JPH04161208A - Filter for high temperature gas - Google Patents

Filter for high temperature gas

Info

Publication number
JPH04161208A
JPH04161208A JP28663590A JP28663590A JPH04161208A JP H04161208 A JPH04161208 A JP H04161208A JP 28663590 A JP28663590 A JP 28663590A JP 28663590 A JP28663590 A JP 28663590A JP H04161208 A JPH04161208 A JP H04161208A
Authority
JP
Japan
Prior art keywords
electret
filter
porous film
particles
charge density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28663590A
Other languages
Japanese (ja)
Inventor
Yatsuhiro Tani
谷 八紘
Satoshi Takase
敏 高瀬
Shuji Kubota
修司 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP28663590A priority Critical patent/JPH04161208A/en
Publication of JPH04161208A publication Critical patent/JPH04161208A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the self-dusting of particles or fiber from a filter material from occurring by laminating an electret porous film having specific surface charge density and a fiber sheet. CONSTITUTION:An electret porous film whose surface charge density at 100 deg.C is at least 0.1nc/cm<2> and a fiber sheet are laminated. As a material of the electret porous film, polytetrafluoroethylene, polyvinylidene fluoride, polytrifluorochloroethylene, polypropylene, poly 4-methyl-1-pentene, poly 3- methyl-1-butene, polycarbonate or polyethylene terephthalate are designated. As the fiber sheet laminated to the electret porous film, a melt blow nonwoven fabric, a flash spun nonwoven fabric, an electrostatic field spun nonwoven fabric or a spun bond net fabric are designated. These fabric may be non- electret or electret. By this method, the particles in the atmosphere bonded at the time of filter mounting work are strongly held by the electrostatic force of the filter itself and no self-dusting is generated.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高温気体の濾過において、濾材から粒子や繊維
の自己発塵の起らない高温気体用フィルターに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a filter for high-temperature gas that does not cause self-generation of particles or fibers from a filter medium in the filtration of high-temperature gas.

(従来技術) 近年、半導体工業においてはフロン規制の動きからウェ
ーハの洗浄液をフロンから超純水へと切り換える傾向が
あり、この時、ウェーハの熱風乾燥工程が新たに必要と
なってきている。昨今、この熱風乾燥工程においてはク
リーンな乾燥用熱風をつくるのにガラス繊維HEPAフ
ィルターやテフロン多孔質フィルムとガラス繊維との複
合濾材からなるフィルターが用いられていた。
(Prior Art) In recent years, there has been a trend in the semiconductor industry to switch from fluorocarbons to ultrapure water as the cleaning solution for wafers due to the movement toward regulations on fluorocarbons, and at this time, a hot air drying process for wafers has become necessary. Recently, in this hot air drying process, a glass fiber HEPA filter or a filter made of a composite filter material of Teflon porous film and glass fiber has been used to generate clean hot air for drying.

(発明が解決しようとする問題点) 従来のこうしたフィルターは常温で用いる限りにおいて
はクリーンな空気が得られるものの、100〜200’
Cの高温気体を濾過する場合にはそれらフィルターから
粒子や繊維の再飛散による自己発塵が生じると言う問題
があり、たとえば、ガラス繊維HEPAフィルターを通
した熱風の清浄度はクラス1000 (0,5μm直径
の粒子が1立方フイート中に1000個浮遊している状
態)程度までしか低下できず、ウェーハの歩留りが悪い
と言う状況にあった。
(Problems to be Solved by the Invention) Although conventional filters like this can provide clean air as long as they are used at room temperature,
When filtering high-temperature gases of C, there is a problem that self-dusting occurs due to the re-scattering of particles and fibers from these filters.For example, the cleanliness of hot air passing through a glass fiber HEPA filter is class 1000 (0, The yield of wafers could only be reduced to a state in which 1,000 particles with a diameter of 5 μm were suspended in 1 cubic foot, resulting in poor wafer yield.

