JPH04160263A - Rotation transmitting device - Google Patents

Rotation transmitting device

Info

Publication number
JPH04160263A
JPH04160263A JP28468490A JP28468490A JPH04160263A JP H04160263 A JPH04160263 A JP H04160263A JP 28468490 A JP28468490 A JP 28468490A JP 28468490 A JP28468490 A JP 28468490A JP H04160263 A JPH04160263 A JP H04160263A
Authority
JP
Japan
Prior art keywords
magnetic poles
rotor
rotating
magnetic
magnetized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28468490A
Other languages
Japanese (ja)
Inventor
Kanatomo Tamura
哉智 田村
Hiroshi Hanatsumi
花積 寛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP28468490A priority Critical patent/JPH04160263A/en
Publication of JPH04160263A publication Critical patent/JPH04160263A/en
Pending legal-status Critical Current

Links

Landscapes

  • Synchronous Machinery (AREA)
  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)
  • Linear Motors (AREA)

Abstract

PURPOSE:To convert the rotation speed ratio of a rotary shaft at the output side according to the angle of a rotary shaft of the input side by setting to convert the central angle made by the centers of the neighboring magnetic poles each other and the rotation center of one side rotor of the rotors fixed to a pair of rotary shafts, in the peripheral direction of the magnetic poles. CONSTITUTION:A holder 11 and a magnetic body 12 compose a rotor 13, while a holder 15 and a magnetic body 16 compose a rotor 17, respectively. And the rotors 13 and 17 are provided by opposing the peripheral surfaces each other opening a clearance between them. The length in the peripheral direction of the magnetic poles of the rotor 13 are all equal, and the central angle between both ends in the peripheral direction of each magnetic pole and the rotor center is thetaA. On the other hand, in the rotor 17 of the output side, the central angles made by both ends of the neighboring magnetic poles and the rotary center are set to be increased from 0 deg. position to 180 deg. position as theta1 theta5 step by step, and then decreased from 180 deg. position to 360 deg. position (0 deg.) as theta5 theta1 step by step. When the rotary shaft 10 at the input side is rotated, the rotor 17 is rotated as the number of the magnetic poles same as the rotor 13. And a desired rotary speed ratio can be obtained easily only by converting the magnetic intervals of the magnetic poles of the rotors 12 and 16.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、一方の回転軸から他方の回転軸に回転力を伝
達する回転伝達装置に係わり、特に、入力側の回転軸に
対する出力側の回転軸の回転速度比が、回転角度に応じ
て変化するようにした装置に関する。
Detailed Description of the Invention "Field of Industrial Application" The present invention relates to a rotation transmission device that transmits rotational force from one rotating shaft to another rotating shaft, and in particular, the present invention relates to a rotation transmission device that transmits rotational force from one rotating shaft to another rotating shaft. The present invention relates to a device in which the rotation speed ratio of a rotating shaft changes according to the rotation angle.

「従来の技術」 入力側の回転軸に対する出力側の回転軸の回転速度比を
変化させる回転伝達装置としては、例えば第12図およ
び第13図に示すようなものが周知である。
``Prior Art'' As a rotation transmission device that changes the rotation speed ratio of an output side rotation shaft to an input side rotation shaft, for example, the one shown in FIGS. 12 and 13 is well known.

第12図の装置は、平行に配置された1対の回転軸1.
2と、これら回転輪1.2のそれぞれに同一量偏心して
固定された互いに同寸法の円板状ギア3.4 とから構
成されたもので、一方のギア3(4)の長径部(半径R
2)と他方のギア4(3)の短径部(半径R1)とが噛
み合わされている。
The apparatus shown in FIG. 12 has a pair of parallel rotating shafts 1.
2, and disc-shaped gears 3.4 of the same size fixed to each of these rotating wheels 1.2 with the same amount of eccentricity, and the long diameter part (radius) of one gear 3 (4) R
2) and the short diameter portion (radius R1) of the other gear 4 (3) are meshed with each other.

