroalkyl group having 10 or less carbon atoms, and m and p are integers of 1000 or less).

炭素数10以下のフルオロアルキル基は、その構造は特
に限定されないが、合成のしやすさ等から3.3.3−
)リフルオロプロピル基が好ましい。!llnslow
効果を顕著に助長させるためには、1分子中のフルオロ
アルキル基の含有率が30モル%以上であることが好ま
しい。また材料供給性、経済性の点ではRの内の30%
以上はメチル基であることが好ましい。また、重合度m
は特に限定されないが、実用的粘度範囲の点でmは10
00以下が好ましく、より好ましくは100以下である
。フルオロアルキル基がWlnslow効果の助長効果
を与える機構は明らかになっていないが、電気陰性原子
のフッ素原子と電気陽性原子のケイ素とが分子内に適当
な距離をおいて共存することから分子内に強い双極子が
生じ、この双極子が湿式シリカ粒子上の電気二重層と接
したときに二重層の分極を促進するものと推定できる。
The structure of the fluoroalkyl group having 10 or less carbon atoms is not particularly limited, but 3.3.3-
) Lifluoropropyl group is preferred. ! llnslow
In order to significantly enhance the effect, it is preferable that the content of fluoroalkyl groups in one molecule is 30 mol% or more. In addition, in terms of material supplyability and economic efficiency, 30% of R
The above group is preferably a methyl group. Also, the degree of polymerization m
is not particularly limited, but m is 10 in terms of a practical viscosity range.
It is preferably 00 or less, more preferably 100 or less. The mechanism by which the fluoroalkyl group promotes the Wlnslow effect is not clear, but since the electronegative fluorine atom and the electropositive silicon atom coexist at an appropriate distance within the molecule, It can be assumed that a strong dipole is generated and that when this dipole comes into contact with the electric double layer on the wet silica particles, it promotes the polarization of the double layer.

さらにフッ素原子が含まれる液体は比重が大きくなる傾
向にあるため、シリカ粒子の沈降性を抑える効果が同時
に生まれる。このようなフルオロアルキル基を含むジオ
ルガノポリシロキサンは東し・ダウコーニング・シリコ
ーン株式会社製”FS1265”を始めとした市販品を
利用できる。
Furthermore, since liquids containing fluorine atoms tend to have a high specific gravity, they also have the effect of suppressing the sedimentation of silica particles. As the diorganopolysiloxane containing such a fluoroalkyl group, commercially available products such as "FS1265" manufactured by Toshi Dow Corning Silicone Co., Ltd. can be used.

本発明による電気粘性液体は、上記のような湿式シリカ
粒子を上記のような電気絶縁性液体に分散させてなるも
のであるが、その分散量は0.1〜50重量%の範囲内
であり、好ましくは10〜40重量%の範囲内である。
The electrorheological liquid according to the present invention is obtained by dispersing wet silica particles as described above in an electrically insulating liquid as described above, and the amount of the dispersion is within the range of 0.1 to 50% by weight. , preferably within the range of 10 to 40% by weight.

これは0、1重量%未溝になると十分な増粘効果が得ら
れなく、また50重量%を越えると電気粘性液体の粘度
が著しく増大して実用上不向きであるからである。
This is because if the amount is 0.1% by weight without grooves, a sufficient thickening effect cannot be obtained, and if it exceeds 50% by weight, the viscosity of the electrorheological liquid increases significantly, making it unsuitable for practical use.

以上のような本発明の電気粘性液体は、例えば、常温付
近で使用され、摺動運動の少ない機器などの特定の機器
用作動油として有用である。
The electrorheological liquid of the present invention as described above is useful, for example, as a hydraulic oil for specific equipment such as equipment that is used at around room temperature and has little sliding motion.

[実施例コ 以下、実施例、比較例にて本発明の詳細な説明する。実
施例中、部とあるのは重量部を意味し、粘度は25℃に
おける値であり、C8はセンチストークスである。
[Example] The present invention will be explained in detail below using Examples and Comparative Examples. In the examples, parts mean parts by weight, viscosity is the value at 25°C, and C8 is centistokes.