(問題点を解決するための手段) 本発明はかかる高温気体の濾過において、フィルターか
ら自己発塵をなくすために鋭意検討した結果、本発明に
到達したものであり、100°Cにおける表面電荷密度
が少くともQ、lnc/cifiであるエレクトレフト
多孔質フィルムと繊維シートとを貼合せたことを特徴と
する高温気体用フィルターに関する。
(Means for Solving the Problems) The present invention was developed as a result of intensive studies to eliminate self-dust generation from the filter in the filtration of high-temperature gases. The present invention relates to a filter for high-temperature gas, characterized in that an electroleft porous film having at least Q, lnc/cifi and a fiber sheet are laminated together.

本発明において、従来のガラス繊1iHEPAフィルタ
ーがなぜ高温気体を濾過した時に粒子や繊維が再飛散し
自己発塵するかについて調査した結果、常温では濾材の
製造工程、フィルター製造工程やフィルター取付工事時
にフィルターに付着した大気中の粒子やそれらの作業中
に折れたガラス繊維はガラス繊維自身とファンデアワー
ルス力で付着している訳であるが、100〜200°C
の高温気体にさらされ、風を通すと付着力が大幅に低下
することによって自己発塵現象が生しるものと推測され
、予期しない効果としてエレクトレット多孔質フィルム
の表面電荷密度を少くとも0.1nc/cmにすると、
−旦エレクトレノト多孔質フィルムに付着した粒子は1
00〜200°Cの高温気体の通風下においては再飛散
しないことをみい出し本発明を二到達したものである。
In the present invention, as a result of investigating why conventional glass fiber 1i HEPA filters cause particles and fibers to re-disperse and self-generate dust when filtering high-temperature gas, we found that at room temperature, during the filter media manufacturing process, filter manufacturing process, and filter installation work. Particles in the air that adhere to the filter and glass fibers that break during the process are attached to the glass fibers themselves due to van der Waals forces, but the temperature is 100 to 200°C.
It is presumed that the self-dust generation phenomenon occurs due to a significant decrease in adhesion force when exposed to high-temperature gas and air is passed through.As an unexpected effect, the surface charge density of the porous electret film is reduced to at least 0. When set to 1 nc/cm,
-The number of particles attached to the electroporous film is 1
The present invention was achieved by discovering that it does not scatter again under the ventilation of high-temperature gas at 00 to 200°C.

本発明において、エレクトレット多孔質フィルムとは、
フィルムの過延伸によりフィブリル化した多孔質フィル
ムや高エネルギー放射線等で微孔をあけた多孔質フィル
ムを熱エレクトレット化したエレクトレット多孔質ソー
トである。
In the present invention, the electret porous film is
This is an electret porous sort made by thermoelectreting a porous film that has been fibrillated by overstretching the film or a porous film that has micropores made with high-energy radiation.

本発明における熱エレクトレットとは加熱下でラジオエ
レクトレット、エレクトロエレクトレット化したエレク
トレットを指し、通常のエレクトレ・7ト法で作成され
るエレクトレットより高温での電荷安定性が優れている
ものである。
The thermal electret in the present invention refers to an electret that has been converted into a radioelectret or an electroelectret under heating, and has better charge stability at high temperatures than an electret produced by the usual electret method.

本発明におけるエレクトレット化の加熱温度は好ましく
は80〜180°C1より好ましくは100〜150°
Cである。
The heating temperature for electretization in the present invention is preferably 80 to 180°C, more preferably 100 to 150°C.
It is C.