この装置によれば、入力側の回転軸2に対する出力側の
回転軸lの回転速度比は、入力側のギア4が図示の0°
位置で出力側のギア3と噛合している状態でR1/R2
、同180°位置ではR2/R1となる。すなわち、回
転軸2が!80°回転する毎に回転速度比が周期的に増
減する。
According to this device, the rotational speed ratio of the output side rotation shaft l to the input side rotation shaft 2 is 0 degrees as shown in the figure.
R1/R2 when meshing with gear 3 on the output side at position
, at the same 180° position, R2/R1. In other words, the rotation axis 2! The rotational speed ratio increases and decreases periodically every time it rotates 80 degrees.

一方、第13図の装置は、楕円状のギア5.6を噛合さ
せたもので、図示の0°位置で噛合している際には回転
速度比がR1/R2,90°位置ではR2/R1,18
0°位置ではR1/R2,270°位置ではR2/R1
と、90°毎に回転速度比が増減する。
On the other hand, the device shown in Fig. 13 has elliptical gears 5.6 in mesh, and when they are in mesh at the 0° position shown in the figure, the rotational speed ratio is R1/R2, and at the 90° position, the rotational speed ratio is R2/R2. R1,18
R1/R2 at 0° position, R2/R1 at 270° position
The rotational speed ratio increases and decreases every 90 degrees.

「発明が解決しようとする課題」 しかし、上記のような各装置では、各ギアが単純な円形
ではないうえ、その形状に要求される加工精度が高いた
め、通常の円形ギアに比してギアが極めて高価になり、
装置自体のコストが高いという欠点があった。
``Problem to be solved by the invention'' However, in each of the devices described above, each gear is not a simple circle, and the shape requires high processing precision, so the gears are smaller than normal circular gears. becomes extremely expensive,
The disadvantage was that the cost of the device itself was high.

また、噛合する各ギアの配置にも高精度が要求されるた
め、この装置の適用には高精度が要求され、使用上の制
約が大きいという問題があった。
Furthermore, since high precision is also required for the arrangement of each gear that meshes with each other, there is a problem in that high precision is required for application of this device, and there are significant restrictions on use.

本発明は上記事情に鑑みてなされたもので、入力側の回
転軸の角度に応じて出力側の回転軸の回転速度比を変化
させることができ、コストが安く、しかも使用上の制約
が少ない回転伝達装置の提供を課題としている。
The present invention has been made in view of the above circumstances, and is capable of changing the rotational speed ratio of the output side rotation shaft according to the angle of the input side rotation shaft, is inexpensive, and has fewer restrictions on use. Our goal is to provide a rotation transmission device.

「課題を解決するための手段」 本発明は上記課題を解決するためになされたもので、一
対の回転軸にそれぞれ同軸に固定された回転体が、これ
ら回転体の外周の一部が対向した状態で回転可能に配置
されるとともに、前記各回転体を回転させた際に他方の
回転体と対向しうる対向面には、これら対向面の周方向
に多数の磁極が配列された着磁部が形成され、一方の回
転体を回転することにより、その着磁部と他方の回転体
の着磁部の間で働く磁力により、他方の回転体が回転す
るように構成された回転伝達装置において、 前記回転体のうち少なくとも一方では、その着磁部の隣
接しあう前記磁極の中心同士と回転中心とがなす中心角
が、この着磁部の周方向に変化するように設定されてい
ることを特徴としている。
"Means for Solving the Problems" The present invention has been made to solve the above problems, and includes a pair of rotating bodies each coaxially fixed to a pair of rotating shafts, with part of the outer periphery of these rotating bodies facing each other. A magnetized portion having a large number of magnetic poles arranged in the circumferential direction of each of the rotating bodies is disposed so as to be rotatable in the state, and on opposing surfaces that can face the other rotating body when each rotating body is rotated. is formed, and when one rotating body is rotated, the other rotating body is rotated by the magnetic force acting between the magnetized part of the rotating body and the magnetized part of the other rotating body. , at least one of the rotating bodies is set such that a central angle between the centers of the adjacent magnetic poles of the magnetized portion and the center of rotation changes in the circumferential direction of the magnetized portion; It is characterized by

