JPH04160156A - Sputtering device - Google Patents

Sputtering device

Info

Publication number
JPH04160156A
JPH04160156A JP28472390A JP28472390A JPH04160156A JP H04160156 A JPH04160156 A JP H04160156A JP 28472390 A JP28472390 A JP 28472390A JP 28472390 A JP28472390 A JP 28472390A JP H04160156 A JPH04160156 A JP H04160156A
Authority
JP
Japan
Prior art keywords
target
substrate
film
sputtering
atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28472390A
Other languages
Japanese (ja)
Inventor
Toshio Ishii
敏夫 石井
Hiromi Kikuchi
菊池 広美
Kunichika Kubota
邦親 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP28472390A priority Critical patent/JPH04160156A/en
Publication of JPH04160156A publication Critical patent/JPH04160156A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To form a film with the good infiltering property of the film on a substrate with high efficiency by irradiating a target with ions to deposit the released atoms onto the substrate, and shielding a part right under the above- mentioned target. CONSTITUTION:The substrate (not shown) imposed on a holder 3 on a turn table 2 is revolved and rotated by a motor 4 in a vacuum chamber disposed with the target 1. The above-mentioned target 1 is irradiated with the ion groups having kinetic energy to release the constituting atoms from its surface. The atoms are deposited on the above-mentioned substrate to form the thin film. A shielding plate 7 is disposed in such sputtering device or a shutter plate to close the target 1 at the time when presputtering is lowered to shield a part right under the above-mentioned target 1. The ratio at which the released atoms are made incident perpendicularly on the front surface of the substrate right under the target 1 among the release atoms is relatively decreased in this way, and the ratio at which the atoms are made incident from a diagonal direction is increased. The infiltering of the film is eventually improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、運動エネルギーを持つイオンの衝突によりタ
ーゲット構成原子を放出させて基板上に薄膜を形成する
スパッタリング装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a sputtering apparatus that forms a thin film on a substrate by ejecting atoms constituting a target by colliding ions with kinetic energy.

〔従来の技術〕[Conventional technology]

薄膜の作製方法の一つであるスパッタリングはSiウェ
ハー上への薄膜形成方法として広(用いられている。そ
の成膜面の多くはスパッタリングターゲットと対向した
面であり、スパッタ膜の廻り込みも、例えばミクロンオ
ーダーの段差やホール内への廻り込みが議論されている
Sputtering, which is one of the methods for producing thin films, is widely used as a method for forming thin films on Si wafers.Most of the film forming surface is the surface facing the sputtering target, and the sputtered film does not wrap around easily. For example, steps on the order of microns and moving around the hall are being discussed.

例えば特開昭59−229480等に見られるように基
板上に良質な膜を均一性良く形成させるためターゲット
の口径を大きくしたり、基板に自転、公転等の複雑な運
動を付与する、あるいは平板状のターゲットを陰極電極
もしくは高周波電極に対しである傾き角を持たせて複数
枚設置する等の工夫が提案されている。しかし、いずれ
も基板には平板を考えており、平板の主面すなわちスパ
ッタリングターゲットと対向した面に形成した膜の均一
性のみを検討している。
For example, as seen in Japanese Patent Laid-Open No. 59-229480, in order to uniformly form a high-quality film on a substrate, the diameter of the target is increased, the substrate is given complex motion such as rotation and revolution, or a flat plate is It has been proposed to install a plurality of shaped targets at a certain angle of inclination with respect to the cathode electrode or the high-frequency electrode. However, in both cases, a flat plate is considered as the substrate, and only the uniformity of the film formed on the main surface of the flat plate, that is, the surface facing the sputtering target, is considered.

また、上述の廻り込みを改善するためスパッタ時に基板
に適当なバイアス電圧を加えるバイアススパッタリング
を用いることがある。しかしこれらはいずれも平板上に
形成した薄膜内でμmオーダーの段差やスルーホールへ
の膜の廻り込みを検討しているものである。
Further, in order to improve the above-mentioned wraparound, bias sputtering may be used to apply an appropriate bias voltage to the substrate during sputtering. However, all of these studies consider how the film wraps around steps and through holes on the order of μm within a thin film formed on a flat plate.