本発明の100°Cにおける表面電荷密度とは次の測定
法によって求められる値である。第1図は表面電荷密度
を測定するための測定装置の概略図であり、図において
、1は測定試料、2および3は金属板、4はコンデンサ
ー、5は電位計、6は加熱オーブンである。図に示すよ
うに加熱オーブン6をあらかしめ100°Cに加熱して
おき、次に試料1をアースし金属板2の上に置き、次に
もう一つの金属板3を上方から接近させて試料に接触さ
せ、試料表面に存在する電荷を静電誘導によって金属板
3に生しせしめ、この電荷をコンデンサー4にためて、
電位計5によって測定し、下式にしたがって試料表面の
表面電荷密度を算出する。
The surface charge density at 100°C in the present invention is a value determined by the following measurement method. FIG. 1 is a schematic diagram of a measuring device for measuring surface charge density, in which 1 is a measurement sample, 2 and 3 are metal plates, 4 is a capacitor, 5 is an electrometer, and 6 is a heating oven. . As shown in the figure, the heating oven 6 is preheated to 100°C, then the sample 1 is grounded and placed on the metal plate 2, and then the other metal plate 3 is approached from above and placed on the sample. The sample surface is brought into contact with the metal plate 3 by electrostatic induction, and this charge is stored in the capacitor 4.
Measurement is performed using an electrometer 5, and the surface charge density of the sample surface is calculated according to the following formula.

表面電荷密度(nc/cd) = c X v / A
、ここでnc−=ナノクーロン、C=コンデンサーの容
量(ファラッド)、■=電位(ボルト)、A=試料面積
(−)である。
Surface charge density (nc/cd) = c x v / A
, where nc-=nanocoulomb, C=capacitance of the capacitor (farad), ■=potential (volt), and A=sample area (-).

本発明におけるエレクトレット多孔質フィルムの100
°Cにおける表面電荷密度は少くとも0.1nc/ci
iであることが重要である。
100 of the electret porous film in the present invention
Surface charge density at °C is at least 0.1 nc/ci
It is important that i.

本発明のエレクトレット多孔質フィルムの表面電荷密度
がO,]nc/cdに満たないとエレクトレット多孔質
フィルムにすでに付着している粒子は再飛散し易く、自
己発塵の原因となるのである。
If the surface charge density of the porous electret film of the present invention is less than O, ] nc/cd, particles already attached to the porous electret film are likely to scatter again, causing self-dusting.

本発明におけるエレクトレット多孔質フィルムのNac
l O,1μ粒子に対する粒子除去効率は90〜99.
99%を有している。
Nac of the electret porous film in the present invention
Particle removal efficiency for l O, 1μ particles is 90-99.
It has 99%.

本発明におけるエレクトレット多孔質フィルムの素材に
はポリ4弗化エチレン、ポリ弗化ビニリデン、ポリ3弗
化塩化エチレン、ポリプロピレン、ポリ4メチル1ペン
テン、ポリ3メチル1ブテン、ボリカーポ7−ト、ポリ
エチレンテレフタレートなどが挙げられる。
The materials for the electret porous film in the present invention include polytetrafluoroethylene, polyvinylidene fluoride, polytrifluorochloroethylene, polypropylene, poly4methyl-1pentene, poly3methyl-1butene, polycarbonate, and polyethylene terephthalate. Examples include.

本発明において、エレクトレット多孔質フィルムと貼合
される繊維シートとはメルトブロー不織布、フラッシュ
紡糸の不織布、静電場紡糸の不織布やスパンボンド、ネ
ット織布などが挙げられ、これらは非エレクトレットで
もエレクトレットでもいずれでもよい。これらの繊維ソ
ートはエレクトレット多孔質フィルムを補強し、かつ粒
子除去効率を向上させる効果を有する。
In the present invention, the fiber sheet to be laminated with the electret porous film includes melt-blown nonwoven fabrics, flash-spun nonwoven fabrics, electrostatic field-spun nonwoven fabrics, spunbond fabrics, net woven fabrics, etc., and these may be either non-electret or electret. But that's fine. These fiber sorts have the effect of reinforcing the electret porous film and improving particle removal efficiency.