「作用」 この回転伝達装置では、入力側の回転体が回転するにつ
れ、出力側の回転体が入力側の回転体とl磁極づつ順次
対向して回転する。このため、出力側回転軸と入力側回
転軸との回転速度比は、両者の回転につれ、これらの対
向部分における出力側の磁極間中心角と、入力側の磁極
間中心角との比に応じて変化する。
"Operation" In this rotation transmission device, as the input-side rotor rotates, the output-side rotor rotates sequentially facing the input-side rotor by one magnetic pole. Therefore, as they rotate, the rotational speed ratio of the output-side rotating shaft and the input-side rotating shaft changes depending on the ratio of the central angle between the magnetic poles on the output side and the central angle between the magnetic poles on the input side in their opposing parts. and change.

「実施例」 第1図および第2図は、本発明に係わる回転伝達装置の
第1実施例を示す正面図および平面図である。
Embodiment FIGS. 1 and 2 are a front view and a plan view showing a first embodiment of a rotation transmission device according to the present invention.

図中符号10は入力側の回転軸、11は回転軸IOに同
軸に固定された円板状の支持部、12は支持部1.1の
外周に一定厚さに形成された着磁部であり、支持部11
と着磁部12とが回転体13を構成している。
In the figure, reference numeral 10 denotes the rotation axis on the input side, 11 denotes a disk-shaped support part coaxially fixed to the rotation axis IO, and 12 denotes a magnetized part formed with a constant thickness on the outer periphery of the support part 1.1. Yes, support part 11
and the magnetized portion 12 constitute a rotating body 13.

一方、符号14は回転軸IOと平行に配置された出力側
の回転軸であり、この回転軸I4には前記支持部I!と
同径の円板状の支持部15が固定されるとともに、その
外周には着磁部16が形成され、これら支持部15と着
磁部16が回転体17を構成している。そして各回転体
13.17  は、間隙が空くように外周面を対向させ
て配置されている。
On the other hand, reference numeral 14 is an output-side rotation shaft arranged parallel to the rotation axis IO, and this rotation axis I4 has the support portion I! A disk-shaped support section 15 having the same diameter as the rotor is fixed, and a magnetized section 16 is formed on its outer periphery, and the support section 15 and the magnetized section 16 constitute a rotating body 17 . The rotating bodies 13, 17 are arranged with their outer peripheral surfaces facing each other with a gap between them.

着磁部12,16  は強磁性体で一体形成されたもの
で、その外周面が周方向交互にS極またはN極になるよ
うに、半径方向に着磁されている。
The magnetized parts 12 and 16 are integrally formed of ferromagnetic material, and are magnetized in the radial direction so that the outer circumferential surface thereof becomes an S pole or a N pole alternately in the circumferential direction.

着磁部12,16  の材質としては着磁および一体成
形のしやすさの点から樹脂磁性体が好ましいが、フェラ
イトまたは金属等に着磁したものでも使用可能であるし
、着磁部12.16  をそれぞれ一体成形する代わり
に、小さな磁石片を支持部11.15 の外周に多数並
べて固定した構成も可能である。
The material for the magnetized parts 12, 16 is preferably a resin magnetic material in terms of ease of magnetization and integral molding, but magnetized materials such as ferrite or metal can also be used. Instead of integrally molding each of the magnets 11.16, it is also possible to arrange a large number of small magnet pieces and fix them around the outer periphery of the support portion 11.15.

入力側の回転体!3の各磁極の周方向の長さは全て等し
く、各磁極の周方向両端と回転中心とがなす中心角はθ
Aとなっている。
Rotating body on the input side! The circumferential length of each magnetic pole in No. 3 is the same, and the central angle between the circumferential ends of each magnetic pole and the center of rotation is θ.
It is A.

一方、出力側の回転体17では、隣接する各磁極の両端
と回転中心とがなす中心角が、図示の0°位置から18
0°位置にかけてθl→θ5へと段階的に増大し、次い
で180°位置から360°(0°)位置にかけてθ5
−θlへと段階的に減少するように設定されている。
On the other hand, in the rotating body 17 on the output side, the central angle between both ends of each adjacent magnetic pole and the center of rotation is 18 degrees from the 0° position shown in the figure.
It gradually increases from θl to θ5 toward the 0° position, and then θ5 increases from the 180° position to the 360° (0°) position.
-θl is set to decrease stepwise.