なお、電気粘性効果の測定は次の方法によった。The electrorheological effect was measured by the following method.

内径421嘗のアルミ製カップに被験液体を入れ、その
中に径40111J  長さ60箇嘗のアルミ製ロータ
ーを沈めた。この円筒型セルを垂直方向にセットし、カ
ップを40秒かけてせん断速度(D)ゼロから3308
りまで線形に加速した。
A test liquid was placed in an aluminum cup with an inner diameter of 421 mm, and an aluminum rotor with a diameter of 40111 J and a length of 60 mm was submerged therein. This cylindrical cell was set vertically, and the shear rate (D) was changed from zero to 3308 m over 40 seconds.
It accelerated linearly until the end.

この時のローターにかかるトルクをトルクセンサーで検
知し、これをせん断応力(S)に換算してX−Yレコー
ダー上にD対S曲線を描かせた。さらにローターを電気
的に接地し、カップ側に直流電圧を印加して同様のD対
S曲線を描かせ、直線部分のS軸への外挿点をもって、
この電界強度での降伏値とした。また、せん断応力の安
定性および湿式シリカ粒子の沈降性を調べた。
The torque applied to the rotor at this time was detected by a torque sensor, converted into shear stress (S), and a D vs. S curve was drawn on an X-Y recorder. Furthermore, the rotor is electrically grounded, a DC voltage is applied to the cup side, a similar D vs. S curve is drawn, and the point of extrapolation of the straight line portion to the S axis is
The yield value was determined at this electric field strength. In addition, the stability of shear stress and the settling property of wet silica particles were investigated.

実施例1 平均粒径が100μmであり、4重量%の懸濁水のpH
が5.5〜6.5である湿式シリカ粒子[日本シリカニ
業株式会社製、商品名ニップシールAQ−8315部を
粘度100C8の脂肪族炭化水素系油口日本石油株式会
社製、ゴム膨潤油3号コ85部に加えて攪拌することに
より、湿式シリカ粒子が脂肪族炭化水素系油中に分散し
た懸濁液である電気粘性液体を得た。
Example 1 The average particle size was 100 μm and the pH of the suspension water was 4% by weight.
is 5.5 to 6.5 [manufactured by Nippon Silikani Gyo Co., Ltd., trade name: Nip Seal AQ-8315 parts] is an aliphatic hydrocarbon-based oil with a viscosity of 100C8, manufactured by Nippon Oil Co., Ltd., rubber swelling oil No. 3. By adding 85 parts of silica and stirring, an electrorheological liquid, which is a suspension of wet silica particles dispersed in an aliphatic hydrocarbon oil, was obtained.

次いで、この液体の電気粘性効果の測定を行った。これ
らの測定結果を後記する第1表および第1図に示した。
Next, the electrorheological effect of this liquid was measured. The results of these measurements are shown in Table 1 and FIG. 1 below.

実施例2 平均粒径が100μmであり、4重量%の懸濁水のpH
が5.5〜6.5である湿式シリカ粒子[日本シリカニ
業株式会社製、商品名ニップシールAQ−8] 15部
を粘度100C8の両末端トリメチルシロキシ基封鎖ポ
リジメチルシロキサン85部に加えて攪拌することによ
り、湿式シリカがポリジメチルシロキサン中に均一に分
散した電気粘性液体を得た。
Example 2 The average particle size was 100 μm and the pH of the suspension water was 4% by weight.
is 5.5 to 6.5 [manufactured by Nippon Silikani Gyo Co., Ltd., trade name Nip Seal AQ-8] 15 parts are added to 85 parts of polydimethylsiloxane with a viscosity of 100C8 and end-blocked with trimethylsiloxy groups at both ends, and stirred. As a result, an electrorheological liquid in which wet silica was uniformly dispersed in polydimethylsiloxane was obtained.

次いで、この液体の電気粘性効果の測定を行ったところ
後記する第1表に示す測定結果を得た。
Next, the electrorheological effect of this liquid was measured, and the measurement results shown in Table 1 below were obtained.