本発明において、エレクトレット多孔質フィルムと貼合
される繊維シートの素材はポリ4弗化エチレン、ポリ弗
化ビニリデン、ポリ3弗化塩化エチレン、ポリプロピレ
ン、ポリ4メチルlペンテン、ポリ3メチル1ブテン、
ボリカーボイート、ポリエチレンテレフタレートの合成
繊維や、ガラス繊維、金属繊維、無機繊維が挙げられる
、本発明において、エレクトレット多孔質フィルムと繊
維ソートとは自己融着あるいは接着剤にょる接着貼合で
一体化することが好ましい。この−体化はエレクトレッ
ト化前でも、エレクトレ・7ト化後でもいずれでもよい
In the present invention, the materials of the fiber sheet to be laminated with the electret porous film are polytetrafluoroethylene, polyvinylidene fluoride, polytrifluorochloroethylene, polypropylene, poly4methyl-1-pentene, poly3-methyl-1-butene,
Synthetic fibers such as polycarbonate, polyethylene terephthalate, glass fibers, metal fibers, and inorganic fibers can be mentioned.In the present invention, the electret porous film and the fiber sort are integrated by self-fusion or bonding with an adhesive. It is preferable to do so. This conversion may be performed either before conversion to electret or after conversion to electret.

第2図に本発明のフィルターの断面図を示す。FIG. 2 shows a sectional view of the filter of the present invention.

1はエレクトレット多孔質フィルム、2は繊維ノート、
3は自己融着による接着部を示す。
1 is an electret porous film, 2 is a fiber notebook,
3 shows a bonded portion by self-fusion.

(作用と効果) 本発明におけるフィルターは100〜200°Cの高温
気体を濾過する時、濾材の製造工程、フィルターの製造
工程やフィルター取付工事時に付着した大気中の粒子を
フィルター自身の静電気力で強固に把持し、自己発塵を
生しないというこれまでにない新規なフィルターであり
、従来、クラス1000の清浄度の熱風をクラス1の清
浄度に向上することができる。
(Functions and Effects) When filtering high-temperature gas of 100 to 200°C, the filter of the present invention uses its own electrostatic force to remove particles in the atmosphere that are attached during the filter media manufacturing process, filter manufacturing process, or filter installation work. This is an unprecedented new filter that has a strong grip and does not generate self-dust, and can improve the cleanliness of hot air, which previously had a class 1000 cleanliness, to a class 1 cleanliness.

以下に実施例で詳細に説明する。This will be explained in detail in Examples below.

実施例1 ポリ4弗化エチレンの多孔質フィルム(目付20g/c
d、厚さ0.1画)を150°Cの熱板電極と針電極間
に置き、この電極間に20KVの直流電圧を10分間印
加し、印加電圧をそのままの状態で温度を常温まで冷却
し、エレクトレット多孔質フィルムを得た。このエレク
トレット多孔質フィルムを図1の装置で100°Cにお
ける表面電荷密度を測定したところ0.3nc/cjO
値を得た。次に平均繊維径2μ艶のポリ3メチル1ブテ
ンのメルトブロー不織布(目付30g/ cd、厚さ0
.3m)を前記多孔質フィルムと同一条件でエレクトレ
ット化した。これらエレクトレットを140°Cに加熱
したエンボスロールで部分熱融着させて貼合せた。
Example 1 Porous film of polytetrafluoroethylene (fabric weight 20 g/c
d, thickness 0.1 stroke) was placed between a hot plate electrode at 150°C and a needle electrode, a DC voltage of 20 KV was applied between the electrodes for 10 minutes, and the temperature was cooled to room temperature while the applied voltage remained unchanged. An electret porous film was obtained. When the surface charge density of this electret porous film was measured at 100°C using the apparatus shown in Figure 1, it was 0.3 nc/cjO.
Got the value. Next, a melt-blown nonwoven fabric of poly-3-methyl-1-butene with an average fiber diameter of 2 μm (fabric weight: 30 g/cd, thickness: 0
.. 3m) was made into an electret under the same conditions as the porous film. These electrets were partially heat-sealed and bonded using an embossing roll heated to 140°C.