例えば、第11iUの例では各中心角が以下のように設
定されている。
For example, in the example of the 11th iU, each central angle is set as follows.

θA=30°  θ1=30°  θ2=33゜θ3=
36’  θ4=39°  θ5=42゜勿論、この数
値は一例に過ぎず、磁極数や各中心角は適宜変更してよ
い。ただし、入力側の中心角θAと、θ!〜5の各中心
角の比は1/2〜2倍の範囲でなければならない。2倍
以上またはl/2未満になると、対向する磁極間の磁気
結合力が著しく減少し、回転伝達が困難になる。
θA=30° θ1=30° θ2=33° θ3=
36' θ4 = 39° θ5 = 42° Of course, these values are just an example, and the number of magnetic poles and each central angle may be changed as appropriate. However, the central angle θA on the input side and θ! The ratio of each central angle of ~5 must be in the range of 1/2 to 2 times. When it is more than twice or less than 1/2, the magnetic coupling force between opposing magnetic poles is significantly reduced, making rotation transmission difficult.

このように構成された回転伝達装置においては、入力側
の回転軸IOを回転すると、回転体13の磁極の回転に
つれて、回転体17の対向する磁極がそれぞれ引かれ、
回転体17が回転体13と同じ磁極数だけ回転する。
In the rotation transmission device configured in this way, when the input-side rotating shaft IO is rotated, as the magnetic poles of the rotating body 13 rotate, the opposing magnetic poles of the rotating body 17 are pulled, respectively.
The rotating body 17 rotates by the same number of magnetic poles as the rotating body 13.

よって、第3図のグラフに示すように、出力側回転体1
7の0°位置が入力側回転体13と対向している状態で
は、入力側に対する出力側の回転速度比はθ1/θA(
図示の例ではl)になり、I80°80°対向した状態
ではθ5/θA(同1゜4)となる。すなわち、180
°毎に回転速度比が漸次増減する。
Therefore, as shown in the graph of FIG.
When the 0° position of 7 faces the input rotating body 13, the rotational speed ratio of the output side to the input side is θ1/θA(
In the illustrated example, the angle is 1), and when the angles are opposed to each other at I80° and 80°, the angle becomes θ5/θA (1°4). That is, 180
The rotational speed ratio gradually increases or decreases every degree.

また、出力側の回転トルクは、対向する各磁極の中心角
が等しいほど大きいため、この例では0°位置が対向し
た状態で最大、180°位置が対向した状態で最小とな
る。
Furthermore, since the rotational torque on the output side is greater as the central angles of the opposing magnetic poles are equal, in this example, it is maximum when the magnetic poles are opposed at the 0° position, and is minimum when the magnetic poles are opposed at the 180° position.

この装置によれば、各回転体12.16  の磁極の着
磁間隔を変更するだけで任意の回転速度比が容易に得ら
れるうえ、磁極の形成は周知の着磁装置によって容易に
行なえるため、設計上の制約が少ない。また、磁極の形
成にはそれほど高い精度  −が要求されないため、航
述のギアを使用した装置に比して製造コストが格段に安
い。
According to this device, any rotational speed ratio can be easily obtained by simply changing the magnetization interval of the magnetic poles of each rotating body 12.16, and the magnetic poles can be easily formed using a well-known magnetization device. , there are fewer design constraints. Furthermore, since the formation of the magnetic poles does not require very high precision, the manufacturing cost is much lower than the device using the gears described above.

また、この装置では、各回転体13.17  の離間量
や回転軸10.14  の平行度等に多少の誤差があっ
ても十分に作動するうえ、粉塵(非磁性粉)の多い環境
下や液体中などでも、長期に亙って性能変化が少ないか
ら、使用上の自由度が高く、凡用性に優れている。
In addition, this device can operate satisfactorily even if there are some errors in the distance between the rotating bodies 13.17 and the parallelism of the rotating shaft 10.14, and it can also be used in environments with a lot of dust (non-magnetic powder). Even in liquids, there is little change in performance over a long period of time, so there is a high degree of freedom in use and excellent versatility.