平板以外の立体物へのスパッタ方式としては小型コンデ
ンサー等への成膜方法としてバレル型スパッタ方式が実
用化されている。これは、例えばIIIIlφ×311
II!程度の基体の多数個をカゴの中に入れ、カゴを回
転させなからスパッタするものである。この方式では基
体同士が衝突しカケやクランクが発生し易く、また、カ
ゴ等余分な所に成膜されスパッタ効率の劣る欠点がある
As a sputtering method for three-dimensional objects other than flat plates, a barrel sputtering method has been put into practical use as a method for forming films on small capacitors and the like. This is, for example, IIIlφ×311
II! In this method, a large number of substrates of about 100 mL are placed in a basket, and sputtering is performed without rotating the basket. This method has the disadvantage that the substrates collide with each other and chips and cranks are likely to occur, and that the sputtering efficiency is poor because the film is deposited on unnecessary areas such as the cage.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述のように、従来のスパッタリング装置ではSiウェ
ハー等の平面上の成膜が主に考えられており、立体物等
へのスパッタリング例は少なく上述のバレル式スパッタ
リング装置が見られる程度である。しかし、上述のよう
にバレル方式ではカケやクランクが発生し易く、スパッ
タ効率が劣る問題点があった。
As mentioned above, conventional sputtering apparatuses are mainly designed to form films on flat surfaces such as Si wafers, and there are few examples of sputtering on three-dimensional objects, such as the above-mentioned barrel type sputtering apparatus. However, as mentioned above, the barrel method has problems in that chips and cranks are likely to occur and sputtering efficiency is poor.

本発明の目的は、カケやクラックを発生することなく、
膜の廻り込み性が良く、高効率に、膜を形成することの
できるスパッタリング装置を提供することである。
The purpose of the present invention is to prevent chips and cracks from occurring.
It is an object of the present invention to provide a sputtering device that can form a film with good wraparound properties and with high efficiency.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、スパッタリング装置においてターゲット直下
を遮蔽することを特徴とするスパッタリング装置である
。また、いわゆるターゲット用のシャッター板が、スパ
ッタ時に陵下し、ターゲット直下を遮蔽することを特徴
とするスパッタリング装置である。
The present invention is a sputtering apparatus characterized in that the area directly below a target is shielded in the sputtering apparatus. Furthermore, the sputtering apparatus is characterized in that a so-called target shutter plate lowers during sputtering to shield the area directly below the target.

[作 用] 本発明において、ターゲット直下を遮蔽することにより
、ターゲット表面から放出されたターゲット構成原子の
うち、ターゲット直下の基板上面部に垂直に入射する比
率が相対的に低下し、斜め方向より入射する比率が相対
的に増加し、結果として、膜の廻り込みが良くなる。
[Function] In the present invention, by shielding the area directly below the target, the proportion of target constituent atoms emitted from the target surface that is incident perpendicularly to the upper surface of the substrate directly below the target is relatively reduced, and The incidence ratio increases relatively, and as a result, the film wraps around better.

以下、従来の自公転型スパッタ装置に基づき作用を具体
的に説明する。
Hereinafter, the operation will be specifically explained based on a conventional rotation-revolution type sputtering apparatus.

第1図は従来の自公転型スパッタ装置の主要部を示す断
面図である。これは既述のように、膜の均一性を良くす
る一手法として基板を自公転させる機構を有している。
FIG. 1 is a sectional view showing the main parts of a conventional revolution-revolution type sputtering apparatus. As described above, this has a mechanism for rotating the substrate as a method of improving the uniformity of the film.