得られた濾材をブリツー加工して0.8ヒ折り込んでア
ルミニウム製枠に組込み、4周をシリコン樹脂で固定し
た。フィルターの大きさはM150tn、横150mm
、奥行75閣であった。このフィルターを熱風オーブン
の吹出口に設置し、100°Cの熱風を毎分1が、オー
ブン中で循環させフィルターからの粒子再飛散を試験し
た。レーザパーティクルカウンター(リオンKC−14
)で毎分300ccのオーブン内の熱風をフィルター下
流側でサンプリングして、粒子濃度(初期濃度は2X1
0’個/立方フィート)の経時変化を測定した結果、試
験開始30分後に0.1μ−以上の粒子のカウント数は
0個/立方フィートとなり、その後100時間連続運転
中も粒子のカウント数は0個/立方フィートであった。
The obtained filter medium was subjected to a burritsu process, folded by 0.8 mm, assembled into an aluminum frame, and the four circumferences were fixed with silicone resin. Filter size is M150tn, width 150mm
It was 75 temples deep. This filter was installed at the outlet of a hot air oven, and 100°C hot air was circulated in the oven at a rate of 1 minute per minute to test particle re-entrainment from the filter. Laser particle counter (Rion KC-14
) The hot air in the oven at 300 cc per minute was sampled downstream of the filter, and the particle concentration (initial concentration was 2X1
As a result of measuring the change in particle count over time (0' particles/cubic foot), 30 minutes after the start of the test, the number of counts of particles larger than 0.1μ was 0 particles/cubic foot, and the number of particles remained unchanged even after 100 hours of continuous operation. 0 per cubic foot.

なおこのフィルターの100°Cでの0.1μ蒙粒子に
対する除去効率は99.99%であり、試験開始30分
以後のフィルター上流側の粒子カウント数は0個/立方
フィートであった。
The removal efficiency of this filter for 0.1 μm particles at 100° C. was 99.99%, and the number of particles counted on the upstream side of the filter after 30 minutes from the start of the test was 0 particles/cubic foot.

実施例2 実施例1と同し多孔質フィルムを130°Cの熱板電極
と針電極間に置き、この電極間に15KVの直流電圧を
10分間印加し、印加電圧をそのままの状態で温度を常
温まで冷却し、エレクトレット多孔質フィルムを得た。
Example 2 The same porous film as in Example 1 was placed between a hot plate electrode at 130°C and a needle electrode, a DC voltage of 15 KV was applied between the electrodes for 10 minutes, and the temperature was increased while the applied voltage remained unchanged. It was cooled to room temperature to obtain a porous electret film.

このエレクトレット多孔質フィルムを図1の装置で10
0°Cにおける表面電荷密度を測定したところ、0.1
5nc/ciaの値を得た。次に、このエレクトレット
多孔質フィルムに実施例1と同し繊維シートを同一条件
で貼合せた。得られた濾材は実施例1と同一条件でフィ
ルターを作成し、粒子再飛散試験をした。その結果、試
験開始30分後に0.1μm以上の粒子のカウント数は
0個/立方フィートとなり、その後100時間連続運転
中も粒子のカウント数は0個/立方フィートであった。
This electret porous film was processed using the apparatus shown in Figure 1 for 10 minutes.
When the surface charge density was measured at 0°C, it was 0.1
A value of 5 nc/cia was obtained. Next, the same fiber sheet as in Example 1 was laminated to this porous electret film under the same conditions. A filter was prepared using the obtained filter medium under the same conditions as in Example 1, and a particle re-entrainment test was conducted. As a result, 30 minutes after the start of the test, the number of particles with a diameter of 0.1 μm or more was 0/cubic foot, and the number of particles counted was 0/cubic foot even during continuous operation for 100 hours thereafter.

なお、このフィルターの100°Cでの0.1μm粒子
に対する除去効率は99.91%であった。
The removal efficiency of this filter for 0.1 μm particles at 100° C. was 99.91%.