実施例3 実施例2において、粘度1oocsポリジメチルシロキ
サンの替わりに粘度300C8の両末端トリメチルシロ
キシ基封鎖ポリ(メチル・3゜3.3−)リフルオロプ
ロピル)シロキサンを使用した以外は、実施例2と同様
にして電気粘性液体を得た。この液体の特性を実施例2
と同様にして測定した。これらの測定結果を後記する第
1表に示した。
Example 3 Example 2 except that poly(methyl-3°3.3-)lifluoropropyl)siloxane with a viscosity of 300C8 and end-blocked with trimethylsiloxy groups at both ends was used instead of polydimethylsiloxane with a viscosity of 1oocs. An electrorheological liquid was obtained in the same manner. Example 2 shows the characteristics of this liquid.
It was measured in the same manner. The results of these measurements are shown in Table 1 below.

比較例1 実施例2において、平均粒径が100μmの湿式シリカ
粒子の替わりに、平均粒径が4μmであり、4重量%の
懸濁水のpHが5.i5〜6.5である湿式シリカ粒子
[日本シリカニ業株式会社製、商品名ニップシールL−
3001を使用した以外は実施例2と同様にして電気粘
性液体を得た。この液体の特性を実施例2と同様にして
測定した。
Comparative Example 1 In Example 2, instead of wet silica particles having an average particle size of 100 μm, the average particle size was 4 μm, and the pH of the 4% by weight suspension water was 5. Wet silica particles with i5 to 6.5 [manufactured by Nippon Silikani Gyo Co., Ltd., trade name Nip Seal L-]
An electrorheological liquid was obtained in the same manner as in Example 2 except that 3001 was used. The properties of this liquid were measured in the same manner as in Example 2.

これらの測定結果を第1表に併記した。These measurement results are also listed in Table 1.

比較例2 実施例2において、平均粒径が100μmの湿式シリカ
の替わりに、平均粒径85μmであり、4重量%懸濁水
のpHがio、o〜11.0である湿式シリカ粒子[日
本シリカニ業株式会社製。
Comparative Example 2 In Example 2, instead of wet silica particles having an average particle size of 100 μm, wet silica particles having an average particle size of 85 μm and a pH of 4% suspension water of io, o to 11.0 [Nippon Silica Manufactured by Gyo Co., Ltd.

商品名ニップシールNA−R]を使用した以外は実施例
2と同様にして電気粘性液体を得た。
An electrorheological liquid was obtained in the same manner as in Example 2 except that Nip Seal NA-R (trade name) was used.

次いでこの液体の電気粘性効果の測定を行ったところ、
後記する第1表および第2図に示す結果を得た。
Next, we measured the electrorheological effect of this liquid, and found that
The results shown in Table 1 and FIG. 2, which will be described later, were obtained.

第1表 [発明の効果コ 本発明の電気粘性液体は、湿式シリカ粒子の平均粒径が
10〜500μmであり、該湿式シリカ粒子の4重量%
懸濁水の1)H(水素イオン濃度)が6.5以下である
ので、低い電圧により著しく降伏値が増大する、せん断
安定性に優れる等優れた電気粘性効果を発現するという
特徴第1図は実施例1で得られた電気粘性液体のせん断
速度とせん断応力の関係を示したものであり、第2図は
、比較例2で得られた電気粘性液体のせん断速度とせん
断応力の関係を示したものである。
Table 1 [Effects of the Invention] The electrorheological liquid of the present invention has wet silica particles having an average particle size of 10 to 500 μm, and 4% by weight of the wet silica particles.
1) Since the H (hydrogen ion concentration) of the suspended water is 6.5 or less, it exhibits excellent electrorheological effects such as a marked increase in yield value with low voltage and excellent shear stability. Figure 2 shows the relationship between the shear rate and shear stress of the electrorheological liquid obtained in Example 1, and Figure 2 shows the relationship between the shear rate and shear stress of the electrorheological liquid obtained in Comparative Example 2. It is something that

Claims (1)