ターゲット1に対向する基板(設置用)テーブル2と基
板(設置用)ホルダ3とはモータ4により、それぞれの
中心軸の回りに回転する0本発明において、膜の回り込
み性を上げるため実際の成膜状況を調査した。測定は基
板テーブル2と基板ホルダー3とを回転することなく固
定し、1011111角、厚さ2m−の石英板によるサ
ンプル5を第2図に示すように配置した。第2図は基板
テーブル2とサンプル5をターゲット用の上部から覗い
たものである。参考のためターゲットの位置も図示した
。このような配置で、基板テーブル2とサンプルホルダ
ー3を回転することなく、静圧0.6 pa、 D、C
,電力2kW、基板温度315°CでNiをスパッタし
た。スパッタリング後、Ni膜の一部をFeC1,系の
液でエツチングし膜厚を段差計により測定した。膜厚は
基板上面部の中央と基板の4側面の中央部の膜厚を測定
し、次のように定義した廻り込み比を求めた。
A substrate (for installation) table 2 and a substrate (for installation) holder 3 facing the target 1 are rotated around their respective central axes by a motor 4. The membrane condition was investigated. In the measurement, the substrate table 2 and the substrate holder 3 were fixed without rotation, and a sample 5 made of a quartz plate having a square size of 1011111 mm and a thickness of 2 m was arranged as shown in FIG. FIG. 2 shows the substrate table 2 and sample 5 viewed from above the target. The location of the target is also shown for reference. With this arrangement, the static pressure of 0.6 pa, D, C can be maintained without rotating the substrate table 2 and sample holder 3.
, Ni was sputtered at a power of 2 kW and a substrate temperature of 315°C. After sputtering, a part of the Ni film was etched with a FeCl-based solution, and the film thickness was measured using a step meter. The film thickness was measured at the center of the upper surface of the substrate and at the center of the four sides of the substrate, and the wrap-around ratio was determined as follows.

第2図において各サンプル5の周辺に記した数字が、各
サンプルの各側面の廻り込み比を記したものである。各
サンプル5の上面部に於けるNjの膜厚を各サンプルホ
ルダーの中央部に記した。
In FIG. 2, the numbers written around each sample 5 indicate the wrapping ratio of each side of each sample. The thickness of Nj on the upper surface of each sample 5 was written at the center of each sample holder.

第2図より、ターゲット直下では基板上面部の膜厚は2
500OAと厚いが、基板側面部への廻り込み比は6〜
24%と低いことがわかる。これに対して、ターゲット
から離れたサンプルでは基板上面部の膜厚は1100〜
3500Aと薄くなるものの、ターゲットに面した面は
膜の廻り込み比が145〜186%となることがわかる
From Figure 2, the film thickness on the top surface of the substrate directly below the target is 2.
It is thick at 500OA, but the penetration ratio to the side of the board is 6~
It can be seen that it is low at 24%. On the other hand, the film thickness on the top surface of the substrate in the sample far from the target is 1100~
It can be seen that although the film is thin at 3500A, the wraparound ratio of the film on the surface facing the target is 145 to 186%.

この結果から、基板テーブル2とサンプルホルダー3と
を回転した時には、膜はターゲット直下で主に基板上面
部が成膜され、ターゲットと離れた位置で基板側面部が
相対的に厚く成膜されていることかわかる。これは、成
膜は主にターゲットから放出された直進粒子の堆積によ
りなされでいるためである。
From this result, when the substrate table 2 and sample holder 3 are rotated, the film is mainly formed on the top surface of the substrate directly under the target, and the film is formed relatively thickly on the side surface of the substrate at a position away from the target. I know it's there. This is because the film is formed mainly by the deposition of straight particles emitted from the target.

本発明において、ターゲット直下を遮蔽し直射粒子の基
板への堆積を阻止することにより、主にターゲットから
離れた位置で斜め入射により成膜される基板側面部の膜
厚比が相対的に高くなり、廻り込み比が大きくなる。
In the present invention, by shielding the area directly below the target and preventing the deposition of directly irradiated particles on the substrate, the film thickness ratio on the side surface of the substrate, which is mainly formed by oblique incidence at a position away from the target, becomes relatively high. , the rotation ratio increases.

〔実施例〕〔Example〕

以下、本発明を実施例に基づき詳しく説明する。 Hereinafter, the present invention will be explained in detail based on Examples.