比較例1 実施例1と同しポリ4弗化エチレンの多孔質フィルムを
エレクトレット化せずに、実施例1のエレクトレット繊
維シートとエンボスローラで部分融着により貼合せた。
Comparative Example 1 The same porous film of polytetrafluoroethylene as in Example 1 was bonded to the electret fiber sheet of Example 1 by partial fusion using an embossing roller without converting it into electret.

次いで、実施例1と同一条件でフィルターを作成し同様
の試験を実施した結果、30分後の粒子カウント数は5
個/立方フィートであり、その後の24時間運転中にカ
ウントされた平均粒子数は3個/立方フィートであった
。試験開始10分後のフィルター上流側の粒子濃度は2
50個/立方フィート、下流側の粒子濃度は1個/立方
フィートであり、したがってフィルターの粒子除去効率
は99.6%であった。
Next, a filter was made under the same conditions as in Example 1, and the same test was conducted. As a result, the number of particles counted after 30 minutes was 5.
particles per cubic foot, and the average number of particles counted during the subsequent 24 hour run was 3 particles per cubic foot. 10 minutes after the start of the test, the particle concentration on the upstream side of the filter was 2.
The downstream particle concentration was 1 particle/cubic foot, so the particle removal efficiency of the filter was 99.6%.

30分以後のフィルター上流側濃度は平均7個/立方フ
ィートのため前記24時間運転中にカウントされた平均
粒子数は上流側粒子の素抜けではなかった。
Since the average particle concentration on the upstream side of the filter after 30 minutes was 7 particles/cubic foot, the average number of particles counted during the 24-hour operation was not a complete omission of particles on the upstream side.

比較例2 実施例1と同し多孔質フィルムを常温で板電極と針電極
間に置き、この電極間に20KVの直流電圧を】O分゛
間印加し、エレクトレット多孔質フィルムを得た。この
エレクトレット多孔質フィルムを図1の装置で100°
Cにおける表面電荷密度を測定したところ、0.05n
c/ciIlO値を得た。次に、このエレクトレット多
孔質フィルムに実施例1と同し繊維ソートを同一条件で
貼合せた。得られた濾材は実施例1と同一条件でフィル
ターを作成し、粒子再飛散試験をした。
Comparative Example 2 The same porous film as in Example 1 was placed between a plate electrode and a needle electrode at room temperature, and a DC voltage of 20 KV was applied between the electrodes for 10 minutes to obtain an electret porous film. This electret porous film was heated at 100° using the apparatus shown in Figure 1.
When the surface charge density of C was measured, it was found to be 0.05n
c/ciIIO values were obtained. Next, the same fiber sort as in Example 1 was laminated to this electret porous film under the same conditions. A filter was prepared using the obtained filter medium under the same conditions as in Example 1, and a particle re-entrainment test was conducted.

その結果、試験開始30分後に0.1μ噺以上の粒子の
カウント数は平均2個/立方フィートとなり、その後1
00時間連続運転中も粒子のカウント数は平均2個/立
方フィートで零になることはなかった。
As a result, 30 minutes after the start of the test, the average count of particles larger than 0.1 μm was 2 per cubic foot, and after that, 1
Even during continuous operation for 00 hours, the particle count averaged 2 particles/cubic foot and never reached zero.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は表面電荷密度を測定するための装置の概略図第
2図は本発明のフィルターの断面図を示す。 図における数字か示す部分は以下のよってある。 第1図 1 試料 23 電極 4、コンデンサー 5、電位計 6、加熱オーブン 第2図月 エレクトレット多孔質フィルム2、繊維フィ
ルム 3 エンホス融着による接着部 特許出願人    東洋紡績株式会社
FIG. 1 shows a schematic diagram of an apparatus for measuring surface charge density, and FIG. 2 shows a cross-sectional view of a filter according to the invention. The parts indicated by numbers in the figure are as follows. Figure 1 1 Sample 23 Electrode 4, Capacitor 5, Electrometer 6, Heating oven Figure 2 Electret porous film 2, fiber film 3 Adhesive part by Enphos fusion Patent applicant Toyobo Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 100℃における表面電荷密度が少くても0.1nc/
cm^2であるエレクトレット多孔質フィルムと繊維シ
ートとを貼合せたことを特徴とする高温気体用フィルタ
The surface charge density at 100°C is at least 0.1 nc/
A high-temperature gas filter characterized by laminating an electret porous film with a diameter of cm^2 and a fiber sheet.
JP28663590A 1990-10-23 1990-10-23 Filter for high temperature gas Pending JPH04161208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28663590A JPH04161208A (en) 1990-10-23 1990-10-23 Filter for high temperature gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28663590A JPH04161208A (en) 1990-10-23 1990-10-23 Filter for high temperature gas

