JPH0415913A - Organicmetal vapor growth method and susceptor therein used - Google Patents

Organicmetal vapor growth method and susceptor therein used

Info

Publication number
JPH0415913A
JPH0415913A JP11862490A JP11862490A JPH0415913A JP H0415913 A JPH0415913 A JP H0415913A JP 11862490 A JP11862490 A JP 11862490A JP 11862490 A JP11862490 A JP 11862490A JP H0415913 A JPH0415913 A JP H0415913A
Authority
JP
Japan
Prior art keywords
susceptor
sic
surface roughness
substrate
gaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11862490A
Other languages
Japanese (ja)
Inventor
Masakiyo Ikeda
正清 池田
Satoshi Hattori
聡 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP11862490A priority Critical patent/JPH0415913A/en
Publication of JPH0415913A publication Critical patent/JPH0415913A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase the number of vapor growth of organicmetal remarkably to reduce the manufacturing cost and to increase an yield of the product by using such a susceptor that has the surface roughness of silicon carbide installed on its surface within the specific range when developing a III-V compound semiconductor thin film on a substrate by the pyrolysis of organometallic gas and a hydride of the V group. CONSTITUTION:A susceptor 1 is made of carbon 2 and SiC 3 which is installed on the surface. The surface roughness of SiC is ranged from 10 to 100mum. In the case that the surface roughness of SiC is below 10mum, a contact area between a GaAs crystal developed on the surface of SiC and SiC is small, thus getting a bad adhesion. In the case that the surface roughness of SiC is over 100mum, the adhesion between a substrate and the susceptor gets bad, with the result of a bad heat transmission to the substrate. The more desirable range of the surface roughness of SiC is from 20 to 30mum.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は有機金属気相成長(Metal Organi
cVapor Phase Epitaxy、以下MO
VPEという、)法の改良とそれに用いるサセプタに関
する。
Detailed Description of the Invention (Industrial Application Field) The present invention is directed to metal organic vapor phase epitaxy (Metal Organ Vapor Phase Epitaxy).
cVapor Phase Epitaxy, hereinafter referred to as MO
This paper relates to an improvement of the VPE method and the susceptor used therefor.

(従来の技術) 現在用いられているMOVPHの反応装置としては、第
3図に示すようなバレル型構造のものがある。図中4は
反応炉であり、この上端部にはガス導入口5が、下部側
壁にはガス導入口6が設けられている。また中央部側壁
には排気ロアが設けられている。この反応炉4下端中央
部からシャフト8が反応炉4上部まで挿入されており、
この上端部にはサセプタ9が設けられている。10はこ
のサセプタ9に取付けられた基板である。このサセプタ
9の位置する部分の反応炉4の外周にはRFコイル11
が設置されている。
(Prior Art) A currently used MOVPH reactor has a barrel-type structure as shown in FIG. In the figure, reference numeral 4 denotes a reactor, which has a gas inlet 5 at its upper end and a gas inlet 6 at its lower side wall. Additionally, an exhaust lower is provided on the central side wall. A shaft 8 is inserted from the center of the lower end of this reactor 4 to the upper part of the reactor 4,
A susceptor 9 is provided at this upper end. 10 is a substrate attached to this susceptor 9. An RF coil 11 is provided on the outer periphery of the reactor 4 in a portion where the susceptor 9 is located.
is installed.

上記反応装置を用いるガリウムヒ素 (GaAs)の成長を例にとり説明を行なう。Gallium arsenide using the above reactor An explanation will be given using the growth of (GaAs) as an example.

GaAs基板l基板l上プタ9上に設置されており、R
Fコイル11により高周波誘導によって所定の温度(通
常600〜750℃)に加熱される。原料ガスであるト
リメチルガリウム(TMGa)及びアルシン(AsH*
)はキャリアガスの水素ガスと共にガス導入口5.6に
より反応炉4へ導入されGaAs基板近傍で熱分解反応
を起し、QaAs基板へGaAsを成長させる。
The GaAs substrate is placed on the substrate 9, and the R
It is heated by the F coil 11 to a predetermined temperature (usually 600 to 750°C) by high frequency induction. Trimethyl gallium (TMGa) and arsine (AsH*
) is introduced into the reactor 4 through the gas inlet 5.6 together with hydrogen gas as a carrier gas, causing a thermal decomposition reaction in the vicinity of the GaAs substrate, thereby growing GaAs on the QaAs substrate.

その後、排気ロアより排気される。この際ウェハの差を
平均化する目的でサセプタは回転される。
After that, it is exhausted from the exhaust lower. At this time, the susceptor is rotated in order to average out the differences between the wafers.