さらに、各回転体13.17  は互いに非接触でよい
ため、ギアのような騒音が生じず、振動や熱を伝達する
こともなく、入力側と出力側とを完全に分離することが
できる。
Further, since the rotating bodies 13, 17 do not need to be in contact with each other, the input side and the output side can be completely separated without generating noise like gears, without transmitting vibration or heat.

なお、上記第1実施例では、個々の磁極が半径方向に着
磁されていたが、その代わりに着磁部12.16 の厚
さ方向に着磁してもよいし、あるいは周方向に交互に着
磁してもよい。
In the first embodiment, the individual magnetic poles are magnetized in the radial direction, but instead, they may be magnetized in the thickness direction of the magnetized portion 12.16, or alternately in the circumferential direction. It may also be magnetized.

また、上記実施例において、入力側の磁極の中心角θA
を変更すると、回転トルクの分布を変更することができ
る。例えば第4図は、中心角θAを45°に変更した場
合の回転速度比および回転トルクを示すグラフである。
In addition, in the above embodiment, the central angle θA of the magnetic pole on the input side
By changing , the distribution of rotational torque can be changed. For example, FIG. 4 is a graph showing the rotational speed ratio and rotational torque when the central angle θA is changed to 45°.

図示のように、回転速度比の変化率は第3図と変わらな
いが、回転トルクは第3図とは逆に0°位置で最小、1
80゜位置で最大となる。
As shown in the figure, the rate of change in the rotational speed ratio is the same as in Figure 3, but the rotational torque is at its minimum at the 0° position and at 1
Maximum at 80° position.

また、上記実施例では回転軸14を出力側、回転軸lO
を入力側としていたが、これらを逆にしてもよい。
Further, in the above embodiment, the rotating shaft 14 is on the output side, and the rotating shaft lO
is used as the input side, but these may be reversed.

次に、第5図は本発明の第2実施例を示し、この例では
、各着磁部12.16  の磁極を全て一定幅に統一し
て、各磁極の間に着磁していない部分を形成したことを
特徴とする。この構成によれば、第1実施例に比して着
磁が容易で、製造コストが一層低減できる。
Next, FIG. 5 shows a second embodiment of the present invention. In this example, all the magnetic poles of each magnetized portion 12, 16 are unified to a constant width, and the unmagnetized portion between each magnetic pole is It is characterized by the formation of According to this configuration, magnetization is easier than in the first embodiment, and manufacturing costs can be further reduced.

次に、第6図および第7図は本発明の第3実施例を示し
、この例では、入力側の回転軸IOに2枚の円板状の回
転体13が間隔を空けて同軸に固定されている。一方、
出力側の回転軸14に固定された円板状の回転体17は
、その外周部が前記各回転体13の間隙内に挿入され、
非接触状態で配置されている。
Next, FIGS. 6 and 7 show a third embodiment of the present invention, and in this example, two disc-shaped rotating bodies 13 are fixed coaxially to the rotation axis IO on the input side with a space between them. has been done. on the other hand,
A disk-shaped rotating body 17 fixed to the rotating shaft 14 on the output side has its outer circumference inserted into the gap between the respective rotating bodies 13,
It is placed in a non-contact manner.

この例によれば、各回転体13.17  間の磁気結合
力が大きくなるため、同じ磁力でも第1実施例より回転
トルクが高められる利点を有する。
According to this example, since the magnetic coupling force between the rotating bodies 13, 17 is increased, there is an advantage that the rotational torque is higher than that of the first embodiment even with the same magnetic force.

第8図および第9図は、本発明の第4実施例を示してい
る。この例では入力側の回転体13が大径の有底円筒状
とされ、その内部には、小径の有底円筒状をなす出力側
の回転体17が平行に収容されている。
8 and 9 show a fourth embodiment of the invention. In this example, the rotary body 13 on the input side has a cylindrical shape with a large diameter and a bottom, and the rotary body 17 on the output side, which has a cylindrical shape with a small diameter and a bottom, is accommodated in parallel therein.