〔実施例1〕 自公転型スパッタ装置でNiターゲットの直下に第3図
に示すように200角X0.5mmtのSUS製遮蔽板
7を基板上201の位置に設置した。スパッタ1fi7
はAr圧0.6 pa、D、C,電力2kW、スパッタ
時の基板温度315°C,基板テーブルの回転数9.5
rpm、基板ホルダーの自転数34.2 rpmで60
分間おこなった。膜厚測定用サンプルには先述の101
角×2nIl11厚の石英板を用い、第4図に示すよう
に基板ホルダー3上に3ケセツトした。
[Example 1] As shown in FIG. 3, a SUS shielding plate 7 having a size of 200 mm x 0.5 mm was installed at a position 201 on a substrate directly below a Ni target using a rotation-revolution type sputtering apparatus. sputter 1fi7
is Ar pressure 0.6 pa, D, C, power 2 kW, substrate temperature during sputtering 315°C, and substrate table rotation speed 9.5.
rpm, the number of rotations of the substrate holder is 34.2 rpm and 60
I did it for a minute. For the sample for film thickness measurement, the above-mentioned 101
Using quartz plates having a square width of 2 nm and a thickness of 11 mm, three quartz plates were set on a substrate holder 3 as shown in FIG.

図中の1〜4は面の位置をあられしている。成膜後の基
板上面部の膜厚と各側面の廻り込み比を表−1にまとめ
る。表−1より3ケの試料51゜52.53の基板上面
部の膜厚は12000.11000゜1300OAであ
り、各側面の膜の廻り込み比は38〜53%と膜の廻り
込み比が良好であることがわかる。
1 to 4 in the figure indicate the positions of the surfaces. Table 1 summarizes the film thickness on the upper surface of the substrate after film formation and the wrap-around ratio on each side surface. From Table 1, the film thickness on the upper surface of the substrate for the three samples 51゜52.53 is 12000.11000゜1300OA, and the wrap-around ratio of the film on each side is 38-53%, which is a good wrap-around ratio. It can be seen that it is.

表−2は同一装置内に配置したTiターゲットによる基
板上面部の膜厚と各側面の廻り込み比をま・  とめた
ものである。スパッタ条件はNiと同一にし、スパッタ
時間は20分とした。表−2より基板上面部の膜厚は4
100.4000.390OA、膜の廻り込み比は34
〜54%であり、Niターゲット直下の遮蔽板の影響が
ないことがわかる。なお、一般に、Tiの廻り込み比は
Niに比べて良好である。特に廻り込み性の悪いNiタ
ーゲットの直下に遮蔽板をセットすることにより、他の
ターゲツト材の膜厚分布に影響を与えることなく、Ni
のみの膜厚分布を改善できることがわかる。
Table 2 summarizes the film thickness on the top surface of the substrate and the penetration ratio on each side surface of the Ti target placed in the same device. The sputtering conditions were the same as those for Ni, and the sputtering time was 20 minutes. From Table 2, the film thickness on the top surface of the substrate is 4
100.4000.390OA, membrane wraparound ratio is 34
~54%, indicating that there is no influence of the shielding plate directly under the Ni target. Note that, in general, the penetration ratio of Ti is better than that of Ni. By setting a shielding plate directly under the Ni target, which has particularly poor penetration, Ni can be removed without affecting the film thickness distribution of other target materials.
It can be seen that the film thickness distribution of the film can be improved.

また、サンプルはスパッタ中、平板な基板ホルダー5に
1ヶ1ヶ個所にセットされており、互に衝突することな
く、カケやクラックは発生しなかった。
Further, during sputtering, the samples were set one at a time on the flat substrate holder 5, so they did not collide with each other, and no chips or cracks were generated.

〔比較例1〕 実施例1と同一のスパッタ装置を用い、Niターゲット
直下の遮蔽板を取り除き、実施例1と同じスパッタ条件
での膜厚分布を測定した。
[Comparative Example 1] Using the same sputtering apparatus as in Example 1, the shielding plate immediately below the Ni target was removed, and the film thickness distribution was measured under the same sputtering conditions as in Example 1.

表3はNiの膜厚分布をまとめたものである。3ケの試
料の基板上面部の膜厚は19000.20000゜21
00OAであり、各側面の膜の廻り込み比は工5〜35
%と膜の廻り込み比が実施例1に比べて約20%劣るこ
とがわかる。
Table 3 summarizes the Ni film thickness distribution. The film thickness on the top surface of the substrate for the three samples was 19000.20000°21
00OA, and the wrapping ratio of the membrane on each side is 5 to 35 mm.
It can be seen that the wrap-around ratio of the membrane is about 20% lower than that of Example 1.