【特許請求の範囲】 1 湿式シリカ粒子が電気絶縁性液体中に分散されてな
る電気粘性液体において、該湿式シリカ粒子の平均粒径
が10〜500μmであり、該湿式シリカ粒子の4重量
%懸濁水のpH(水素イオン濃度)が6.5以下である
ことを特徴とする電気粘性液体。 2 電気絶縁性液体がシリコーン油である特許請求の範
囲第1項記載の電気粘性液体。 3 シリコーン油が、フルオロアルキル基を含むジオル
ガノポリシロキサンである特許請求の範囲第2項記載の
電気粘性液体。
[Scope of Claims] 1. An electrorheological liquid in which wet silica particles are dispersed in an electrically insulating liquid, wherein the wet silica particles have an average particle diameter of 10 to 500 μm, and the wet silica particles contain 4% by weight of the wet silica particles. An electrorheological liquid characterized in that the pH (hydrogen ion concentration) of turbid water is 6.5 or less. 2. The electrorheological liquid according to claim 1, wherein the electrically insulating liquid is silicone oil. 3. The electrorheological liquid according to claim 2, wherein the silicone oil is a diorganopolysiloxane containing a fluoroalkyl group.
JP28811390A 1990-10-25 1990-10-25 Electroviscous liquid Pending JPH04161497A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP28811390A JPH04161497A (en) 1990-10-25 1990-10-25 Electroviscous liquid
EP91118246A EP0482663A1 (en) 1990-10-25 1991-10-25 Electroviscous fluid
CA 2054267 CA2054267A1 (en) 1990-10-25 1991-10-25 Electroviscous fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28811390A JPH04161497A (en) 1990-10-25 1990-10-25 Electroviscous liquid

Publications (1)

Publication Number Publication Date
JPH04161497A true JPH04161497A (en) 1992-06-04

Family

ID=17725972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28811390A Pending JPH04161497A (en) 1990-10-25 1990-10-25 Electroviscous liquid

Country Status (3)

Country Link
EP (1) EP0482663A1 (en)
JP (1) JPH04161497A (en)
CA (1) CA2054267A1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2210893A (en) * 1987-10-12 1989-06-21 American Cyanamid Co Electrorheological fluids
DE68908469T2 (en) * 1988-05-12 1993-12-09 Toa Nenryo Kogyo Kk Electrorheological fluids.

Also Published As

Publication number Publication date
EP0482663A1 (en) 1992-04-29
CA2054267A1 (en) 1992-04-26

Similar Documents

Publication Publication Date Title
KR940008392B1 (en) Electrobiscous fluids
US4645614A (en) Electroviscous liquids
JP2660123B2 (en) Electrorheological liquids based on polymer dispersions with electrolyte-containing dispersed phases
JPH01170693A (en) Electric fluidized fluid
US3984339A (en) Hydraulic oil composition
JPH01198696A (en) Electric flowable fluid
US6645403B1 (en) Multiphase electrorheological fluid
US5106521A (en) Electrorheological fluids comprising carbonaceous particulates dispersed in electrical insulating oily medium containing a compound having specific functional groups
US5164105A (en) Electroviscous fluid
JPH04164996A (en) Electroviscous fluid
JPH04161497A (en) Electroviscous liquid
US5308525A (en) Electroviscous fluid comprising a base neutralized carboxyaryl group-containing organopolysiloxane polyelectrolyte
US5925288A (en) Electrorheological fluid containing silica particles esterified by an alcohol-modified silicone oil
US5122293A (en) Method of activating and deactivating an electrorheological response at constant alternating current
EP1316601A1 (en) Electro-rheological composition
JPH0680883A (en) Electroviscus liquid
JPH04164997A (en) Electroviscous fluid
JPH0680881A (en) Electroviscus liquid
US5122292A (en) Methods of varying the frequency to produce predetermined electrorheological responses
JPH03166295A (en) Electro-viscous fluid having improved dispersibility
JPH05140578A (en) Electrically viscous liquid
JPH05140580A (en) Electrically viscous liquid
CA2104405A1 (en) Electrorheological fluids based on synthetic sheet silicates
JPS63305197A (en) Electroviscous liquid
JPH11349978A (en) Electroviscous fluid