なお、サセプタは高純度カーボンが用いられる。さらに
カーボンからの脱ガスを防止する目的でSiCでコーテ
ィングを100〜200μm行なっている。
Note that high purity carbon is used for the susceptor. Further, in order to prevent degassing from carbon, a coating of 100 to 200 μm of SiC is applied.

(発明が解決しようとする課題) 上記GaASの成長においてGaAsは基板上だけでな
くサセプタ上にも成長する。サセプタ上に成長したGa
Asは、サセプタによって100μm前後の厚みで剥離
する場合と10μ国前後の厚みで剥離する場合がある。
(Problems to be Solved by the Invention) In the growth of GaAS described above, GaAs grows not only on the substrate but also on the susceptor. Ga grown on the susceptor
Depending on the susceptor, As may be peeled off to a thickness of around 100 μm, or may be peeled off to a thickness of around 10 μm.

サセプタ上に成長したGaAsが剥離すると、その破片
がGaAs基板上に落下し、表面欠陥の原因となる。4
0回程度成長を行ったのちに剥離が開始する場合、これ
をメンテナンスの目安としても生産性の低下とはならな
いが、4程度度での成長で剥離が開始した場合、生産性
に問題を生ずる。
When the GaAs grown on the susceptor peels off, its fragments fall onto the GaAs substrate, causing surface defects. 4
If peeling starts after about 0 growths, this will not cause a decrease in productivity even if this is used as a guideline for maintenance, but if peeling starts after about 4 growths, it will cause problems in productivity. .

また、サセプタ上のGaAsの剥離が生じると、浮き上
がったGaAs膜とサセプタとの隙間にはいり込んだ空
気などのパージ効率が悪化し、そこから脱離する酸素な
どが原因となって、エビウェハの電気特性不良、表面不
良を生じる。
In addition, when the GaAs on the susceptor peels off, the purge efficiency of air that has entered the gap between the lifted GaAs film and the susceptor deteriorates, and the oxygen released from there causes the electricity Causes poor characteristics and surface defects.

本発明は上記従来技術の問題点に鑑みなされたものであ
り、GaAs結晶の剥離の起こりにくい有機金属気相成
長法及びそれに用いるサセプタを提供する目的でなされ
たものである。
The present invention has been made in view of the problems of the prior art described above, and has been made for the purpose of providing an organometallic vapor phase epitaxy method in which peeling of GaAs crystals is less likely to occur, and a susceptor for use therein.

(課題を解決するための手段) 本発明者らは上記従来技術の問題点に鑑み種々検討を加
えたところ、炭化ケイ素(SiC)の粗さの違いにより
GaAs結晶のサセプタからの剥離性が違ってくること
を見出し、この知見に基づいて本発明を完成するに至っ
た。
(Means for Solving the Problems) The present inventors conducted various studies in view of the problems of the prior art described above, and found that the peelability of GaAs crystals from a susceptor differs depending on the roughness of silicon carbide (SiC). Based on this knowledge, the present invention was completed.

すなわち本発明は(1)有機金属ガス及びV族の水素化
物の熱分解反応により基板上にm−v族化合物半導体の
薄膜を成長させるに当り、表面の炭化ケイ素の表面粗さ
を10−100μ厘としたサセプタを用いることを特徴
とする有機金属気相成長法、(2)サセプタ表面の炭化
ケイ素の表面粗さを10〜100μ−としたことを特徴
とする有機金属気相成長用サセプタを提供するものであ
る。
That is, the present invention provides (1) when growing a thin film of an m-v group compound semiconductor on a substrate by a thermal decomposition reaction of an organometallic gas and a group V hydride, the surface roughness of silicon carbide on the surface is reduced to 10-100 μm. (2) A susceptor for organometallic vapor phase epitaxy characterized in that the surface roughness of silicon carbide on the surface of the susceptor is 10 to 100 μ-. This is what we provide.

以下図面に従って本発明をさらに詳細に説明する。第1
図は本発明に用いるサセプタの一例を示す斜視図であり
、第2図はその断面形状を示す一部拡大断面図である。
The present invention will be explained in more detail below with reference to the drawings. 1st
The figure is a perspective view showing an example of a susceptor used in the present invention, and FIG. 2 is a partially enlarged cross-sectional view showing its cross-sectional shape.