表4はTiの膜厚分布をまとめたものである。3ケの試
料の基板上面部の膜厚は4200.4300.410O
Aであり、各側面の膜の廻り込み比は35〜52%であ
り、実施例1と同等であることがわかる。
Table 4 summarizes the Ti film thickness distribution. The film thickness on the top surface of the substrate for the three samples was 4200.4300.410O.
It can be seen that the wrapping ratio of the membrane on each side surface is 35 to 52%, which is equivalent to Example 1.

〔実施例2) 第5図に示すように自公転型スパッタ装置に於て、当該
ターゲットのスパッタを行なわない時やプリスパッタ時
にターゲットを閉しる目的でシャッター板8.8′を設
置し、当該ターゲットのスパッタ時には上記シャッター
板(例えば8)が当該ターゲットに垂直に陸下し、基板
テーブルの上15111m+の位置に停止するようにし
た。ターゲットの直径は5#φ、シャッターの直径は6
.5#φにした。
[Example 2] As shown in FIG. 5, a shutter plate 8.8' is installed in a rotation-revolution type sputtering apparatus for the purpose of closing the target when the target is not sputtered or during pre-sputtering. During sputtering of the target, the shutter plate (for example, 8) landed perpendicularly to the target and stopped at a position 15111 m+ above the substrate table. Target diameter is 5#φ, shutter diameter is 6
.. I set it to 5#φ.

スパッタ条件、サンプル、膜厚測定方法等は実施例1と
同じである。
The sputtering conditions, sample, film thickness measurement method, etc. are the same as in Example 1.

表5に、上記シャッターを降下しNiをスパッタした時
の膜厚分布をまとめた。表5より3ケの試料の基板上面
部の膜厚は17000.18000.1900OAテあ
り、各側面の膜の廻り込み比は25〜47%であり、比
較例1に比べて膜の廻り込み比が約10%良好であるこ
とがわかる。
Table 5 summarizes the film thickness distribution when the shutter was lowered and Ni was sputtered. From Table 5, the thickness of the film on the upper surface of the substrate of the three samples is 17000.18000.1900OAte, and the wrap-around ratio of the film on each side is 25 to 47%, which is higher than that of Comparative Example 1. It can be seen that this is about 10% better.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、カケやクランクを発生することなく、
基板上面部での成膜速度を押え、基板側面部での成膜を
従前通り行なうため、従来不充分であった膜の廻り込み
性の大幅な改善が達成できる。
According to the present invention, without causing chips or cranks,
Since the film formation rate on the top surface of the substrate is suppressed and the film formation is performed on the side surfaces of the substrate as before, it is possible to achieve a significant improvement in the wraparound property of the film, which has been insufficient in the past.

実施例では、互いにNiターゲットについて説明したが
、他の成分のターゲットでも有効であることは明らかで
ある。
In the examples, the Ni target was explained, but it is clear that targets of other components are also effective.

また、サンプルは1OIIIIl角、厚さIIIlml
のものに限るものではなく、種々の形態のものに有効で
あることも明らかである。
Also, the sample is 1OIIIl square and thickness IIIlml.
It is also clear that the present invention is effective not only for those in various forms, but also for various forms.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の自公転型スパッタ装置の要部を示す断面
図、第2図は従来の自公転型スパッタ装置でサンプル静
止時の成膜状況を示す図、第3図は本発明に係るスパッ
タ装置の一実施例の要部を示す断面図、第4図は膜厚測
定に用いたサンプルの基板ホルダー上での配置を示す図
、第5図は本発明に係るスパッタ装置の一実施例の要部
を示す断面図である。 1:ターゲット、2:基板設置用テーブル、3:基板設
置用ホルダー、5:膜厚測定用サンプ・  ル、6:真
空チャンバー、7:遮蔽板、8:遮蔽板兼用シャッター
Fig. 1 is a cross-sectional view showing the main parts of a conventional rotation-revolution type sputtering device, Fig. 2 is a diagram showing the film formation situation when a sample is stationary in a conventional rotation-revolution type sputtering device, and Fig. 3 is a diagram showing the film forming state according to the present invention. FIG. 4 is a cross-sectional view showing the main parts of an embodiment of a sputtering apparatus, FIG. 4 is a diagram showing the arrangement of samples used for film thickness measurement on a substrate holder, and FIG. 5 is an embodiment of a sputtering apparatus according to the present invention. FIG. 1: Target, 2: Table for substrate installation, 3: Holder for substrate installation, 5: Sample le for film thickness measurement, 6: Vacuum chamber, 7: Shield plate, 8: Shutter that also serves as shield plate.