Publications (1)

Publication Number Publication Date
JPH04161208A true JPH04161208A (en) 1992-06-04

Family

ID=17706968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28663590A Pending JPH04161208A (en) 1990-10-23 1990-10-23 Filter for high temperature gas

Country Status (1)

Country Link
JP (1) JPH04161208A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7160365B2 (en) * 2003-03-10 2007-01-09 Sharp Kabushiki Kaisha Ion generating apparatus, air conditioning apparatus, and charging apparatus
CN105682770A (en) * 2013-10-15 2016-06-15 优泊公司 Filter
CN105894728A (en) * 2016-05-05 2016-08-24 广东欧珀移动通信有限公司 Danger alarm method and mobile equipment
CN113440951A (en) * 2020-03-27 2021-09-28 中昊晨光化工研究院有限公司 Polytetrafluoroethylene composite filtering material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7160365B2 (en) * 2003-03-10 2007-01-09 Sharp Kabushiki Kaisha Ion generating apparatus, air conditioning apparatus, and charging apparatus
CN105682770A (en) * 2013-10-15 2016-06-15 优泊公司 Filter
US10010892B2 (en) 2013-10-15 2018-07-03 Yupo Corporation Filter
CN105894728A (en) * 2016-05-05 2016-08-24 广东欧珀移动通信有限公司 Danger alarm method and mobile equipment
CN113440951A (en) * 2020-03-27 2021-09-28 中昊晨光化工研究院有限公司 Polytetrafluoroethylene composite filtering material

Similar Documents

Publication Publication Date Title
JPH02284614A (en) Filter medium
JP5547062B2 (en) Method for forming a laminate of nanoweb and substrate and filter using the laminate
EP1273018B1 (en) Method of making electrets through vapor condensation
CA2436236C (en) Vapor deposition treated electret filter media
US5658641A (en) Filter media haing an undulated surface
US4592815A (en) Method of manufacturing an electret filter
CA2303004A1 (en) Oily mist resistant electret articles and filters
US20160263511A1 (en) Laminated Filtration Media
KR20090031911A (en) High efficiency hvac filter
KR20200033669A (en) Filter media for electret filter comprising nano fiber sheet and manufacturing methode of the same
AU6134898A (en) Method of making electret articles and filters with increased oily mist resistance
EP3275531B1 (en) Filter material and filter unit
JP3380251B2 (en) Filter media with undulating surface
EP0324601A2 (en) Processes for preparing electret filters
EP3292906B1 (en) Filter material and filter unit
JPH04161208A (en) Filter for high temperature gas
JP2000153122A (en) Filter unit
JP2595586B2 (en) Electret filter and method of manufacturing the same
CN114504951B (en) Recyclable electret filter membrane and preparation method, cleaning and charge regeneration method thereof
CN108611763A (en) Static Spinning PET/ melt-blown PP non-woven fabrics heats compound production method
JP2936591B2 (en) High-performance electret filter media
JPS5990612A (en) Filter for cleaning air
JPH047242B2 (en)
JP2536584B2 (en) Electret filter
JPS61204052A (en) Air filter having novel filtering characteristics