図中1はサセプタであり、これはカーボン2とその表面
に設けられたSiC3よりなる。本発明ではSiCの表
面粗さを10〜100μmとする。これはSiC表面粗
さを10μm未満とした場合にSiC表面上に成長した
GaAS結晶とSiCとの接触面積が小さく、密着性が
悪いためである。またSiCの表面粗さが1100aを
越λろと基板とサセプタの密着性が悪(なり、この結果
基板への熱伝達が悪くなると考えられるためである。S
iCの表面粗さはより好ましくは20〜30μ勤とする
In the figure, 1 is a susceptor, which is made of carbon 2 and SiC 3 provided on its surface. In the present invention, the surface roughness of SiC is set to 10 to 100 μm. This is because when the SiC surface roughness is less than 10 μm, the contact area between the GaAS crystal grown on the SiC surface and SiC is small and the adhesion is poor. Furthermore, if the surface roughness of SiC exceeds 1100a, the adhesion between the substrate and susceptor becomes poor (this is thought to result in poor heat transfer to the substrate).S
The surface roughness of iC is more preferably 20 to 30 μm.

なお上記表面粗さは段差測定機で測定したSiC表面の
凹凸の最大値と最小値との差で定義する。
Note that the above-mentioned surface roughness is defined as the difference between the maximum value and the minimum value of the unevenness of the SiC surface measured by a step measuring device.

またカーボン上へのSiCの形成は例えばCVD法によ
り行い、SiCの膜厚は好ましくは100〜2001J
、II+とする。
Further, the formation of SiC on carbon is performed, for example, by a CVD method, and the film thickness of SiC is preferably 100 to 2001 J.
, II+.

なお本発明のサセプタはGaAsのみでなく例えばAj
2GaAs、InP、InGaAs、I nGaP、I
nGaAsP等の有機金属気相成長用に用いることがで
きる。
Note that the susceptor of the present invention is not only made of GaAs but also, for example, Aj
2GaAs, InP, InGaAs, InGaP, I
It can be used for organic metal vapor phase growth of nGaAsP and the like.

また形状も第1図のものに限定するものではな〈従来の
形状等のものを使用できる。
Further, the shape is not limited to that shown in FIG. 1; any conventional shape can be used.

本発明の有機金属気相成長法においては、上記のように
特定のサセプタを用いる以外は、従来の方法と全(同様
の条件で行うことができ、m−V族化合物半導体薄膜を
基板上に成長させる方法全てに適用できる。
The organometallic vapor phase epitaxy method of the present invention can be performed under all the same conditions as the conventional method except for using a specific susceptor as described above, and is capable of depositing an m-V group compound semiconductor thin film on a substrate. Applicable to all growing methods.

(実施例) 次に本発明を実施例に基づきさらに詳細に説明する。(Example) Next, the present invention will be explained in more detail based on examples.

上記した第1図に示すサセプタでSiCの表面粗さが2
0〜30μmのもの、及び5μmもしくは120μ履の
ものを第3図に示す装置に設置し、これにGaAs基板
(直径2インチ)を取付は原料ガスとしてトリメチルガ
リウム及びアルシン、キャリアガスとして水素ガスを用
い、GaAsを下記条件にて成長させた。
In the susceptor shown in Figure 1 above, the surface roughness of SiC is 2.
0 to 30 μm and 5 μm or 120 μm shoes were installed in the apparatus shown in Figure 3, and a GaAs substrate (2 inches in diameter) was attached to it using trimethyl gallium and arsine as source gases and hydrogen gas as carrier gas. GaAs was grown under the following conditions.

(ガス流量) 全流量         100β/ m i nTM
Ga         10cc/m1nAsH*  
      300cc/m1n(温度)      
   650℃ (成長膜厚)      2.5〜3.0μm/同上記
試験により得られた結果を第1表に示す。
(Gas flow rate) Total flow rate 100β/minTM
Ga 10cc/m1nAsH*
300cc/m1n (temperature)
650° C. (Growth film thickness) 2.5 to 3.0 μm/Table 1 shows the results obtained from the above test.

なおNo、12のサセプタで5回成長を行ったが、サセ
プタ上のGaAsの剥離は見られなかったものの、Ga
As基板の温度低下が原因とみられる表面状態の劣化が
みられたので実験を中止第1表 (発明の効果) 本発明によれば、サセプタ上に成長した化合物半導体結
晶がはく離しに(く、これにより有機金属気相成長回数
を従来に比し著しく高めることができ、製造コストの低
減、製品歩留りの向上をはかることができる。
Although growth was performed five times using No. 12 susceptor, no peeling of GaAs on the susceptor was observed;
The experiment was stopped because the surface condition of the As substrate deteriorated, which was thought to be caused by the temperature drop. As a result, the number of times of organic metal vapor phase growth can be significantly increased compared to the conventional method, and it is possible to reduce manufacturing costs and improve product yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明サセプタの斜視図、第2図はその一部断
面拡大図、第3図は本発明に用いる有機金属気相成長装
置の断面図である。 1・・・サセプタ、2・・・カーボン、3・・・5iC
14・・9反応炉、5.6・・・ガス導入口、7・・・
排気口8・・・シャフト、9・・・サセプタ、10・・
・基板、11・・・RFコイル 第  1 図 カーボン ic
FIG. 1 is a perspective view of a susceptor of the present invention, FIG. 2 is an enlarged partial cross-sectional view thereof, and FIG. 3 is a cross-sectional view of a metal organic vapor phase growth apparatus used in the present invention. 1...Susceptor, 2...Carbon, 3...5iC
14...9 reactor, 5.6...gas inlet, 7...
Exhaust port 8...shaft, 9...susceptor, 10...
・Substrate, 11...RF coil Fig. 1 Carbon IC