回転体13の周壁部は着磁部12とされ、その各磁極の
中心角は、図示の0°位置から180゜位置にかけてθ
1→θlOまで漸次増大し、180゛位置から360゛
位置までは再びθ10→θIへと中心角が減少するよう
に設定されている。
The peripheral wall of the rotating body 13 is a magnetized part 12, and the central angle of each magnetic pole is θ from the 0° position to the 180° position shown in the figure.
The center angle is set so that it gradually increases from 1 to θlO, and decreases again from θ10 to θI from the 180° position to the 360° position.

一方、出力側の回転体17の着磁部1Bは、周方向等間
隔に着磁されている。この例でも、前記各実施例と同様
の効果が得られる。
On the other hand, the magnetized portions 1B of the rotating body 17 on the output side are magnetized at equal intervals in the circumferential direction. In this example as well, the same effects as in each of the above embodiments can be obtained.

次に、第1θ図に示す第5実施例は、出力側の回転体1
7の着磁部16が、図示の0°位置から360゛位置に
かけて漸次、各磁極の中心角が増大(θ1−014)す
るように着磁された例である。
Next, in the fifth embodiment shown in Fig. 1θ, the rotating body 1 on the output side
In this example, the magnetized portion 16 of No. 7 is magnetized so that the central angle of each magnetic pole gradually increases from the 0° position to the 360° position shown in the figure (θ1-014).

この場合の回転速度比は、第11図のグラフに示すよう
に、0°位置近傍から360゛位置近傍にかけて漸次増
大した後、360°近傍から0゜近傍にかけて急激に減
少して初期値に戻る。すなわち、360゛周期で回転速
度比が変化する。
In this case, as shown in the graph of Figure 11, the rotation speed ratio gradually increases from near the 0° position to near the 360° position, then rapidly decreases from near 360° to near 0°, and returns to the initial value. . That is, the rotational speed ratio changes at a cycle of 360 degrees.

なお、本発明においては、180゛周期または360゛
周期のみに限らず、例えば120°毎に回転速度比が変
化する構成も可能であるし、その他特定の回転角度にお
ける回転速度分布も任意に設定できる。そのようなこと
は機械的ギアでは実施困難である。
Note that the present invention is not limited to a 180° cycle or a 360° cycle, and a configuration in which the rotational speed ratio changes every 120° is also possible, and the rotational speed distribution at other specific rotational angles can also be set arbitrarily. can. Such a thing is difficult to implement with mechanical gears.

また、本発明は上記各実施例に限られず、各実施例の構
成を組み合わせたものや、他の周知の構成を加えたもの
も実施可能である。例えば、入力側と出力側の回転体の
いずれも磁極間隔が漸次変化する構成としてもよい。
Further, the present invention is not limited to the above-mentioned embodiments, and may be implemented by combining the configurations of the respective embodiments or by adding other known configurations. For example, the magnetic pole spacing of both the input side and output side rotating bodies may be configured to gradually change.

「発明の効果」 以上説明したように、本発明に係わる回転伝達装置によ
れば、入力側の回転体が回転するにつれ、出力側の回転
体が1磁極づつ順次対応して回転するため、出力側回転
軸と入力側回転軸の回転速度比は、対向しあう部分にお
ける出力側回転体の磁極間中小角と、入力側回転体の磁
極間中小角との比に応じて変化し、複雑な作動量制御が
行なえる。
"Effects of the Invention" As explained above, according to the rotation transmission device of the present invention, as the input side rotating body rotates, the output side rotating body sequentially rotates one magnetic pole at a time, so that the output The rotational speed ratio of the side rotating shaft and the input side rotating shaft changes depending on the ratio of the small and medium angle between the magnetic poles of the output side rotating body and the small and medium angle between the magnetic poles of the input side rotating body in the opposing parts, and it is complicated. Operation amount can be controlled.

また、回転体の着磁部の着磁間隔を変更するだけで任意
の回転速度比が容易に得られるうえ、着磁にはギアのよ
うに高い精度が要求されないため、製造上の制約が少な
く、製造コストが安い。同時に、各回転体の離間量や回
転軸の平行度等に多少の誤差があっても十分に作動する
ため、用途に制限が少なく、凡用性に優れている。
In addition, any rotational speed ratio can be easily obtained by simply changing the magnetization interval of the magnetized part of the rotating body, and since magnetization does not require high precision unlike gears, there are fewer restrictions on manufacturing. , manufacturing cost is low. At the same time, since it operates satisfactorily even if there are some errors in the distance between the rotating bodies and the parallelism of the rotating axes, there are few restrictions on its uses and it is excellent in general use.