Claims (2)

【特許請求の範囲】[Claims] 1.運動エネルギーを持つイオン群をターゲットに照射
し、ターゲット表面からターゲット構成原子を放出させ
、これら原子を基板上に堆積させて薄膜を形成するスパ
ッタリング装置において、上記ターゲットの直下の一部
分を遮蔽することを特徴とするスパッタリング装置。
1. In a sputtering device that irradiates a target with a group of ions with kinetic energy, releases atoms constituting the target from the target surface, and deposits these atoms on a substrate to form a thin film, it is possible to shield a part directly below the target. Characteristic sputtering equipment.
2.特許請求範囲第一項記載のスパッタリング装置にお
いて、当該ターゲットのスパッタを行なわない時又はプ
リスパッタ時にターゲットを閉じる目的で設置されてい
るシャッター板が、スパッタ時にはターゲット直下に降
下することによりターゲット直下の一部分を遮蔽する機
構を有することを特徴とするスパッタリング装置。
2. In the sputtering apparatus according to claim 1, the shutter plate installed for the purpose of closing the target when the target is not sputtered or during pre-sputtering lowers directly below the target during sputtering, thereby closing a portion directly below the target. A sputtering device characterized by having a mechanism for shielding.
JP28472390A 1990-10-23 1990-10-23 Sputtering device Pending JPH04160156A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28472390A JPH04160156A (en) 1990-10-23 1990-10-23 Sputtering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28472390A JPH04160156A (en) 1990-10-23 1990-10-23 Sputtering device

Publications (1)

Publication Number Publication Date
JPH04160156A true JPH04160156A (en) 1992-06-03

Family

ID=17682153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28472390A Pending JPH04160156A (en) 1990-10-23 1990-10-23 Sputtering device

Country Status (1)

Country Link
JP (1) JPH04160156A (en)

Similar Documents

Publication Publication Date Title
US5126029A (en) Apparatus and method for achieving via step coverage symmetry
JP2009024259A (en) Sputter coating device and method of depositing layer on substrate
JP4223614B2 (en) Sputtering method and apparatus, and electronic component manufacturing method
JPH04371578A (en) Magnetron sputtering device
JPH04160156A (en) Sputtering device
JPH11302841A (en) Sputtering system
JPS61235560A (en) Magnetron sputtering device
JPH07122136B2 (en) Ion beam sputtering device and operating method
US5536381A (en) Sputtering device
JPS6361387B2 (en)
JP4396885B2 (en) Magnetron sputtering equipment
JP2003138373A (en) Sputtering apparatus and sputtering method
JP2746292B2 (en) Sputtering equipment
JPS6277477A (en) Thin film forming device
KR102579090B1 (en) Ion Beam Sputtering Apparatus for Manufacturing a Wire Grid Polarizer
KR960000403Y1 (en) Apparatus of forming a thin film by sputtering
JP2000038663A (en) Magnetron sputtering device
KR100489300B1 (en) Manufacturing method of thick film for detecting a neutron by vacuum evaporation and metal plate having the thick film for detecting a neutron
JPH0681146A (en) Magnetron sputtering device
JPH05339725A (en) Sputtering device
JP2001115259A (en) Magnetron sputtering system
JPS62185875A (en) Apparatus for forming film in vapor phase
JPH0794412A (en) Thin film forming device
JPS60250624A (en) Equipment for manufacturing semiconductor element
JPS63307256A (en) Production of thin alloy film