Claims (2)

【特許請求の範囲】[Claims] (1)有機金属化合物ガスの熱分解反応により基板上に
III−V族化合物半導体の薄膜を成長させるに当り、表
面の炭化ケイ素の表面粗さを10〜100μmとしたサ
セプタを用いることを特徴とする有機金属気相成長法。
(1) On the substrate due to the thermal decomposition reaction of organometallic compound gas
A metal organic vapor phase epitaxy method characterized in that a susceptor having a silicon carbide surface with a surface roughness of 10 to 100 μm is used for growing a thin film of a III-V compound semiconductor.
(2)サセプタ表面の炭化ケイ素の表面粗さを10〜1
00μmとしたことを特徴とする有機金属気相成長用サ
セプタ。
(2) The surface roughness of silicon carbide on the susceptor surface is 10 to 1
A susceptor for organic metal vapor phase epitaxy, characterized in that the thickness is 00 μm.
JP11862490A 1990-05-10 1990-05-10 Organicmetal vapor growth method and susceptor therein used Pending JPH0415913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11862490A JPH0415913A (en) 1990-05-10 1990-05-10 Organicmetal vapor growth method and susceptor therein used

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11862490A JPH0415913A (en) 1990-05-10 1990-05-10 Organicmetal vapor growth method and susceptor therein used

Publications (1)

Publication Number Publication Date
JPH0415913A true JPH0415913A (en) 1992-01-21

Family

ID=14741139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11862490A Pending JPH0415913A (en) 1990-05-10 1990-05-10 Organicmetal vapor growth method and susceptor therein used

Country Status (1)

Country Link
JP (1) JPH0415913A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010125918A1 (en) * 2009-04-27 2010-11-04 旭硝子株式会社 Semiconductor heat treatment member comprising sic film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010125918A1 (en) * 2009-04-27 2010-11-04 旭硝子株式会社 Semiconductor heat treatment member comprising sic film
JPWO2010125918A1 (en) * 2009-04-27 2012-10-25 旭硝子株式会社 Semiconductor heat treatment member having SiC coating
JP5585577B2 (en) * 2009-04-27 2014-09-10 旭硝子株式会社 Evaluation method of SiC coating for semiconductor heat treatment member

Similar Documents

Publication Publication Date Title
WO2005096356A1 (en) Susceptor
JPH0415913A (en) Organicmetal vapor growth method and susceptor therein used
JP2528912B2 (en) Semiconductor growth equipment
JPH0754802B2 (en) Vapor growth method of GaAs thin film
JP3221318B2 (en) Vapor phase growth method of III-V compound semiconductor
JPH01313927A (en) Compound-semiconductor crystal growth method
JPH01173708A (en) Semiconductor device
JPH0235814Y2 (en)
JPH1145858A (en) Compound semiconductor vapor growth equipment and its method
JP2837491B2 (en) Low temperature selective epitaxy growth method
JP2001335399A (en) Vapor growth method
JPH0529637B2 (en)
JPH01123413A (en) Vapor growth apparatus
JP2514359Y2 (en) Vacuum baking device for susceptor purification
JP2736417B2 (en) Semiconductor element manufacturing method
JP2753832B2 (en) III-V Vapor Phase Growth of Group V Compound Semiconductor
JP4427694B2 (en) Film forming apparatus and film forming method
JPH04179222A (en) Vapor growth apparatus for compound semiconductor
JPS61284915A (en) Thin film vapor growth apparatus
JPS63104417A (en) Semiconductor thin-film deposition system
JPS62291021A (en) Vapor growth device
JPS62202894A (en) Vapor growth method for iii-v compound semiconductor
JPS62291022A (en) Vapor growth device
JPH04155918A (en) Semiconductor growth device
WO2006006584A1 (en) Vapor phase growing equipment