さらに、各回転体は互いに非接触であるから、ギアのよ
うな騒音が生じず、振動や熱を入力側から出力側へ伝達
しないという利点も有する。
Furthermore, since the rotating bodies are not in contact with each other, there is an advantage that noise unlike gears is not generated and vibrations and heat are not transmitted from the input side to the output side.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明に係わる回転伝達装置の第
1実施例を示す正面図および平面図、第3図はその回転
速度比を示すグラフ、第4図は入力端の磁極間中小角を
変更した例を示す第3図と同様のグラフ、第5図は本発
明の第2実施例を示す平面図、第6図および第7図は第
3実施例を示す正面図および平面図、第8図および第9
図は第4実施例を示す正面図およびIX−IX線断面図
、第10図は第5実施例の平面図、第11図は第5実施
例の回転速度比を示すグラフである。 一方、第12図および第13図はいずれも従来の回転伝
達装置を示す平面図である。 10.14・・・回転軸、  11.15・・・支持部
、12.16・・・着磁部、  13.17・・・回転
体、θ1〜θ14・・・磁極の両端間の中心角(隣接す
る磁極の中央間の中心角に対応)。
1 and 2 are a front view and a plan view showing a first embodiment of the rotation transmission device according to the present invention, FIG. 3 is a graph showing the rotational speed ratio, and FIG. 4 is a small to medium distance between magnetic poles at the input end Graph similar to FIG. 3 showing an example where the corners are changed, FIG. 5 is a plan view showing the second embodiment of the present invention, and FIGS. 6 and 7 are a front view and a plan view showing the third embodiment. , Figures 8 and 9
The figures are a front view and a sectional view taken along the line IX-IX of the fourth embodiment, FIG. 10 is a plan view of the fifth embodiment, and FIG. 11 is a graph showing the rotational speed ratio of the fifth embodiment. On the other hand, FIGS. 12 and 13 are both plan views showing conventional rotation transmission devices. 10.14... Rotating shaft, 11.15... Support part, 12.16... Magnetized part, 13.17... Rotating body, θ1 to θ14... Central angle between both ends of magnetic pole (corresponds to the central angle between the centers of adjacent magnetic poles).

Claims (1)

【特許請求の範囲】 一対の回転軸にそれぞれ同軸に固定された回転体が、こ
れら回転体の外周の一部が対向した状態で回転可能に配
置されるとともに、 前記各回転体を回転させた際に他方の回転体と対向しう
る対向面には、これら対向面の周方向に多数の磁極が配
列された着磁部が形成され、一方の回転体を回転するこ
とにより、その着磁部と他方の回転体の着磁部の間で働
く磁力により、他方の回転体が回転するように構成され
た回転伝達装置において、 前記回転体のうち少なくとも一方では、その着磁部の隣
接しあう前記磁極の中心同士と回転中心とがなす中心角
が、この着磁部の周方向に変化するように設定されてい
ることを特徴とする回転伝達装置。
[Claims] Rotating bodies each coaxially fixed to a pair of rotating shafts are rotatably arranged with part of the outer periphery of these rotating bodies facing each other, and each of the rotating bodies is rotated. A magnetized part in which a large number of magnetic poles are arranged in the circumferential direction of these opposing faces is formed on the opposing surface that can face the other rotating body, and by rotating one rotating body, the magnetized part In a rotation transmission device configured such that the other rotating body is rotated by a magnetic force acting between the magnetized parts of the rotating body and the other rotating body, at least one of the rotating bodies has magnetized parts adjacent to each other. A rotation transmission device characterized in that a central angle between the centers of the magnetic poles and the rotation center is set to vary in the circumferential direction of the magnetized portion.
JP28468490A 1990-10-23 1990-10-23 Rotation transmitting device Pending JPH04160263A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28468490A JPH04160263A (en) 1990-10-23 1990-10-23 Rotation transmitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28468490A JPH04160263A (en) 1990-10-23 1990-10-23 Rotation transmitting device

Publications (1)

Publication Number Publication Date
JPH04160263A true JPH04160263A (en) 1992-06-03

Family

ID=17681643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28468490A Pending JPH04160263A (en) 1990-10-23 1990-10-23 Rotation transmitting device

Country Status (1)

Country Link
JP (1) JPH04160263A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5569967A (en) * 1991-09-11 1996-10-29 Temper Corporation Magnetic gear and gear train configuration
JP2006132614A (en) * 2004-11-04 2006-05-25 Nippon Pulse Motor Co Ltd Drive transmission mechanism
JP2008101703A (en) * 2006-10-19 2008-05-01 Shinano Kenshi Co Ltd Noncontact power transmission device
JP2008275033A (en) * 2007-04-26 2008-11-13 Honda Motor Co Ltd Magnetic shaft coupling structure
JP2009030684A (en) * 2007-07-25 2009-02-12 Sumitomo Heavy Ind Ltd Magnetic gear reducer
JP2010174908A (en) * 2009-01-27 2010-08-12 Mitsuboshi Belting Ltd Pulley structure
JP2010196876A (en) * 2009-02-27 2010-09-09 Mitsuboshi Belting Ltd Pulley structure
JP2011174551A (en) * 2010-02-25 2011-09-08 Mitsuboshi Belting Ltd Pulley structure
KR101879631B1 (en) * 2017-03-03 2018-07-18 김채식 Agitator

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5569967A (en) * 1991-09-11 1996-10-29 Temper Corporation Magnetic gear and gear train configuration
JP2006132614A (en) * 2004-11-04 2006-05-25 Nippon Pulse Motor Co Ltd Drive transmission mechanism
JP2008101703A (en) * 2006-10-19 2008-05-01 Shinano Kenshi Co Ltd Noncontact power transmission device
JP2008275033A (en) * 2007-04-26 2008-11-13 Honda Motor Co Ltd Magnetic shaft coupling structure
JP2009030684A (en) * 2007-07-25 2009-02-12 Sumitomo Heavy Ind Ltd Magnetic gear reducer
JP2010174908A (en) * 2009-01-27 2010-08-12 Mitsuboshi Belting Ltd Pulley structure
JP2010196876A (en) * 2009-02-27 2010-09-09 Mitsuboshi Belting Ltd Pulley structure
JP2011174551A (en) * 2010-02-25 2011-09-08 Mitsuboshi Belting Ltd Pulley structure
KR101879631B1 (en) * 2017-03-03 2018-07-18 김채식 Agitator

Similar Documents

Publication Publication Date Title
JP5177670B2 (en) Magnetic wave gear device and magnetic transmission speed reducer
WO2003036237A1 (en) Multirotation type encoder
JPH04160263A (en) Rotation transmitting device
JPH07332441A (en) Planetary gear type reduction gear
JPS6347942B2 (en)
JP2016008633A (en) Inscription gear type speed reducer
JP6693527B2 (en) Magnetic gear device
JP5051777B2 (en) Magnetic wave gear device and magnetic transmission speed reducer
JPH02250657A (en) Transfer mechanism
JP2003009504A (en) Transmission device
JPH02253037A (en) Gearless speed change gear
JPH09257116A (en) Drive transmission means
JPH04105544A (en) Rotation transfer apparatus
JPH06101745A (en) Article driving device
JPH11285232A (en) Variable reluctance type motor
JPH1155932A (en) Noncontact type power transmission mechanism
JP2000179630A (en) Internally meshing planetary gear structure
KR101462775B1 (en) Speed increasing or decreasing device using permanent magnets
JPH0611429Y2 (en) Gearless transmission
CN110939700B (en) Automatic switching device for reduction ratio
JP2006025468A (en) Generator
JP3914207B2 (en) Transmission
JPH03285556A (en) Magnetic gear unit
JPH02304236A (en) Reduction gear
KR100454761B1 (en) Backlash Adjustable Planetary Gear Reducer